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Figure 1: Examples of different views in the LSAView application: (1a) and (2a) GRAPH VIEW, (1b) and (2b) MATRIX VIEW, (1c) and (2c) YOU
ARE HERE VIEW (3a) SMALL MULTIPLES VIEW, (3b) DIFFERENCE MATRIX VIEW (4) DOCUMENT VIEW. The CORPUS VIEW and TABLE VIEW are
not shown here.

ABSTRACT

Latent Semantic Analysis (LSA) is a method used in the automated
processing, modeling, and analysis of unstructured text data. One
of the biggest challenges in using LSA is determining the appropri-
ate model parameters to use for different data domains and types
of analyses. Although methods have been developed to determine
effective parameter choices with respect to noise in the data, our
work focuses on how those choices impact analysis and problem
solving. Similarly, approaches have been developed for choosing
appropriate LSA model scaling parameters for information retrieval
applications, but no tools currently exist for exploring the relation-
ships between the LSA model and analysis methods. In this paper,
we present LSAView, a system for interactively exploring parame-
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ter choices for LSA models. Specifically, we illustrate the use of
LSAView’s small multiple views, linked matrix-graph views, and
data views for analysis of model selection and model application
associated with graph visualization and layout.

Index Terms: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications; I.2.7 [Computing Methodologies]: Nat-
ural Language Processing—Text analysis

1 INTRODUCTION

Automated processing, modeling, and analysis of unstructured text
(e.g., news documents, web content, journal articles, etc.) is a key
task in many data analysis and decision making applications. For
many applications, documents are modeled as term, or feature, vec-
tors and latent semantic analysis (LSA) [4] is used to help model
latent, or hidden, relationships between documents and terms ap-
pearing in those documents. LSA facilitates both conceptual orga-
nization and analysis of document collections as well as dimension-
ality reduction of the extremely high-dimensional feature vectors.
In this paper we concentrate on the impact of LSA on the tasks of
modeling relationships between documents using graph layout and
visual clustering methods.

SAND2009-1976C



LSA consists of computing a truncated singular value decompo-
sition (SVD) of a term-by-document matrix, i.e., the collection of
feature vectors associated with the documents in a text collection, or
corpus. More specifically, for a term-document matrix, A ∈ Rm×n,
its rank-k SVD, Ak, is defined as

Ak = UkΣkVT , (1)

where Uk ∈ Rm×k, Σk ∈ Rk×k, Vk ∈ Rn×k contain the k leading left
singular vectors, singular values, and right singular vectors, respec-
tively. Furthermore, UT

k Uk = VT
k Vk = Ik, where Ik is the k×k iden-

tity matrix. Often, the rank of the LSA model in (1) is chosen such
that k << min(m,n), leading to both a reduction in model noise and
computation required in many analysis methods.

A central challenge in using LSA for text analysis is determin-
ing appropriate parameters for computing and applying the SVD;
specifically, selecting the rank of the SVD and scaling of the sin-
gular values for different data and types of analyses. The rank se-
lection problem refers to the determination of an appropriate rank
of the truncated SVD for use with a particular task and data set.
For the problem of document clustering, rank selection is typically
performed by analyzing document sets related to the collection to
be clustered to determine a suitable rank. Clusterings for these re-
lated collections are used to tune the LSA rank parameter for the
collection to be clustered [10]. That approach requires annotated
document collections whose term-document relationship distribu-
tions are highly correlated with those of the document collection to
be clustered. Such annotations may be laborious to generate and
the results may contain errors or subjective clusterings. Further-
more, determining how closely related the underlying distributions
of term and document relationships between two document collec-
tions is not well understood. Thus, a new technique for solving
the rank selection problem is needed for the problem of document
clustering.

Document clustering using graph layout methods and LSA mod-
eling can be performed by first computing distances, or similarity
scores, between all pairs of documents using the rank-k SVD. In
this work, we use cosine similarities, defined as

ei j(k) =
〈vi

kΣk,v
j
kΣk〉

‖vi
kΣk‖‖v j

kΣk‖
, (2)

between documents i and j, where 〈·, ·〉 is the standard inner product
and vi

k is the ith row of Vk. The similarities are stored as a similarity
matrix, E, whose element (i, j) is defined in (2). To support large
corpus analysis, only edge weights above a threshold are used in
practice, leading to sparse similarity matrices. This similarity ma-
trix is then used as the weighted adjacency matrix for constructing
a similarity graph. In this graph, nodes represent documents and
edges represent the relationships between documents, weighted by
similarity scores. Finally, graph layout methods are used to repre-
sent clusterings of the documents, i.e., related nodes are grouped
together and unrelated nodes are separated in the resulting graph
layout.

Singular value scaling (or rescaling) refers to an exponential
scaling of Σk by a scalar α/2 ∈ R. The result of singular value
scaling is a contraction (0 < α < 2), expanion (α > 2), inversion
(α < 0) or flattening (α = 0) the singluar value spectrum. Such
scaling is motivated by different applications; for example, in doc-
ument clustering, inverting the singular values tends to highlight
more of the novel or anamolous relationships between documents.
For the document clustering problem, the use of singular value scal-
ing changes the similarity scores in (2) to

ei j(k,α) =
〈vi

kΣ
α/2
k ,v j
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. (3)

Although originally developed to improve information retrieval sys-
tems [1, 17], singular value scaling can be used for any analysis task
employing LSA models. However, as for the rank selection prob-
lem, no tools exist for visually exploring the relationships between
the scaling parameter and analysis methods.

In this paper we present LSAView, a system for interactively
exploring the impact of parameter choices in informatics analysis
pipeline systems on the visual presentation and analysis capabili-
ties that data analysts utilize in decision making processes. Specif-
ically, we present the visualization capabilities of LSAView and il-
lustrate how they can be used for understanding the relationships
between parameters used in LSA and graph-based cluster analy-
sis. LSAView fills a gap for algorithms developers who require
better understanding of the impact and sensistivities of parameters
in their methods and for data analysts who need to better under-
stand the models used in their analyses. Through visual exploration
both developers and analysts can explore the complex relationships
between algorithms, models and analysis.

The major contributions of this works as as follows:

• A framework for visually exploring the relationship between
LSA model parameters and graph clustering methods.

• A new matrix view to support scalable, zoomable visualiza-
tion of matrix and matrix difference data.

• Visualization of graph statistics for identifying unexpected
edges associated with LSA model parameters.

• Case studies illustrating the use of visual algorithm analysis
for identifying the impact of LSA model parameters on graph
layout and clustering methods.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss related work in the areas of LSA and visualiza-
tion. LSAView is described in Section 3. Section 4 illustrates the
use of LSAView in two case studies, and conlusions are presented
in Section 5.

2 RELATED WORK

2.1 LSA: Rank Selection and Singular Value Scaling

In the case of rank selection, methods exist based on a variety of
techniques: for example, cross validation [13, 15], Bayesian model
selection via Markov chain Monte Carlo methods [8], expectation
maximization [14], and Bayesian inference [11]. A recent sur-
vey also indicates challenges associated with rank selection for the
problem of LSA [2]. However, such methods focus on rank deter-
mination with respect to noise in the the data and not with respect to
how the SVD will be used for analysis, such as document cluster-
ing. Attempts at determination of a useful SVD rank on particular
problems exist as well [9], but tools for general exploration do not
yet exist for understanding the relationships between the rank of the
SVD and its impact on text analysis methods.

Similarly, methods for scaling the singular values have been de-
veloped for information retrieval applications [1, 17], but no tools
for exploring the relationships between spectral properties and anal-
ysis methods currently exist.

2.2 Visualization

Eick et al developed a multi-view system for evaluating supervised
computational linguistics algorithms [5]. After training the system,
they measured classification accuracy against a set of predefined
categories and concepts. Outside of text analysis, Groth described
a multi-view system to examine the performance of a naive Bayes
classifier with respect to various discretization schemes [7].



3 LSAVIEW

LSAView is built using VTK’s Titan Informatics Toolkit. [16] [3] It
uses a multiple-coordinated view approach to exploring the impact
of parameter choices, as shown in Figure 1. The application’s input
data consists of a corpus with the text for each document, and one or
more document similarity graphs, each produced using a different
parameter value, such as rank.

The application’s views are designed to provide both alternative
representations of a single result, and to provide comparative views
of multiple results. The graph views show changes in clustering,
while the matrix views use color-coding to permit visual compar-
isons of edge weights, statistics calculated over a range of result
graphs (see Section 3.2.1), or explicit differences in values or statis-
tics between two graphs. Non-graphical views enable drill-down
to explicit numerical values for the edge weights and statistics for
each edge. Text-based views include a corpus document list and a
document viewer to enable examination of source texts for selected
documents.

The graphical views are grouped into three panels. In Figure 1,
these panels are enabled along with the document viewer on the far
right. The left and right graphical panels provide detailed inspec-
tion of two document similarity graphs resulting from different rank
choices. The upper graph view and lower matrix view each repre-
sent the same data in a different form. In between them, are two
you-are-here views, which provide both context and an alternative
navigation method within the corresponding window.

The middle panel contains two views, a small multiples view at
the top and a differences matrix at the bottom. The differences ma-
trix shows color-coded differences between the left and right pan-
els’ edge weights. The small-multiples view provides a high level
view of five different rank results, though not necessarily the same
as the ones that are shown in the side panels. To assist in manag-
ing the large number of views, a series of display toggle buttons
for both individual views and for entire panels is provided in the
toolbar at the top of the application. Additionally, double-clicking
within a view will expand it to fill the application window, simul-
taneously turning off all other views. Double-clicking again will
restore the previous view configuration. For graph or matrix views
with an associated you-are-here view, double-clicking includes the
you-are-here view in the expanded view.

3.1 Graph Views

The graph views display the document similarity matrix as a node-
link diagram, where nodes represent documents and edges are the
weighted similarities between them. The graph provides a high-
level view of how document clusters change relative to parameter
changes. In the small-multiples view in Figure 1, the five graph
views show the impact of changing rank on the connectivity of a
document group. Since the choice of graph layout algorithm can
impact the perceived groupings, LSAView provides interactive user
selection from several different layout algorithms found in Titan’s
graph layout strategies.

Nodes are labeled with the document number and colored by cat-
egory, when category labels are available. Although in real world
applications the correct categorization is typically not known, for
sample problem sets that have been hand classified, node coloring
allows comparison between the correct groupings and those pro-
duced by the algorithm. In Figure 1, the corpus has been partitioned
into two categories and we are examining the disjoint cluster of blue
nodes, which are separated from the main group.

Edges are color-coded using increasing saturation to denote in-
creasing similarity values, with low values in gray and high values
in red. Nodes, edges, or edges and nodes contained in a rectangular
region can be selected. Selections are highlighted in green and are
linked to all other views. Note that not all views share the same

edges, so each view will be limited to highlighting only selected
edges that they possess.

3.2 Matrix Views
The matrix views display each edge of the similarity graph’s sparse
matrix as a rectangle. To provide a scalable matrix representation,
we transform the edge table into a tree. Although the actual edges
form a sparse matrix, the tree is constructed as though there were a
dense matrix formed by a complete graph between the documents.
At each level of the tree, the square root of the number of children
in the complete graph is used to create a set of bins (plus additional
bins in each dimension if there is a remainder) into which the exist-
ing children are partitioned. The tree is built from the leaves up, so
regions of the matrix that do not have any edges are left empty.

The initial rendering of the matrix view displays the entire tree
at the lowest level that preserves a minimum rectangle size. This
facilitates the matrix view’s use in meta-views, such as the small-
multiples view (Section 3.4). The user interface includes zooming,
so all levels of the tree are accessible. As the user zooms into a
deeper level, the rendering of the new level overlaps the old level
to provide context. Once the size of the rectangles at the lower
level exceeds a certain threshold, the higher level rectangles are no
longer rendered. The differences matrix in Figure 1 demonstrates
the overlapped rendering, whereas the matrix view to its right shows
how the zoom will look after the threshold is crossed (note that this
is the leaf level of the tree, so only the actual edges are rendered).

3.2.1 Matrix Data
We define the sample mean of ei j(k,α) using n+1 samples as

ēi j(k,α,n) =
1

n+1

k+n/2

∑
r=k−n/2

ei j(r,α) , (4)

and the corrresponding standard error as

si j(k,α,n) =

√√√√1
n

k+n/2

∑
r=k−n/2

(
ei j(r,α)− ēi j(k,α,n)

)2
, (5)

where α is the singular value scaling parameter. Note that the statis-
tics use biased samples centered around edge weights associated
with a rank-k LSA model. The purpose of these statistics are to help
identify anamalous edge weights given variances in those weights
across the most closely related LSA models.

Using the sample mean and standard error definitions above, we
define a one-sample t statistic with sample size of n + 1 for the
weight on the edge between nodes i and j corresponding to the
rank-k SVD and singular value scaling value of α as

t(1)
i j =

ēi j(k,α,n)− ei j(k,α)
si j(k,α,n)/

√
n+1

. (6)

This one-sample t statistics can be used to identify anomalous, or
outlier, edge weights in a single graph. The hypothesis being tested
is that there is no difference between an edge weight and its mean
value (sampled from weights derived from different LSA models);
thus, higher values of the t statistic correspond to more anomlaous
edge weights.

Similarly, a two-sample t statistic for the corresponding edge
weights using SVDs with ranks k1 and k2 and sample sizes n1 and
n2, respectively, is defined as

t(2)
i j =

ēi j(k1,α,n1)− ēi j(k2,α,n2)√
[si j(k1,α,n1)]

2

n1
+ [si j(k2,α,n2)]

2

n2

. (7)



This two-sample t statistics is used to identify anomalous edge
weights when comparing two graphs. The hypothesis being tested
here is that the means weights of corresponding edges in the two
graphs are not different.

As the similarities defined in (2) form the entries of a similarity
matrix, E, the t statistics defined in (6) and (7) form the entries of
the matrices, T (1) and T (2), respectively. Thus, these statistics can
be viewed for entire graphs using the matrix views defined above.

For all statistics defined above for sparse similarity matrices (see
Section 1), edge weights of 0 are treated as missing values and the
sample sizes are adjusted to reflect this.

3.2.2 Visualization

A matrix view associated with a single document similarity graph
can be used to visualize edge weights or one-sample t statistics.
When viewing edge weights, different options are available for
propagating values to higher level nodes in the tree. The choices
are to take either the minimum, maximum, or average of the chil-
dren’s weights as a summary edge weight value for a non-leaf node.
For the t statistics, the maximum value for each node’s children is
stored as its value.

For difference matrix views, a set of variables derived from a pair
of similarity graphs is provided for each edge. Other than the two-
sample t statistics, all other choices are calculated by subtracting
the edge weights, sample means, or standard errors of the second
matrix from the first. In all difference matrix views, the maximum
value is propagated upward.

Edge and node rectangles are color-coded to permit visual com-
parisons between graphs. All of the values to be color-coded, ex-
cept for the t statistics, range from negative one to positive one.
Saturation is used to show increasing absolute value, with zero en-
coded as white. Large positive values are shown in bright red, large
negative values in deep blue. The lookup table is constructed using
a linear ramp. Selected edge rectangles are outlined in green to
stand out against the blue-red palette and selections are linked to all
other views.

However, for the t statistics, values are only limited to be being
non-negative numbers. So we change hue to show that meaning
of the encoding is different and use saturation ranging from white
to bright green to encode increasing value. The lookup table is
constructed using a log scale to focus color and attention on the
highest values in the matrix. Selected edge rectangles are outlined
in red to stand out against the green palette and selections are linked
to all other views.

3.3 You-Are-Here Views

The you-are-here views provide context for both graph and matrix
views so that the user can keep track of their location within the
high-level view as they zoom-in to focus on a small region. The red
rectangle in the you-are-here view shows the current view bound-
aries and position within the larger graph or matrix view. The you-
are-here view is implemented simply as a rectangle drawn over a
captured image. Updates to the image are only made when the
color-coded variable changes, so selections are not visible in the
view.

Panning or zooming in the graph or matrix view will update the
rectangle location and size. Similarly, dragging or scaling the red
rectangle will pan or zoom the contents of the graph or matrix view.
Often navigating using the you-are-here view is preferred because
of the contextual landmarks it provides.

3.4 Small Multiples Views

The small-multiples view is a combination of graph and matrix
views that enables comparisons of up to five different document
similarity graphs. The graph views provide a high-level overview of

the clustering impacts resulting from the parameter changes . Ad-
ditionally, the graph views act as labels to define the matrix pairs
that were used to calculate the difference matrices. Each difference
matrix represents the difference between the graph at the head of its
row and the graph at the tail of its column.

Each of the graph and matrix views is fully interactive and oper-
ates just as any graph or matrix view elsewhere in the application
would. Selections made in any one of the views are fully linked
to all other views in the application. Zooming and panning permit
exploratory navigation within each view. The only limitation is the
lack of you-are-here views for each graph or matrix, so it is dif-
ficult to maintain context. Another difference is that double-click
expands the entire small multiples view, rather than any one view
within it.

4 CASE STUDIES

Two case studies are presented in this section, focusing on the
problems of rank selection and singular value scaling, respectively.
These studies illustrate how LSAView can be used to interactively
determine suitable parameters for LSA models for the problem of
graph clustering.

4.1 Data
Two sets of data are used in the case studies. The first set, de-
noted DUC, consist of newswire documents used in the 2003 Docu-
ment Understanding Conference (DUC) for evaluating summariza-
tion systems on clusters of documents [12]. The DUC data is com-
prised of 298 documents in 30 clusters, with each cluster contain-
ing about 10 documents focused on a particular topic or event. This
data was manually annotated and thus reflects human judgement
with respect to cluster assignment of the documents.

The second set of documents, denoted TECHTC, is from the
TechTC-100 Test Collection1 [6]. Each of the 100 subsets of doc-
uments in this collection consists of about 150 HTML documents
partitioned into two clusters. These data sets were used to evaluate
binary classification models, but work well in evaluating cluster-
ing algorithms as well. An important feature of these data sets is
that identified with each set is a difficulty rating associated with
determining the clusterings. These ratings were computed using
a variety of supervised learning classification models and are thus
only an approximation of the true difficulty of solving the associ-
ated clustering problem. The case study results presented here use
the Exp 186330 195558 subset of the TECHTC data. This par-
ticular subset is the one with the lowest difficulty rating. Using
data that is easy to cluster will hopefully illustrate the strength of
LSAView to highlight subtle differences in the LSA models.

4.2 Rank Selection
The process of using LSAView to visually determine the rank of the
LSA model most suitable for graph clustering is as follows:

1. Identify a range of potential ranks using the small multiples
view.

2. Choose a suitable rank by comparing graph clusterings using
the graph, matrix, and data table views.

3. Validate the chosen rank using the document view.

Note that at each step of this process, several iterations may be re-
quired.the user.

During step 1 of the rank selction process, coarse steps in rank
values can be used to identify changes in the graph clustering of
documents over a wide range of LSA model ranks. Figure 2 il-
lustrates this for the DUC data using LSA model ranks of k =
10,30,50,70,90. The difference matrix views in the figure are col-
ored by differences in edge weights (i.e., document similarities). By

1http://techtc.cs.technion.ac.il/techtc100/techtc100.html



visualizing the impact of the rank on both the graph clustering and
the changes in the edge weights simultaneously over a wide range
of LSA model ranks, the range of suitable ranks can be narrowed.
Specifically, in Figure 2, the LSA model ranks of k = 10 and k = 30
appear to have both good separations of document groups and edge
weights that are somewhat differentiated from those associated with
the other ranks (as depicted by the bold blue and red edge rectan-
gles). Thus subsequent investigation should focus on ranks closer
to those values.

After some iteration of step 1, we arrive at Figure3, depicting
LSA models ranks of k = 28,29,30,31,32. In this figure, we have
switched the difference matrix views to be colored by the sample
means of the edge weights. As the ranks are so close, these differ-
ence matrix views better help to identify the changes in the edge
weights, as the means of those weights should also be close. Note
that the two-sample t statistics could be viewed as well for similar
analysis.

We now move on to step 2 in the rank selection process, de-
picted in Figure 4 where graph views and matrix views colored by
two-sample t statistics are shown for DUC data with ranks of k = 30
(left) and k = 32 (right). The t statistics can be used to quickly iden-
tify differences between the two graphs, and a user is easily drawn
to the areas with the most significant differences between edges
weights (i.e., bold green edge and node rectangles in the difference
matrix view).

After zoomed inspection of graph clusterings associated with
several of the most significant differences, we arrive at Figure 5,
illustrating anomalous links (determined from the t statistics) be-
tween document 297 and groups of highly related documents (i.e.,
linked by bold red links). Now the similarities of document 297
with other documents differs dramatically for the LSA models of
rank k = 30 (left) and k = 32 (right). Thus, further inspection of
that document is required to help identify the most suitable rank.

This brings us to step 3 of the rank selection process, where
manual inspection of the underlying documents is used to validate
the selected rank. Figure 6 presents the document view aside the
zoomed view of the LSA model of rank k = 30. After reading the
document and those identified as most similar (i.e., those linked to
document 297 in the graphs) for the different LSA model ranks (in-
cluding rank k = 32 and other nearby ranks), we conclude that a
rank of k = 30 is most suitable. Note that the fact that the most
suitable rank is equal to the number of underlying clusters is coin-
cidental in this case.

Document 297, about China’s leader’s statements and policies
regarding separatists, turns out to be an anomaly, in that it is only
tangentially related to the documents in the cluster to which it is
assigned where the main topic is specifically the trial of 3 sepa-
ratists in China. It appears to be more related to another group of
documents, documents 150–158, about the policies and responses
of the Russian government to Chechnyan separatists. Such subtle
relationships would be difficult to assess by simply reading all of
the documents. By organinizing and modeling the data using LSA,
combined with interactive exploration of different LSA models, we
were able to determine such sublte relationships by reading only a
few key documents. The strength of such visual algorithm analysis
can aid both the developer and analyst in their understanding of the
LSA modeling process.

4.3 Singular Value Scaling

The process of using LSAView to visually determine the singular
value scaling for the LSA model that is most suitable for graph clus-
tering follows the same general steps as for the rank selection prob-
lem. Again, we use the small multiples view to determine general
trends of the impact of the LSA model parameters—in this case,
the singular value scaling parameter, α—followed by by more de-
tails visual analysis using the graph and matrix views, and finally

Figure 2: Small multiples view of DUC data with LSA model ranks of
k = 10,30,50,70,90. The difference matrix views depict differences in
the edge weights across the different graphs.

Figure 3: Small multiples view of DUC data with LSA model ranks of
k = 28,29,30,31,32. The difference matrix views depict differences in
the sample means of the edge weights across the different graphs.

Figure 4: Graph model comparisons of DUC data with rank k = 30
(left) and k = 32 (right) using the difference matrix view (center) of
two-sample t statistics.



Figure 5: Graph model comparisons of DUC data with rank k = 30
(left) and k = 32 (right) depicting weak document similarities (grey
edges) between node 297 and groups of highly related documents
(red edges).

Figure 6: Manual inspection of documents associated with ana-
malous edge weights can be performed using the linked graph and
document views. Interacting with both the graphs and the underly-
ing data is necessary for determining where LSA models are linking
nodes differently than an analyst expects.

validation using the document view. The main difference is that it
may be useful to first inspect the scaled singular values directly
to determine if one scaling may be significantly different. Fig-
ure 7 presents the scaled singular values of of the TECHTC data
for α = −2,−1,−0.5,0,0.5,1,2. Note that the original singular
values are those scaled by α = 2.

Figure 7: Singular values up to k = 20 for the TECHTC data scaled
using different values of α. The original singular values correspond
to α = 2.

5 CONCLUSION
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