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Overview

● Why
● Experiences with the port to newer systems 

– K8

– BG/X

● Initial port feasibility testing 
– PPC 440

– Mambo

● MPI Like
● CN/K compatibility environment
● Conclusions



Why?

● What Plan 9 is
● What some future HPC boxes look like
● Why it is a good match



What Plan 9 is

● Not like anything you’ve seen
– Not a mini-, micro-, nano-, or other fad kernel

● Core OS is fixed-configuration set of 
“devices”
– Means “anything that has to be in the OS”
– E.g. Memory,TCP/IP stack, Net hardware, etc.

● Everything else is a “Server”
– File systems, windowing systems, etc.



Name
Space

Plan 9 structure

● Processes attach servers 
as needed

● Attaches are inherited
● Not visible outside the 

group
● In this example one group 

has attached remote files
● Other group only needs 

IPC so it has no other 
services

Kernel
Memory, NIC,
Protocols,etc.

Process

File System

/net

Process

Process

Name Space



Why this is a good match to 
future HPC systems

● Future HPC machines 
feature fixed-configuration 
CPU/nodes
– I.e. NO “hot plug”

● All variability is in software 
services used by apps

● Plan 9 fits this model 
perfectly

● Fixed kernel & hardware
● Customized services

Fixed-configuration 
hardware

Fixed-configuration
Kernel

App1 App2

Services Services



Advantages
● What has to be in the OS goes in the OS
● Everything else is optional

– If you need something you pay for it
– If not, not

● Options are configured per-process-group
● The name for this is “private name spaces”
● The name confuses people



A way to think about private 
name spaces

● In the old days, all memory on a machine 
was shared globally by all apps

● That’s how almost every OS extant does 
files and servers now
– e.g. NFS mounts are visible to all

● Plan 9 provides a notion of private file 
system name spaces analogous to private 
memory space as introduced ca. 1955



File System Name Space types

 Global
● All mounts visible to 

all processes
● On Unix, any proc can 

get to any file
● Mounts affect global 

state
● As if all programs 

shared all variables

Private
● Mounts visible in 

process group
● Only procs in the 

group can get to files
● Mounts affect group 

state
● Private variables



And did I mention there are 
advantages?

● 38 system calls
● Linux is at 240 280 300 and counting
● Other non-Linux efforts have too-limited 

capabilities
● Plan 9 got modularity right



What modularity is

● This is a John Deere 
tractor Power Take 
Off

● Connects to modules
● Modules stay the 

same for decades
● A very old module fits 

a very new tractor



Software modularity

● Plan 9 kernel system call set:
● BIND CHDIR CLOSE DUP ALARM EXEC

● EXITS FAUTH SEGBRK OPEN OSEEK SLEEP

● RFORK PIPE CREATE FD2PATH BRK_ REMOVE

● NOTIFY NOTED SEGATTACH SEGDETACH SEGFREE

● SEGFLUSH RENDEZVOUS UNMOUNT SEMACQUIRE 

● SEMRELEASE SEEK FVERSION ERRSTR STAT FSTAT

● WSTAT FWSTAT MOUNT AWAIT PREAD PWRITE



Plan 9 modularity

● Any server that uses that system call set works 
on any version of Plan 9

● It has worked this way for 18 years
● Typically only 6 calls are used: open close read 

write mount bind
● Servers are location-independent

– So you can move them around as needed

● Which means that we can balance bandwidth, 
sharing, and latency when locating a server



Balancing act

● You might want a more central server to 
optimize caching

● You might want to locate server components in 
the HPC fabric for latency and bandwidth

● It is trivial in Plan 9 to layer servers to achieve 
these effects



Modularity example: how to access 
files

I/O node

CPU node

Server

Export /net

Mount server

FS

CFS

Mount I/O
node

FS

CFS

CFS

FS

CPU node 
imports 
/net from   
I/O node, 
mounts 
server

I/O node 
mounts 
server 
cache FS, 
CPU node 
mounts I/O 
node

CPU node 
starts 
cache FS, 
mounts I/O 
node

Export /net

CFS

FS

CPU node 
imports /net 
from   I/O 
node, starts 
cache FS, 
mounts 
server

These four scenarios show different ways of connecting file servers 
to CPU node processes. None require special privileges.

Caching 
via

torus



Experiences with the port

● In June 2006, we had been working with Plan 9 
for about a year

● The experiences were interesting



  

Plan 9 port to K8 – 2 phases
First 64-bit port

● basic port 
– (running a shell, connecting to network, etc.)

– took about 2 months (not full time).

– mostly done in parallel with compiler.

● first phase resulted in what was essentially an 
x86 with 'fat' pointers - 
– vm layout and restrictions the same as an x86. 

– this let us become familiar with the compiler and 
hardware without fighting broken utilities.



  

Phase 2

● second phase was fix the programmes 
identified by compiler
– warnings ("conversion of pointer to shorter integer") 

– fix the kernel system call linkage to deal with 
arguments which are a mixture of 32 and 64 bits.

● 164 files excluding kernel had compiler 
warnings.

● most were easy to fix by declaring the type of a 
variable correctly.

● Added type safe linker for kernel and user
– Which showed that Python is not type-safe



  

Other stuff

● one just had to be hacked horribly, lex, 
– for which the man page already said 'The asteroid 

to kill this dinosaur is still in orbit'.

● some showed abuse of interfaces, e.g.
– if(p = (Proc*)setjmp(_mainjmp))

– and some showed failure of vision in the 
specification of some of the more esoteric plan9 
system calls, e.g. rendezvous.



  

More other stuff

● Symbol tables and exec headers had to 
become 'fat' 

● Compilers/debuggers had to understand. 
● Mostly in a single library

– and the kernel 'exec' system call.

● But it all worked ...



  

In June 2006 we got the word

● “Drop that cluster work”
● “We have bigger problems, i.e. a big BG/P 

coming along”
● “We need solutions that are not

– Another Light Weight Kernel

– Another Linux”

● So we changed direction
● Discussion with IBM revealed that BG/L was a 

good target (and there was interest)



  

We Started in August 2006

● Started with Inferno 405 port
– Plan 9 derived OS for small embedded systems

– Has no user mode, limited MMU use, hence easier

● 1 week in August: port to PPC 440
– MMU, drivers, etc.

● Then a week to boot on BG/L CPU
● Then a week to do networks
● Then polishing up via email and IRC
● 4 people x 4 weeks (really!)



  

Total port effort for June 2007 demo

● 16 man weeks
● How much assembly in Plan 9 kernel?

– 1033 lines

● How many files in Plan 9 BG/L kernel?
– About 90, including auto-generated by config 

● 18 are platform-specific
– Of which we had to modify about 10

● I realize that “file count” is somewhat bogus, but 
interesting



  

Development

● All development is cross development
● A few key decisions make it easy

– Here's a simple one: object file types for different 
architectures have a different suffix

● No complex path and environment mangling
● On a reasonable K8, kernel builds in a few 

seconds
● Next step is to build kernel on BG/L



  

How current BG/L is set up

● Two kinds of nodes in BG/L: Linux IO nodes, 
CNK CPU nodes: 

● e.g. LLNL: 1024 IO nodes, 64 CPU nodes per 
IO node, 2 CPUs per node, 128K+2K in all

● BG/L networks are several: 
– Ethernet to I/O nodes, 

– Tree to all nodes

– Torus on CPU nodes only



  

Current file IO

● IO nodes talk to file servers -- Ethernet
● CPU nodes talk to IO nodes – tree
● The tree is interesting
● Has 16 “Classes”

– Essentially a broadcast medium like unto coax

● Class 0 is set up for CPU <-> IO
● Class 1 is for CPU <-> CPU



  

Interconnect - Light Weight 
Protocol & Interfaces

● Existing software gives two options
– CNK – no interface, software accesses hardware directly

● Well, sort of.  MPI runtime actually has a lengthy call path

– Linux – full socket abstraction and TCP/IP stack with lots of extra 
fluff (why do you need to ARP when you know where everyone is? 
And why have full sliding window protocol when you have h/w 
reliability mechanisms & flow control)

● Existing choices are both heavy weight 
in their own way due to unnecessary 
complexity in the stack.

● Proposed Solution
– Use tailored light weight protocols & interfaces which leverage 

underlying hardware properties 



  

What net interface for apps?

● BG/L idea is direct application access
● But: can't do multiple apps with direct
● Why direct? Assumed overhead of an OS
● Fall 2006, we measured time from app pwrite()-

>kernel->wire
● Use sim and native tools and got output that 

looks like this:



  

Output

acid: 0x0119dd39 n = r;==>/9k/port/sysfile.c:790

acid: 0x0119dd3a n = r;==>k/port/sysfile.c:790

acid: 0x0119dd3b off = ~0LL;==>9k/port/sysfile.c:792

acid: 0x0119dd3c off = ~0LL;==>9k/port/sysfile.c:792

etc.

● About 600 ticks
● About 180 lines
● Comparable to overhead for an OpenMPI send



  

So, given a low overhead OS

● The need for OS bypass is unclear
● Modeled all interfaces as Plan 9 network 

interfaces
● Note: NOT ethernet interfaces, as done in Linux

– NETWORK interfaces

● In particular, Plan 9 NETWORK interfaces don't 
require ARP; Linux ETHERNET interfaces do

● No need for 6-octet MAC address as in Linux
● So we don't need 20,000 entry ARP table as on 

XT4 systems



  

Tree addressing on Plan 9
switch((th->ipv4src[0]<<8) | th->ipv4dst[0]){

case (IOdot<<8) | CPUdot:

hdr = MKTAG(IOtoCPU, 0, PIH_NONE);

break;

/* etc. */

● We can map directly from IP to network address (or, in this 
case, class)

● Torus case is similarly simple. 

– Direct IP/MAC mapping
● No ARP tables! No /etc/dhcpd.conf! No /etc/hosts! No per-node 

files of any kind!



  

Network IO

● The IP mode is a stopgap
● Next steps are to play some tricks
● Example: tag is 20 bits (or so)
● So, on CPU->IO send, use tag type packets 

and put CPU address in tag
● On IO->CPU send, use p2p type packets and 

put CPU address in p2p
● P2P does not save network BW, just interrupts



  

File system IO

● On BG/L, CPU does IO via system call 
forwarding

● Not needed on Plan 9
– Just import file system from IO node

● General mechanism replaces a complex, 
specialized one

● And it “just works”, from day one (it's almost 
boring)



  

Compiler 

● Vita Nuova has added FP support that 
automatically operates the HMMR 2 chip



  

Giant pages

● Exploit VM big pages: Right question
● Hugetlbfs: wrong answer. In fact, most Linux 

answers in this area are wrong
● VM subsystem should automatically align 

memory allocation, page alignment, from set of 
choices



  

Not Huge Pages, Right Pages

● the plan 9 mmu code is ~1600 lines of machine 
independent code
– ~400 lines of machine dependent code 

(independent of underlying hardware)

● will use superpage promotion rather than 
relocation.

● should be integral to the core of the o/s, not a 
bag on the side.



  

Right pages

● the machine independent code is ~16 years 
old, time and architectures change.

● Plan to completely rewrite bearing in mind
– Modern architectural trends

– Superpages

– Large, sparse address spaces



  

6/07 Obligatory screen shot (10am)



  

Conclusions from 2007

● Plan 9 is up and working on BG/L
● It's low noise, but featureful
● Initial system uses IP for networks, but not via 

hoary “everything is an ethernet” approach
● System call overhead is low; do we need direct 

access?
● Apps testing starts now



  

One year later ...

● Had done some initial port of simple apps to 
Plan 9

● Developed an “MPI Like” library
● Determined that we needed binary compatibility
● Started the BG/P port



  

MPI usage for two apps
● MPI_Init                            2

● MPI_Initialized                     1              

● MPI_Finalize                        5

● MPI_Comm_rank                       8

● MPI_Comm_size                       8

● MPI_Comm_split                      6

● MPI_Comm_dup                        2

● MPI_Barrier                        41

● MPI_Bcast                         171

● MPI_Allreduce                      39

● MPI_Send                           24

● MPI_Recv                           24

● MPI_IRecv                          18

● MPI_ISend                          18

● MPI_Waitall                        15

● MPI_Type_struct                     1

● MPI_Type_commit                    16

● MPI_Type_vector                    15

● MPI_Alltoall                        6

● MPI_Gather                          6

● MPI_Scatter                         2

● MPI_Get_count

● MPI_Op_create

● MPI_Reduce

● MPI_Op_free

● MPI_Errhandler_set

● MPI_Wait

● MPI_Rsend

● MPI_Irsend



  

Examined usage and code

● First test was on HPCC apps
● Chose GUPS 

– Expected it to be a worst case

– Assumed it would be simple code

– Low “surface/volume” 



  

MPI Like

● Simple library that can support several HPCC 
applications

● Relies on a few basic primitives
● And some Plan 9 library capabilities

– Lock free threads

● And Function pointers (really!) and Sizeof 
(honest!)

● And gets rid of a lot of MPI wordiness
– e.g. MPIDOUBLE etc. etc. (that's where sizeof 

comes in)



  

Basic data types

struct Tpkt

{

u8int sk; /* Skip Checksum Control */

u8int hint; /* Hint|Dp|Pid0 */

u8int size; /* Size|Pid1|Dm|Dy|VC */

u8int dst[N]; /* Destination Coordinates */

u8int _6_[2]; /* reserved */

u8int session;

u8int tag[4];

u8int rank[2];

u8int unused;

u8int payload[];

};

●Not visible to programmers!



  

Torus instance

struct TorIO

{

int fd;

int len;

int myproc;

int numprocs;

struct Tpkt *map;

struct Tpkt pkt;

};

●File descriptor for I/O

● i.e. not mmap
●Map for other nodes

●One packet for reception

● Not direct access
● Len tells how many 

nodes (and map size)
● Only one receive 

struct for now
● Should probably 

make it an array



  

Using the library
● struct TorIO *newTorIO(int fd, struct Tpkt *map, int len, int 

myproc, int numprocs)

– Allocate a struct for torus IO
●Int sendtorus (int fd, Tpkt *pkt, void *data, int size);

●int recvtorus(int fd, Tpkt *pkt, int max);

● Send and receive data on the torus
●Int reduce (struct TorIO *tio, void *source, void *dest, int size, 

void (*op) (void *, void *, int));
● Send to 0; 0 does the op; receive from 0

●Void intsum (void *dest, void *new, int);

● Apply sum to two int arrays
●Void dmax (void *dest, void *new, int);

● Apply max to two float arrays



  

Barrier with MPI Like

void

barrier (struct TorIO *tio)

{

int dontcare;

reduce (tio, &dontcare, &dontcare, sizeof (dontcare), nil);

}



  

Basic GUPS loop

● Startup rank 0 with argv having list of nodes. 
– Start up other ranks with rank#, total ranks

● Rank 0:Send array of [x,y,z] coords
● Kick off threads:

– One Recvthread receives updates. It gets the 
updates and increments the update count 
until it blocks or quits

– Main thread works, sends updates as 
needed via non-blocking IO

– Improvement: send thread per remote node



  

Why easier than MPI?

● (some) MPI programmers implement threads 
with counters and loops
– Code is frequently hard to parse

– e.g. GUPS was utterly unreadable

● Why manually encode sizeof()?
● Don't do XX_reduce – reduce can be 

polymorphic even in primitive language(C)
● The hardest part:reducing imcomprehensible 

code to lock-free-threads, simple structures



  

MPI Like is a longer term project

● We do not want to imply that all code is as bad 
as GUPS code 
– But GUPS is not necessarily atypical 

● But port effort is likely to be large
● And we lose XLF and XLC
● It is unlikely that we can bring programmers into 

this new environment absent non-zero effort
– And even if it improves the code, they won't like it

● We need binary support



  

CNK emulation

● What would it take to run CNK binaries on Plan 
9?

● It turns out not be as hard as might seem
● Issues:

– Elf binaries

– Only one syscall vector (as opposed to many on 
x86)

– Different arg passing conventions

– And, of course, the system calls



  

What we did

● Elf converter (easy)
● Only one syscall vector: make variant proc type

– Extend proc struct so we can mark processes as 
“cnk procs”

– Proc can only mark itself to transition on exec

– Transition once the process execs and not before

● Different arg passing conventions
– Shim in syscall trap code

● And, of course, the system calls
– Use Plan 9 syscalls where possible 



  

Transition via exec

● We create a way to 'mark' a process as a cnk 
process
– Add variables to arch-dependent part of proc struct

– Add a control file to arch driver ('cnk')

● To make a process as 'cnk on exec'
– Echo '1' > /dev/cnk

● In kernel: 

up->cnkexec = 1;



  

Starting up the cnk proc

up->cnk = up->cnkexec;

up->cnkexec = 0;

if (up->cnk) {

ulong *l = &ureg->r7;

int i;

/* set up registers for CNK */

ureg->r3 = nargs;

ureg->r4 = (ulong) (sp + 1);

ureg->r5 = ureg->r4; /*0; /* envp */

ureg->r6 = 0; 

for(i = 7; i < 32; i++) /* poison */

*l++ = 0xdeadbeef + (i*0x110);

}

● Copy cnkexec to cnk 
and clear cnkexec

● Linux expects nargs 
in r3 on startup

● Set envp
● Poison is very useful 

to catch bad behavior 
● On return to user 

mode, syscall code 
paths change



  

System call switch on proc type

● Handled in trap()
– cnk variable redirects 

system calls

– We could just 
renumber the plan 9 
system calls however

– But there are other 
reasons to mark a 
process as 'cnk'

trap(int type){

switch(type) {

case INT_SYSCALL:

 if (up->cnk)

cnksyscall(ur);

 else

syscall(ur);



  

Other reasons to make a process as 
cnk

● May want to distinguish fault management 
handling

● Can have debug action depend on up->cnk
● Direct hardware access for programs
● We will probably add a tlb entry for cnk 

processes so they can address torus, tree, gib
● Another option is to wait until they fault, 

examine address, add proper tlb entry



  

cnk syscalltab

● Array of structs defining system calls

● Declare the syscall

Syscall cnkuname;

struct {

char* n;

Syscall*f;

int narg;

Ar0 r;

} cnksystab[] = {

[122] {"cnkuname", cnkuname, 1, {.i = -1}},

● Hence can index this table by syscall number for printname, 
func ptr, nargs, and default return value



  

Sample system call: cnkuname

Void cnkuname(Ar0*ar, va_list list)

{

void *va;

va = va_arg(list, void *);

validaddr(PTR2UINT(va), 1, 0);

memmove(va, "BGP\0plan9\02.6.19.2\0CNK\0 1\0", 26);

ar->i = 0;

}

● Pattern: cast va_list to type; validate memory addresses; set 
return value

● For Plan 9 calls, it's easier: go direct to the call

– e.g. pwrite()



  

Arg passing conventions

● syscall table is sparse

if(scallnr >= ncnksyscall || cnksystab[scallnr].f == nil){

error(Ebadarg);

}

up->psstate = cnksystab[scallnr].n;

linuxargs[0] = ureg->r3;linuxargs[1] = ureg->r4; linuxargs[2] = ureg->r5;

linuxargs[3] = ureg->r6;linuxargs[4] = ureg->r7;linuxargs[5] = ureg->r8;

cnksystab[scallnr].f(&ar0, (va_list)linuxargs);



  

The big win

● CNK procs have direct access to Plan 9 
syscalls

● Which means they can transparently use Plan 9 
private name spaces

● Binary emulation provides us with a bridge to 
Plan 9 capabilities

● Less than 100 lines of changes to bgp-specific 
kernel code

● No CONFIG_CNK_EMULATION needed



  

BG/P status

● Barrier is similar
– Working now

● Tree is pretty much the same 
– Working now

● Torus is similar at bottom but has many new 
capabilities such as dma

● Ethernet is quite different
● Minor CPU differences



  

BG/P Approach

● Build a small “kernel” that is really a main with 
code to poke things

● Get console up first
● Start pushing various buttons with “kernel”
● In parallel with this work, start bringing BG/L 

kernel forward
● Also develop CNK emulation on PPC 440 

board
● Had an initial boot in 5 days of work at Argonne



  

Status

● Tree, barrier, working
● Torus dumping status info
● Ethernet still refusing to talk to us (X* interfaces 

are new territory)
● Binary emulation failing in getenv() (!)

– After we resolved many other issues

● Working from public code so there are limits
● Hope to run mpihello by SC 08



  

Conclusions

● We feel Plan 9 is a good match to future HPC
– No USB or IDE ports on HPC nodes

– Lots of flexibility in configuration

● Port to BG/L took lots of thinking but total work 
was not overwhelming

● Port to BG/P in progress
● Plan is to support binary emulation for CNK 

programs
● We can make Plan 9 power available to CNK 

procs
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