

Plan 9 on the BG/X systems

Ron Minnich
Sandia National Labs

Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under contract DE­AC04­94AL85000.

SAND2008-6151C

Overview

● Why
● Experiences with the port to newer systems

– K8

– BG/X

● Initial port feasibility testing
– PPC 440

– Mambo

● MPI Like
● CN/K compatibility environment
● Conclusions

Why?

● What Plan 9 is
● What some future HPC boxes look like
● Why it is a good match

What Plan 9 is

● Not like anything you’ve seen
– Not a mini-, micro-, nano-, or other fad kernel

● Core OS is fixed-configuration set of
“devices”
– Means “anything that has to be in the OS”
– E.g. Memory,TCP/IP stack, Net hardware, etc.

● Everything else is a “Server”
– File systems, windowing systems, etc.

Name
Space

Plan 9 structure

● Processes attach servers
as needed

● Attaches are inherited
● Not visible outside the

group
● In this example one group

has attached remote files
● Other group only needs

IPC so it has no other
services

Kernel
Memory, NIC,
Protocols,etc.

Process

File System

/net

Process

Process

Name Space

Why this is a good match to
future HPC systems

● Future HPC machines
feature fixed-configuration
CPU/nodes
– I.e. NO “hot plug”

● All variability is in software
services used by apps

● Plan 9 fits this model
perfectly

● Fixed kernel & hardware
● Customized services

Fixed-configuration
hardware

Fixed-configuration
Kernel

App1 App2

Services Services

Advantages
● What has to be in the OS goes in the OS
● Everything else is optional

– If you need something you pay for it
– If not, not

● Options are configured per-process-group
● The name for this is “private name spaces”
● The name confuses people

A way to think about private
name spaces

● In the old days, all memory on a machine
was shared globally by all apps

● That’s how almost every OS extant does
files and servers now
– e.g. NFS mounts are visible to all

● Plan 9 provides a notion of private file
system name spaces analogous to private
memory space as introduced ca. 1955

File System Name Space types

 Global
● All mounts visible to

all processes
● On Unix, any proc can

get to any file
● Mounts affect global

state
● As if all programs

shared all variables

Private
● Mounts visible in

process group
● Only procs in the

group can get to files
● Mounts affect group

state
● Private variables

And did I mention there are
advantages?

● 38 system calls
● Linux is at 240 280 300 and counting
● Other non-Linux efforts have too-limited

capabilities
● Plan 9 got modularity right

What modularity is

● This is a John Deere
tractor Power Take
Off

● Connects to modules
● Modules stay the

same for decades
● A very old module fits

a very new tractor

Software modularity

● Plan 9 kernel system call set:
● BIND CHDIR CLOSE DUP ALARM EXEC

● EXITS FAUTH SEGBRK OPEN OSEEK SLEEP

● RFORK PIPE CREATE FD2PATH BRK_ REMOVE

● NOTIFY NOTED SEGATTACH SEGDETACH SEGFREE

● SEGFLUSH RENDEZVOUS UNMOUNT SEMACQUIRE

● SEMRELEASE SEEK FVERSION ERRSTR STAT FSTAT

● WSTAT FWSTAT MOUNT AWAIT PREAD PWRITE

Plan 9 modularity

● Any server that uses that system call set works
on any version of Plan 9

● It has worked this way for 18 years
● Typically only 6 calls are used: open close read

write mount bind
● Servers are location-independent

– So you can move them around as needed

● Which means that we can balance bandwidth,
sharing, and latency when locating a server

Balancing act

● You might want a more central server to
optimize caching

● You might want to locate server components in
the HPC fabric for latency and bandwidth

● It is trivial in Plan 9 to layer servers to achieve
these effects

Modularity example: how to access
files

I/O node

CPU node

Server

Export /net

Mount server

FS

CFS

Mount I/O
node

FS

CFS

CFS

FS

CPU node
imports
/net from
I/O node,
mounts
server

I/O node
mounts
server
cache FS,
CPU node
mounts I/O
node

CPU node
starts
cache FS,
mounts I/O
node

Export /net

CFS

FS

CPU node
imports /net
from I/O
node, starts
cache FS,
mounts
server

These four scenarios show different ways of connecting file servers
to CPU node processes. None require special privileges.

Caching
via

torus

Experiences with the port

● In June 2006, we had been working with Plan 9
for about a year

● The experiences were interesting

Plan 9 port to K8 – 2 phases
First 64-bit port

● basic port
– (running a shell, connecting to network, etc.)

– took about 2 months (not full time).

– mostly done in parallel with compiler.

● first phase resulted in what was essentially an
x86 with 'fat' pointers -
– vm layout and restrictions the same as an x86.

– this let us become familiar with the compiler and
hardware without fighting broken utilities.

Phase 2

● second phase was fix the programmes
identified by compiler
– warnings ("conversion of pointer to shorter integer")

– fix the kernel system call linkage to deal with
arguments which are a mixture of 32 and 64 bits.

● 164 files excluding kernel had compiler
warnings.

● most were easy to fix by declaring the type of a
variable correctly.

● Added type safe linker for kernel and user
– Which showed that Python is not type-safe

Other stuff

● one just had to be hacked horribly, lex,
– for which the man page already said 'The asteroid

to kill this dinosaur is still in orbit'.

● some showed abuse of interfaces, e.g.
– if(p = (Proc*)setjmp(_mainjmp))

– and some showed failure of vision in the
specification of some of the more esoteric plan9
system calls, e.g. rendezvous.

More other stuff

● Symbol tables and exec headers had to
become 'fat'

● Compilers/debuggers had to understand.
● Mostly in a single library

– and the kernel 'exec' system call.

● But it all worked ...

In June 2006 we got the word

● “Drop that cluster work”
● “We have bigger problems, i.e. a big BG/P

coming along”
● “We need solutions that are not

– Another Light Weight Kernel

– Another Linux”

● So we changed direction
● Discussion with IBM revealed that BG/L was a

good target (and there was interest)

We Started in August 2006

● Started with Inferno 405 port
– Plan 9 derived OS for small embedded systems

– Has no user mode, limited MMU use, hence easier

● 1 week in August: port to PPC 440
– MMU, drivers, etc.

● Then a week to boot on BG/L CPU
● Then a week to do networks
● Then polishing up via email and IRC
● 4 people x 4 weeks (really!)

Total port effort for June 2007 demo

● 16 man weeks
● How much assembly in Plan 9 kernel?

– 1033 lines

● How many files in Plan 9 BG/L kernel?
– About 90, including auto-generated by config

● 18 are platform-specific
– Of which we had to modify about 10

● I realize that “file count” is somewhat bogus, but
interesting

Development

● All development is cross development
● A few key decisions make it easy

– Here's a simple one: object file types for different
architectures have a different suffix

● No complex path and environment mangling
● On a reasonable K8, kernel builds in a few

seconds
● Next step is to build kernel on BG/L

How current BG/L is set up

● Two kinds of nodes in BG/L: Linux IO nodes,
CNK CPU nodes:

● e.g. LLNL: 1024 IO nodes, 64 CPU nodes per
IO node, 2 CPUs per node, 128K+2K in all

● BG/L networks are several:
– Ethernet to I/O nodes,

– Tree to all nodes

– Torus on CPU nodes only

Current file IO

● IO nodes talk to file servers -- Ethernet
● CPU nodes talk to IO nodes – tree
● The tree is interesting
● Has 16 “Classes”

– Essentially a broadcast medium like unto coax

● Class 0 is set up for CPU <-> IO
● Class 1 is for CPU <-> CPU

Interconnect - Light Weight
Protocol & Interfaces

● Existing software gives two options
– CNK – no interface, software accesses hardware directly

● Well, sort of. MPI runtime actually has a lengthy call path

– Linux – full socket abstraction and TCP/IP stack with lots of extra
fluff (why do you need to ARP when you know where everyone is?
And why have full sliding window protocol when you have h/w
reliability mechanisms & flow control)

● Existing choices are both heavy weight
in their own way due to unnecessary
complexity in the stack.

● Proposed Solution
– Use tailored light weight protocols & interfaces which leverage

underlying hardware properties

What net interface for apps?

● BG/L idea is direct application access
● But: can't do multiple apps with direct
● Why direct? Assumed overhead of an OS
● Fall 2006, we measured time from app pwrite()-

>kernel->wire
● Use sim and native tools and got output that

looks like this:

Output

acid: 0x0119dd39 n = r;==>/9k/port/sysfile.c:790

acid: 0x0119dd3a n = r;==>k/port/sysfile.c:790

acid: 0x0119dd3b off = ~0LL;==>9k/port/sysfile.c:792

acid: 0x0119dd3c off = ~0LL;==>9k/port/sysfile.c:792

etc.

● About 600 ticks
● About 180 lines
● Comparable to overhead for an OpenMPI send

So, given a low overhead OS

● The need for OS bypass is unclear
● Modeled all interfaces as Plan 9 network

interfaces
● Note: NOT ethernet interfaces, as done in Linux

– NETWORK interfaces

● In particular, Plan 9 NETWORK interfaces don't
require ARP; Linux ETHERNET interfaces do

● No need for 6-octet MAC address as in Linux
● So we don't need 20,000 entry ARP table as on

XT4 systems

Tree addressing on Plan 9
switch((th->ipv4src[0]<<8) | th->ipv4dst[0]){

case (IOdot<<8) | CPUdot:

hdr = MKTAG(IOtoCPU, 0, PIH_NONE);

break;

/* etc. */

● We can map directly from IP to network address (or, in this
case, class)

● Torus case is similarly simple.

– Direct IP/MAC mapping
● No ARP tables! No /etc/dhcpd.conf! No /etc/hosts! No per-node

files of any kind!

Network IO

● The IP mode is a stopgap
● Next steps are to play some tricks
● Example: tag is 20 bits (or so)
● So, on CPU->IO send, use tag type packets

and put CPU address in tag
● On IO->CPU send, use p2p type packets and

put CPU address in p2p
● P2P does not save network BW, just interrupts

File system IO

● On BG/L, CPU does IO via system call
forwarding

● Not needed on Plan 9
– Just import file system from IO node

● General mechanism replaces a complex,
specialized one

● And it “just works”, from day one (it's almost
boring)

Compiler

● Vita Nuova has added FP support that
automatically operates the HMMR 2 chip

Giant pages

● Exploit VM big pages: Right question
● Hugetlbfs: wrong answer. In fact, most Linux

answers in this area are wrong
● VM subsystem should automatically align

memory allocation, page alignment, from set of
choices

Not Huge Pages, Right Pages

● the plan 9 mmu code is ~1600 lines of machine
independent code
– ~400 lines of machine dependent code

(independent of underlying hardware)

● will use superpage promotion rather than
relocation.

● should be integral to the core of the o/s, not a
bag on the side.

Right pages

● the machine independent code is ~16 years
old, time and architectures change.

● Plan to completely rewrite bearing in mind
– Modern architectural trends

– Superpages

– Large, sparse address spaces

6/07 Obligatory screen shot (10am)

Conclusions from 2007

● Plan 9 is up and working on BG/L
● It's low noise, but featureful
● Initial system uses IP for networks, but not via

hoary “everything is an ethernet” approach
● System call overhead is low; do we need direct

access?
● Apps testing starts now

One year later ...

● Had done some initial port of simple apps to
Plan 9

● Developed an “MPI Like” library
● Determined that we needed binary compatibility
● Started the BG/P port

MPI usage for two apps
● MPI_Init 2

● MPI_Initialized 1

● MPI_Finalize 5

● MPI_Comm_rank 8

● MPI_Comm_size 8

● MPI_Comm_split 6

● MPI_Comm_dup 2

● MPI_Barrier 41

● MPI_Bcast 171

● MPI_Allreduce 39

● MPI_Send 24

● MPI_Recv 24

● MPI_IRecv 18

● MPI_ISend 18

● MPI_Waitall 15

● MPI_Type_struct 1

● MPI_Type_commit 16

● MPI_Type_vector 15

● MPI_Alltoall 6

● MPI_Gather 6

● MPI_Scatter 2

● MPI_Get_count

● MPI_Op_create

● MPI_Reduce

● MPI_Op_free

● MPI_Errhandler_set

● MPI_Wait

● MPI_Rsend

● MPI_Irsend

Examined usage and code

● First test was on HPCC apps
● Chose GUPS

– Expected it to be a worst case

– Assumed it would be simple code

– Low “surface/volume”

MPI Like

● Simple library that can support several HPCC
applications

● Relies on a few basic primitives
● And some Plan 9 library capabilities

– Lock free threads

● And Function pointers (really!) and Sizeof
(honest!)

● And gets rid of a lot of MPI wordiness
– e.g. MPIDOUBLE etc. etc. (that's where sizeof

comes in)

Basic data types

struct Tpkt

{

u8int sk; /* Skip Checksum Control */

u8int hint; /* Hint|Dp|Pid0 */

u8int size; /* Size|Pid1|Dm|Dy|VC */

u8int dst[N]; /* Destination Coordinates */

u8int _6_[2]; /* reserved */

u8int session;

u8int tag[4];

u8int rank[2];

u8int unused;

u8int payload[];

};

●Not visible to programmers!

Torus instance

struct TorIO

{

int fd;

int len;

int myproc;

int numprocs;

struct Tpkt *map;

struct Tpkt pkt;

};

●File descriptor for I/O

● i.e. not mmap
●Map for other nodes

●One packet for reception

● Not direct access
● Len tells how many

nodes (and map size)
● Only one receive

struct for now
● Should probably

make it an array

Using the library
● struct TorIO *newTorIO(int fd, struct Tpkt *map, int len, int

myproc, int numprocs)

– Allocate a struct for torus IO
●Int sendtorus (int fd, Tpkt *pkt, void *data, int size);

●int recvtorus(int fd, Tpkt *pkt, int max);

● Send and receive data on the torus
●Int reduce (struct TorIO *tio, void *source, void *dest, int size,

void (*op) (void *, void *, int));
● Send to 0; 0 does the op; receive from 0

●Void intsum (void *dest, void *new, int);

● Apply sum to two int arrays
●Void dmax (void *dest, void *new, int);

● Apply max to two float arrays

Barrier with MPI Like

void

barrier (struct TorIO *tio)

{

int dontcare;

reduce (tio, &dontcare, &dontcare, sizeof (dontcare), nil);

}

Basic GUPS loop

● Startup rank 0 with argv having list of nodes.
– Start up other ranks with rank#, total ranks

● Rank 0:Send array of [x,y,z] coords
● Kick off threads:

– One Recvthread receives updates. It gets the
updates and increments the update count
until it blocks or quits

– Main thread works, sends updates as
needed via non-blocking IO

– Improvement: send thread per remote node

Why easier than MPI?

● (some) MPI programmers implement threads
with counters and loops
– Code is frequently hard to parse

– e.g. GUPS was utterly unreadable

● Why manually encode sizeof()?
● Don't do XX_reduce – reduce can be

polymorphic even in primitive language(C)
● The hardest part:reducing imcomprehensible

code to lock-free-threads, simple structures

MPI Like is a longer term project

● We do not want to imply that all code is as bad
as GUPS code
– But GUPS is not necessarily atypical

● But port effort is likely to be large
● And we lose XLF and XLC
● It is unlikely that we can bring programmers into

this new environment absent non-zero effort
– And even if it improves the code, they won't like it

● We need binary support

CNK emulation

● What would it take to run CNK binaries on Plan
9?

● It turns out not be as hard as might seem
● Issues:

– Elf binaries

– Only one syscall vector (as opposed to many on
x86)

– Different arg passing conventions

– And, of course, the system calls

What we did

● Elf converter (easy)
● Only one syscall vector: make variant proc type

– Extend proc struct so we can mark processes as
“cnk procs”

– Proc can only mark itself to transition on exec

– Transition once the process execs and not before

● Different arg passing conventions
– Shim in syscall trap code

● And, of course, the system calls
– Use Plan 9 syscalls where possible

Transition via exec

● We create a way to 'mark' a process as a cnk
process
– Add variables to arch-dependent part of proc struct

– Add a control file to arch driver ('cnk')

● To make a process as 'cnk on exec'
– Echo '1' > /dev/cnk

● In kernel:

up->cnkexec = 1;

Starting up the cnk proc

up->cnk = up->cnkexec;

up->cnkexec = 0;

if (up->cnk) {

ulong *l = &ureg->r7;

int i;

/* set up registers for CNK */

ureg->r3 = nargs;

ureg->r4 = (ulong) (sp + 1);

ureg->r5 = ureg->r4; /*0; /* envp */

ureg->r6 = 0;

for(i = 7; i < 32; i++) /* poison */

*l++ = 0xdeadbeef + (i*0x110);

}

● Copy cnkexec to cnk
and clear cnkexec

● Linux expects nargs
in r3 on startup

● Set envp
● Poison is very useful

to catch bad behavior
● On return to user

mode, syscall code
paths change

System call switch on proc type

● Handled in trap()
– cnk variable redirects

system calls

– We could just
renumber the plan 9
system calls however

– But there are other
reasons to mark a
process as 'cnk'

trap(int type){

switch(type) {

case INT_SYSCALL:

 if (up->cnk)

cnksyscall(ur);

 else

syscall(ur);

Other reasons to make a process as
cnk

● May want to distinguish fault management
handling

● Can have debug action depend on up->cnk
● Direct hardware access for programs
● We will probably add a tlb entry for cnk

processes so they can address torus, tree, gib
● Another option is to wait until they fault,

examine address, add proper tlb entry

cnk syscalltab

● Array of structs defining system calls

● Declare the syscall

Syscall cnkuname;

struct {

char* n;

Syscall*f;

int narg;

Ar0 r;

} cnksystab[] = {

[122] {"cnkuname", cnkuname, 1, {.i = -1}},

● Hence can index this table by syscall number for printname,
func ptr, nargs, and default return value

Sample system call: cnkuname

Void cnkuname(Ar0*ar, va_list list)

{

void *va;

va = va_arg(list, void *);

validaddr(PTR2UINT(va), 1, 0);

memmove(va, "BGP\0plan9\02.6.19.2\0CNK\0 1\0", 26);

ar->i = 0;

}

● Pattern: cast va_list to type; validate memory addresses; set
return value

● For Plan 9 calls, it's easier: go direct to the call

– e.g. pwrite()

Arg passing conventions

● syscall table is sparse

if(scallnr >= ncnksyscall || cnksystab[scallnr].f == nil){

error(Ebadarg);

}

up->psstate = cnksystab[scallnr].n;

linuxargs[0] = ureg->r3;linuxargs[1] = ureg->r4; linuxargs[2] = ureg->r5;

linuxargs[3] = ureg->r6;linuxargs[4] = ureg->r7;linuxargs[5] = ureg->r8;

cnksystab[scallnr].f(&ar0, (va_list)linuxargs);

The big win

● CNK procs have direct access to Plan 9
syscalls

● Which means they can transparently use Plan 9
private name spaces

● Binary emulation provides us with a bridge to
Plan 9 capabilities

● Less than 100 lines of changes to bgp-specific
kernel code

● No CONFIG_CNK_EMULATION needed

BG/P status

● Barrier is similar
– Working now

● Tree is pretty much the same
– Working now

● Torus is similar at bottom but has many new
capabilities such as dma

● Ethernet is quite different
● Minor CPU differences

BG/P Approach

● Build a small “kernel” that is really a main with
code to poke things

● Get console up first
● Start pushing various buttons with “kernel”
● In parallel with this work, start bringing BG/L

kernel forward
● Also develop CNK emulation on PPC 440

board
● Had an initial boot in 5 days of work at Argonne

Status

● Tree, barrier, working
● Torus dumping status info
● Ethernet still refusing to talk to us (X* interfaces

are new territory)
● Binary emulation failing in getenv() (!)

– After we resolved many other issues

● Working from public code so there are limits
● Hope to run mpihello by SC 08

Conclusions

● We feel Plan 9 is a good match to future HPC
– No USB or IDE ports on HPC nodes

– Lots of flexibility in configuration

● Port to BG/L took lots of thinking but total work
was not overwhelming

● Port to BG/P in progress
● Plan is to support binary emulation for CNK

programs
● We can make Plan 9 power available to CNK

procs

	Slide 1
	Slide 2
	Overview
	What Plan 9 is
	Plan 9 structure
	Why this is a good match to future HPC systems
	Advantages
	A way to think about private name spaces
	File System Name Space types
	And did I mention there are advantages?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

