SAND2008-6151C

Plan 9 on the BG/X systems

Ron Minnich
Sandia National Labs

Lockheed Martin Company, for the United States Department of Energy’s National

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Sandia
National Nuclear Security Administration under contract DE-AC04-94AL85000. Laboratories

Overview

 Why
* Experiences with the port to newer systems
- K8
- BG/X
* |nitial port feasibllity testing
- PPC 440
- Mambo

e MPI Like
 CN/K compatibility environment
. Conclusions (@) i

Why?

nat Plan 9 Is
nat some future HPC boxes look like

Ny It Is a good match

™

Sandia
National
Laboratories

What Plan 9 Is

* Not like anything you’ve seen
- Not a mini-, micro-, nano-, or other fad kernel

* Core OS is fixed-configuration set of
“devices”

- Means “anything that has to be in the OS”
- E.g. Memory, TCP/IP stack, Net hardware, etc.

* Everything else is a “Server”
- File systems, windowing systems, etc.

Sandia
National
Laboratories

Plan 9 structure

Name Space

|
-\ Kernel

Name | Memory, NIC,
Space Protocols,etc.

Processes attach servers
as needed

Attaches are inherited

Not visible outside the
group

In this example one group
has attached remote files

Other group only needs
IPC so it has no other
services

Sandia
National
Laboratories

Why this is a good maitch to
future HPC systems

o) ez
Senices Serices

Fixed-configuration
Kernel

Fixed-configuration
hardware

Future HPC machines
feature fixed-configuration
CPU/nodes

- lL.e. NO “hot plug”

All variability is in software
services used by apps

Plan 9 fits this model
perfectly

Fixed kernel & hardware
Customized services

Sandia
National
Laboratories

Advantages
 What has to be in the OS goes in the OS

* Everything else Is optional
- If you need something you pay for it
- If not, not

* Options are configured per-process-group
* The name for this Is “private name spaces”
 The name confuses people

Sandia
National
Laboratories

A way to think about private
name spaces

* In the old days, all memory on a machine
was shared globally by all apps

* That's how almost every OS extant does
files and servers now
- e.g. NFS mounts are visible to all

* Plan 9 provides a notion of private file
system name spaces analogous to private
memory space as introduced ca. 1955

File System Name Space types

Global

All mounts visible to
all processes

On Unix, any proc can
get to any file

Mounts affect global
State

As If all programs
shared all variables

Private

Mounts visible In
process group

Only procs in the
group can get to files

Mounts affect group
state

Private variables

Sandia
National
Laboratories

And did | mention there are
advantages?

38 system calls

Linux Is at 240 280 300 and counting
Other non-Linux efforts have too-limited
capabillities

Plan 9 got modularity right

What modularity Is

e This i1s a John Deere
tractor Power Take
Off

 Connects to modules

 Modules stay the
same for decades

* A very old module fits
a very new tractor

Sandia
National
Laboratories

Software modularity

Plan 9 kernel system call set:

BIND CHDIR CLOSE DUP ALARM EXEC

EXITS FAUTH SEGBRK OPEN OSEEK SLEEP

RFORK PIPE CREATE FD2PATH BRK_ REMOVE
NOTIFY NOTED SEGATTACH SEGDETACH SEGFREE
SEGFLUSH RENDEZVOUS UNMOUNT SEMACQUIRE
SEMRELEASE SEEK FVERSION ERRSTR STAT FSTAT
WSTAT FWSTAT MOUNT AWAIT PREAD PWRITE

Sandia
National
Laboratories

Plan 9 modularity

* Any server that uses that system call set works
on any version of Plan 9

* |t has worked this way for 18 years

* Typically only 6 calls are used: open close read
write mount bind

» Servers are |location-independent
- S0 you can move them around as needed

* Which means that we can balance bandwidth,
sharing, and latency when locating a server

Sandia
National
Laboratories

Balancing act

* You might want a more central server to
optimize caching

* You might want to locate server components in
the HPC fabric for latency and bandwidth

|t is trivial In Plan 9 to layer servers to achieve
these effects

Sandia
National
Laboratories

Modularity example: how to access
files

Server

/O node

|

CPU node

These four scenarios show different ways of connecting file servers
to CPU node processes. None require special privileges.

CPU node
imports
/net from
I/0 node,
mounts
server

I/0O node
mounts
server
cache FS,
CPU node
mounts I/O
node

CPU node
starts
cache FS,
mounts I/O
node

torus

CPU node
imports /net
from 1/0
node, starts
cache FS,

mounts @ ﬁgtqdial
lona
server Laboratories

Experiences with the port

* |n June 2006, we had been working with Plan 9
for about a year

* The experiences were interesting

Plan 9 port to K8 — 2 phases
First 64-bit port

* basic port
- (running a shell, connecting to network, etc.)

- took about 2 months (not full time).
- mostly done In parallel with compiler.

* first phase resulted in what was essentially an
Xx86 with 'fat' pointers -

- vm layout and restrictions the same as an x86.

— this let us become familiar with the compiler and
hardware without fighting broken utilities.

Sandia
National
Laboratories

Phase 2

second phase was fix the programmes
identified by compiler
- warnings ("conversion of pointer to shorter integer")

- fix the kernel system call linkage to deal with
arguments which are a mixture of 32 and 64 bits.

164 files excluding kernel had compiler
warnings.

most were easy to fix by declaring the type of a
variable correctly.

Added type safe linker for kernel and user

- Which showed that Python is not type-safe () .

Other stuff

* one just had to be hacked horribly, lex,

- for which the man page already said 'The asteroid
to kill this dinosaur is still in orbit'.

* some showed abuse of interfaces, e.g.
- If(p = (Proc*)setimp(_mainjmp))

- and some showed failure of vision in the
specification of some of the more esoteric plan9
system calls, e.g. rendezvous.

Sandia
National
Laboratories

More other stuff

 Symbol tables and exec headers had to
become 'fat’

 Compilers/debuggers had to understand.

* Mostly in a single library
- and the kernel 'exec' system call.
« But it all worked ...

In June 2006 we got the word

“Drop that cluster work

“We have bigger problems, I.e. a big BG/P

coming a

"We neeo

— Another
— Another

Ong”
solutions that are not

Light Weight Kernel
Linux”

So we changed direction

Discussion with IBM revealed that BG/L was a
good target (and there was interest)

Sandia
National
Laboratories

We Started in August 2006

o Started with Inferno 405 port

- Plan 9 derived OS for small embedded systems

- Has no user mode, limited MMU use, hence easier

* 1 week in August: port to PPC 440
- MMU, drivers, etc.

e Then awee
e Then a wee

K to boot on BG/L CPU

K to do networks

* Then polishing up via email and IRC

* 4 people x 4 weeks (really!)

Sandia
National
Laboratories

Total port effort for June 2007 demo

e 16 man weeks

 How much assembly in Plan 9 kernel?

- 1033 lines
 How many files in Plan 9 BG/L kernel?

- About 90, including auto-generated by config
» 18 are platform-specific

- Of which we had to modify about 10

* | realize that “file count” Is somewhat bogus, but
Interesting

Sandia
National
Laboratories

Development

» All development is cross development

» A few key decisions make it easy

- Here's a simple one: object file types for different
architectures have a different suffix

 No complex path and environment mangling

e On a reasonable K8, kernel builds in a few
seconds

* Next step Is to build kernel on BG/L

Sandia
National
Laboratories

How current BG/L Is set up

« Two kinds of nodes in BG/L: Linux 10 nodes,
CNK CPU nodes:

* e.g. LLNL: 1024 10 nodes, 64 CPU nodes per
IO node, 2 CPUs per node, 128K+2K in all

e BG/L networks are several:

- Ethernet to I/0O nodes,
- Tree to all nodes
- Torus on CPU nodes only

Sandia
National
Laboratories

Current file 10

 |O nodes talk to file servers -- Ethernet
e CPU nodes talk to IO nodes — tree
* The tree Is interesting

e Has 16 “Classes”

- Essentially a broadcast medium like unto coax

¢ C
¢ C

ass 0 Is set up for CPU

<-> 10

ass 1 is for CPU<->C

PU

Sandia
National
Laboratories

Interconnect - Light Weight
Protocol & Interfaces

» EXisting software gives two options

- CNK - no interface, software accesses hardware directly

« Well, sort of. MPI runtime actually has a lengthy call path

- Linux — full socket abstraction and TCP/IP stack with lots of extra
fluff (why do you need to ARP when you know where everyone is?
And why have full sliding window protocol when you have h/w
reliability mechanisms & flow control)

» EXisting choices are both heavy weight
In their own way due to unnecessary
complexity in the stack.

* Proposed Solution

- Use tailored light weight protocols & interfaces which leverage
underlying hardware properties

Sandia
National
Laboratories

What net interface for apps?

BG/L idea Is direct application access

But: can't do multiple apps with direct
Why direct? Assumed overhead of an OS

Fall 2006, we measured time from app pwrite()-
>kernel->wire

Use sim and native tools and got output that
looks like this:

acid: 0x0119dd39
acid: 0x0119dd3a
acid: 0x0119dd3b
acid: 0x0119dd3c

etc.

Output

n = r;==>/9k/port/sysfile.c:790

n = r;==>k/port/sysfile.c:790

off = ~OLL;==>9k/port/sysfile.c:792
off = ~OLL;==>9k/port/sysfile.c:792

* About 600 ticks
* About 180 lines
 Comparable to overhead for an OpenMPI send

Sandia
National
Laboratories

So, given a low overhead OS

The need for OS bypass Is unclear

Modeled all interfaces as Plan 9 network

Interfaces

Note: NOT ethernet interfaces, as done
- NETWORK Interfaces

IN Linux

In particular, Plan 9 NETWORK interfaces don't
require ARP; Linux ETHERNET interfaces do

No need for 6-octet MAC address as In

So we don't need 20,000 entry ARP tab
XT4 systems

| INUX

e as on

Sandia
National
Laboratories

Tree addressing on Plan 9

switch((th->ipv4src[0]<<8) | th->ipv4dst[0]){
case (I0dot<<8) | CPUdot:

hdr = MKTAG(IOtoCPU, 0, PIH_NONE);
break;
[* etc. */

 We can map directly from IP to network address (or, in this
case, class)

« Torus case is similarly simple.
- Direct IP/MAC mapping

 No ARP tables! No /etc/dhcpd.conf! No /etc/hosts! No per-node
files of any kind!

Sandia
National
Laboratories

Network 10

 The IP mode Is a stopgap
* Next steps are to play some tricks
 Example: tag is 20 bits (or so)

* S0, on CPU->|0O send, use tag type packets
and put CPU address in tag

 On I0->CPU send, use p2p type packets and
put CPU address in p2p

 P2P does not save network BW, just interrupts

File system 1O

 On BG/L, CPU does IO via system call
forwarding

 Not needed on Plan 9
- Just import file system from 10 node

* General mechanism replaces a complex,
specialized one

* And It “just works”, from day one (it's almost
boring)

Sandia
National
Laboratories

Compiler

* Vita Nuova has added FP support that
automatically operates the HMMR 2 chip

Sandia
National
Laboratories

Glant pages

» Exploit VM big pages: Right question

* Hugetlbfs: wrong answer. In fact, most Linux
answers In this area are wrong

* VM subsystem should automatically align
memory allocation, page alignment, from set of

choices

Sandia
National
Laboratories

Not Huge Pages, Right Pages

* the plan 9 mmu code Is ~1600 lines of machine
iIndependent code

- ~400 lines of machine dependent code
(independent of underlying hardware)

» will use superpage promotion rather than
relocation.

» should be integral to the core of the o/s, not a
bag on the side.

Sandia
National
Laboratories

Right pages

* the machine independent code Is ~16 years

old, time and arc

* Plan to complete

nitectures change.

y rewrite bearing in mind

- Modern architectural trends

— Superpages

- Large, sparse address spaces

Sandia
National
Laboratories

6/07 Obligatory screen shot (10am)

EVHO11_32_NE-0Ox00000fa5% cpu -h Fnet/tcp!11.0.0.1'17010 -a none]
¥ mount fsrv/io /nfio
/nfiofpower/bin/ps
bootes 1
bootes 2
bootes 3
bootes 5
bootes 12
bootes 21
bootes 25
bootes 31
bootes 42
bootes 44
bootes 45
bootes 36
bootes g7

:00
:05
;00
;00
:00
:00
:00
:00
:00
:00
:00
:00
:00
:00
:00
:00
:00

: 00 204K Pread boot

: 00 OK Wakeme genrandom
: 00 OK Wakeme alarm

: 00 268K Pread paqfs

: 00 OK Wakeme rxmitproc
: 00 OK Wakeme torusreadd
: 00 OK Wakeme treeread
:00 OK Wakeme loopbackread
: 00 160K Await listen

:00 160K Open listen

:00 OK Wakeme #I0tcpack
:00 160K Open listen

:00 160K Open listen

:00 120K Await tcpl?7010
:00 264K Await rc

:00 120K Pread tcpl?7010

: 00 196K Pread ps

bootes 58
bootes 59
bootes GO0
bootes G5
#

e e e I e Y e Y e Y e e Y e e e e e Y e i e e Y
e e s I e Y e e Y e R e R e e e e e e [e R e Y e

Conclusions from 2007

Plan 9 1s up and working on BG/L
t's low noise, but featureful

nitial system uses IP for networks, but not via
noary “everything is an ethernet” approach

System call overhead is low; do we need direct
access?

Apps testing starts now

Sandia
National
Laboratories

One year later ...

Had done some initial port of simple apps to
Plan 9

Developed an “MPI Like” library

Determined that we needed binary compatibility
Started the BG/P port

MPI| usage for two apps

MPI_Init
MPI_Initialized
MPI_Finalize
MPI_Comm_rank
MPI_Comm_size
MPI_Comm_split
MPI_Comm_dup
MPI1_Barrier
MPI|_Bcast
MPI_Allreduce
MPI_Send

MPI _Recv
MPI_|IRecv
MPI_ISend
MPI_Waitall

2

41
171
39

24
24
18
18
15

MPI_Type_struct 1
MPI_Type_commit 16
MPI|_Type_vector 15
MPI_Alltoall 6
MPI_Gather 6
MPI_Scatter 2
MPI_Get_count

MPI_Op_create

MPI_Reduce

MPI_Op_free
MPI_Errhandler_set

MPI_Wait
MPI_Rsend

Sandia
MPI_Irsend @ laboratris

Examined usage and code

* First test was on HPCC apps

 Chose GUPS
- Expected it to be a worst case

- Assumed it would be simple code
- Low “surface/volume”

Sandia
National
Laboratories

MPI Like

» Simple library that can support several HPCC
applications

* Relies on a few basic primitives

 And some Plan 9 library capabilities
- Lock free threads

* And Function pointers (really!) and Sizeof
(honest!)

* And gets rid of a lot of MPI wordiness

- e.g. MPIDOUBLE etc. etc. (that's where sizeof
comes In) @ _—

Basic data types

struct Tpkt
{
u8int sk; [* Skip Checksum Control */
u8int hint; [* Hint|Dp|PidO */
u8int size; [* Size|Pid1|Dm|Dy|VC */
u8int dst[N]; [* Destination Coordinates */
udint _6 [2]; [* reserved */

u8int session;

u8int tag[4];

u8int rank[2];

u8int unused,

u8int payload(];
%

*Not visible to programmers!) e,

Torus Instance

struct Torlo » Not direct access

{
int fd * Len tells how many
int len: nodes (and map size)
iInt myproc;

* Only one receive
struct for now

iInt nuMprocs;

struct Tpkt *map;

struct Tpkt pkt » Should probably

$ make it an array
File descriptor for 1/0

* |.e. not mmap
*Map for other nodes

National
Laboratories

*One packet for reception @ Sandia

Using the library

« struct TorlO *newTorlO(int fd, struct Tpkt *map, int len, int
myproc, int numprocs)

- Allocate a struct for torus IO
Int sendtorus (int fd, Tpkt *pkt, void *data, int size);
eint recvtorus(int fd, Tpkt *pkt, int max);
« Send and receive data on the torus
Int reduce (struct TorlO *tio, void *source, void *dest, Int size,
void (*op) (void *, void *, int));
« Send to O; 0 does the op; receive from 0
*Void intsum (void *dest, void *new, int);
* Apply sum to two int arrays
*\Void dmax (void *dest, void *new, Iint);

« Apply max to two float arrays ()

Laboratories

Barrier with MPI Like

void
barrier (struct TorlO *tio)

{

Int dontcare;
reduce (tio, &dontcare, &dontcare, sizeof (dontcare), nil);

Sandia
National
Laboratories

Basic GUPS loop

« Startup rank 0 with argv having list of nodes.

- Start up other ranks with rank#, total ranks

 Rank 0:Send array of [x,y,z] coords
» Kick off threads:

- One Recvthread receives updates. It gets the
updates and increments the update count
until it blocks or quits

- Malin thread works, sends updates as
needed via non-blocking 10

- Improvement: send thread per remote@?

Natnnal
Laboratories

Why easier than MPI?

* (some) MPI programmers implement threads
with counters and loops

- Code is frequently hard to parse
- e.g. GUPS was utterly unreadable

 Why manually encode sizeof()?

 Don't do XX reduce — reduce can be
polymorphic even in primitive language(C)

* The hardest part:reducing imcomprehensible
code to lock-free-threads, simple structures

Sandia
National
Laboratories

MPI Like Is a longer term project

 We do not want to imply that all code Is as bad
as GUPS code

- But GUPS is not necessarily atypical
» But port effort is likely to be large

e And we lose XLF and XLC

* |t Is unlikely that we can bring programmers into
this new environment absent non-zero effort

- And even If it improves the code, they won't like it
* We need binary support

Sandia
National
Laboratories

CNK emulation

 What would it take to run CNK binaries on Plan
0?

* |t turns out not be as hard as might seem
* |Ssues:

— EIf binaries

- Only one syscall vector (as opposed to many on
X86)

- Different arg passing conventions
- And, of course, the system calls

Sandia
National
Laboratories

What we did

» EIf converter (easy)
* Only one syscall vector: make variant proc type

- Extend proc struct so we can mark processes as
“cnk procs”

- Proc can only mark itself to transition on exec
— Transition once the process execs and not before

» Different arg passing conventions
- Shim in syscall trap code
* And, of course, the system calls

National
Laboratories

- Use Plan 9 syscalls where possible @Samia

Transition via exec

 We create a way to 'mark' a process as a cnk
pProcess

- Add variables to arch-dependent part of proc struct
- Add a control file to arch driver (‘cnk’)

 To make a process as 'cnk on exec'
- Echo '1' > /dev/cnk
* |n kernel:

up->cnkexec = 1,

Sandia
National
Laboratories

Starting up the cnk proc

up->cnk = up->cnkexec;

up->cnkexec = 0;

if (up->cnk) {
ulong *l = &ureg->r7;
Int i;
[* set up registers for CNK */
ureg->r3 = nargs;
ureg->r4 = (ulong) (sp + 1);
ureg->r5 = ureg->r4; /*0; /* envp */
ureg->ré = 0;

for(i=7;1<32; i++) /[* poison */

*|++ = Oxdeadbeef + (i*0x110);

Copy cnkexec to cnk
and clear cnhkexec

Linux expects nargs
IN r3 on startup

Set envp

Poison Is very useful
to catch bad behavior

On return to user
mode, syscall code
paths change

Sandia
National
Laboratories

System call switch on proc type

 Handled in trap() trap(int type){
- cnhk variable redirects switch(type) {

system calls
. case INT SYSCALL:
- We could just —

renumber the plan 9 If (Up->cnk)
system calls however

cnksyscall(ur);
- But there are other

reasons to mark a else
process as '‘cnk syscall(ur):

Sandia
National
Laboratories

Other reasons to make a process as
cnk

 May want to distinguish fault management
handling

 Can have debug action depend on up->cnk
» Direct hardware access for programs

* We will probably add a tlb entry for cnk
processes so they can address torus, tree, gib

* Another option is to wait until they fault,
examine address, add proper tlb entry

cnk syscalltab

« Array of structs defining system calls

« Declare the syscall
Syscall cnkuname;
struct {
char* n;
Syscall*f;
int narg;
Ar0O r
} cnksystab[] = {

[122] {"cnkuname”, cnkuname, 1, {.i = -1}},

 Hence can index this table by syscall number for printname,
func ptr, nargs, and default return value
@ Sandia
National
Laboratories

Sample system call: cnkuname

Void cnkuname(ArO*ar, va_list list)

{
void *va;
va = va_arg(list, void *);
validaddr(PTR2UINT(va), 1, 0);
memmove(va, "BGP\0plan9\02.6.19.2\0CNK\0 1\0", 26);
ar->i = 0;
}

« Pattern: cast va_list to type; validate memory addresses; set
return value

 For Plan 9 calls, it's easier: go direct to the call

- e.g. pwrite()

Sandia
National
Laboratories

Arg passing conventions

« syscall table is sparse

if(scallnr >= ncnksyscall || cnksystab[scallnr].f == nil){

error(Ebadarg);
}

up->psstate = cnksystab[scallnr].n;
linuxargs[0] = ureg->r3;linuxargs[1] = ureg->r4,; linuxargs[2] = ureg->r5;
linuxargs[3] = ureg->r6;linuxargs[4] = ureg->r7;linuxargs[5] = ureg->r8;

cnksystab[scallnr].f(&ar0, (va_list)linuxargs);

Sandia
National
Laboratories

The big win

 CNK procs have direct access to Plan 9
syscalls

 Which means they can transparently use Plan 9
private name spaces

* Binary emulation provides us with a bridge to
Plan 9 capabillities

* Less than 100 lines of changes to bgp-specific
kernel code

* No CONFIG_CNK_EMULATION needed

Sandia
National
Laboratories

BG/P status

e Barrier Is similar
- Working now

* Tree Is pretty much the same
- Working now

* Torus iIs similar at bottom but has many new
capabilities such as dma

* Ethernet is quite different
 Minor CPU differences

Sandia
National
Laboratories

BG/P Approach

* Build a small “kernel” that is really a main with
code to poke things

» Get console up first
» Start pushing various buttons with “kernel”

 |n parallel with this work, start bringing BG/L
kernel forward

* Also develop CNK emulation on PPC 440
board

 Had an initial boot in 5 days of work at Argonne

Sandia
National
Laboratories

Status

* Tree, barrier, working
e Torus dumping status info

» Ethernet still refusing to talk to us (X* interfaces
are new territory)

* Binary emulation failing in getenv() (!)
- After we resolved many other issues
* \Working from public code so there are limits

* Hope to run mpihello by SC 08

Sandia
National
Laboratories

Conclusions

 We feel Plan 9 i1s a good match to future HPC

- No USB or IDE ports on HPC nodes
- Lots of flexibility in configuration

* Port to BG/L took lots of thinking but total work
was not overwhelming

* Port to BG/P In progress

* Plan Is to support binary emulation for CNK
orograms

* \WWe can make Plan 9 power available to CNK
Procs i
()

	Slide 1
	Slide 2
	Overview
	What Plan 9 is
	Plan 9 structure
	Why this is a good match to future HPC systems
	Advantages
	A way to think about private name spaces
	File System Name Space types
	And did I mention there are advantages?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

