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Problem Defn: Link Prediction Problem Defn: Link Prediction 

• Authors x Conferences x Years (10K x 2K x 14; ~0.1%)
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Q1: Can we use tensor decompositions to 
model the data and extract meaningful 
underlying factors? 

Q2: Can we predict who is going to 
publish at which conferences in 
future?

# of papers 
by ith author 

at jth conf. in year k.



Link MiningLink Mining

• Not Interested in missing link prediction [Clauset et al.’08]

• Interested in link prediction over time 
– Symmetric cases, e.g., co-authorship 

• Scores assigned to pairs based on network topology features [Liben-Novell and Kleinberg’07]

• Binary classification problem [Al Hasan et al.’06]

– Unsymmetric cases, e.g., who rated what
• Binary classification problem [Liu and Kou’07]
• Matrix Factorization Approaches [Koren’08]
• Latent Space and Markov Models [Sarkar and Moore’05; Sarkar et al.’07]

• Datasets: arXiv, DBLP, BIOBASE, CiteSeer, NIPS, Netflix
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• Our Approach
– Tensor factorizations

• CANDECOMP/PARAFAC (CP) model
[Carroll & Chang’70; Harshman’70]

– DBLP dataset (authors-conferences)

[Getoor and Diehl’05]



Data PreprocessingData Preprocessing

• Available Data: 
– Publications: ‘article’, ‘book’, ‘phdthesis’, ‘inproceedings’, etc.
– Time frame:  1936-2008
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• Our Data:
– Publications: ‘inproceedings’
– Time frame:  1991-2007

• Training Set: 1991 - 2004 
• Test Set:        2005 - 2007

– Authors: more than 14 
publications in the training period

– Each entry:



Modeling DBLP using CPModeling DBLP using CP
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Alternative approach:Alternative approach:
GradientGradient--based optimization, which based optimization, which 

is robust to overfactoringis robust to overfactoring
[Acar, Kolda and Dunlavy’09][Acar, Kolda and Dunlavy’09]

X

Traditional approach: 
Alternating Least Squares (ALS)



Components make sense! Components make sense! 
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Components make sense! Components make sense! 
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Link Prediction ProblemLink Prediction Problem

TRAIN:TRAIN:

TEST:TEST:
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~ 0.3% dense~ 0.3% dense
~ 60K links (~ 32K new)~ 60K links (~ 32K new)
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• Sign ambiguity:

• Fix signs using the signs of the maximum magnitude entries and then compute a 
score for each author-conference pair using the information from time domain:
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Performance EvaluationPerformance Evaluation

Predicting All Links between 
2005 and 2007 (~ 60K):

Predicting Only New Links Only New Links between 
2005 and 2007(~ 32K):
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Alternative Approach: SVDAlternative Approach: SVD
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Predicting All Links between 
2005 and 2007 (~ 60K):

Predicting Only New Links Only New Links between 
2005 and 2007(~ 32K):

AUC: 0.92 vs. 0.90AUC: 0.92 vs. 0.90
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Sensitivity AnalysisSensitivity Analysis

Leave-out 10% of the data and model the rest:
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More work in progressMore work in progress

• Algorithm:
– Initialization:  First two modes using HOSVD (I, J ≤ R); last mode RANDOM  (K>R)

• Model:
– Number of components (R=50): Core consistency diagnostic, overall model fit, how 

well the model fits to nonzeros.

– Time Domain info: better ways of using the time domain information

– Sparsity constraints:

• Performance Evaluation:
– Statistical Properties of the model: Can we make use of jackknifing/bootstrapping? 

– Evaluation metrics: Metrics that could be more informative than AUC



Thank you!Thank you!

• References:
– Acar, Kolda and Dunlavy, An Optimization Approach for Fitting Canonical 

Tensor Decompositions, SAND2009-0857, Feb. 2009.

– Toolboxes by Sandia:
• Tensor Toolbox

• Poblano Toolbox

– The DBLP Computer Science Bibliography, http://www.informatik.uni-trier.de/~ley/db/

• Contact:
– Evrim Acar, eacarat@sandia.gov

– Tamara G. Kolda, tgkolda@sandia.gov

– Daniel M. Dunlavy, dmdunla@sandia.gov
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