

Forces Between Nanorods with End-Adsorbed Chains in Polymer Melts

Amalie L. Frischknecht

**AIChE Meeting
November 18, 2008**

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Main Question

- how best to disperse a nanoparticle in a polymer?
 - what materials?
 - use surfactant or polymer brush?
 - what molecular weight vs. nanoparticle size?
- colloidal size-particles: treat as flat
- nanoparticles: must treat curvature

This talk

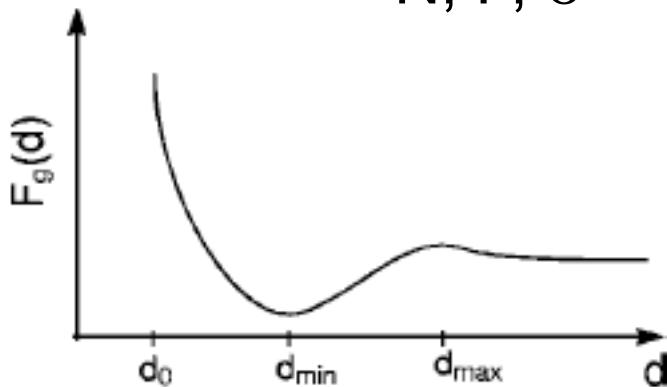
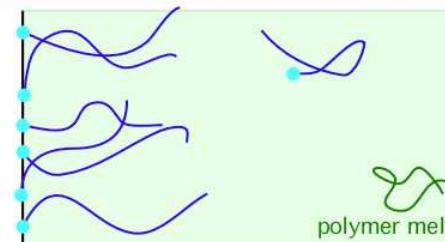
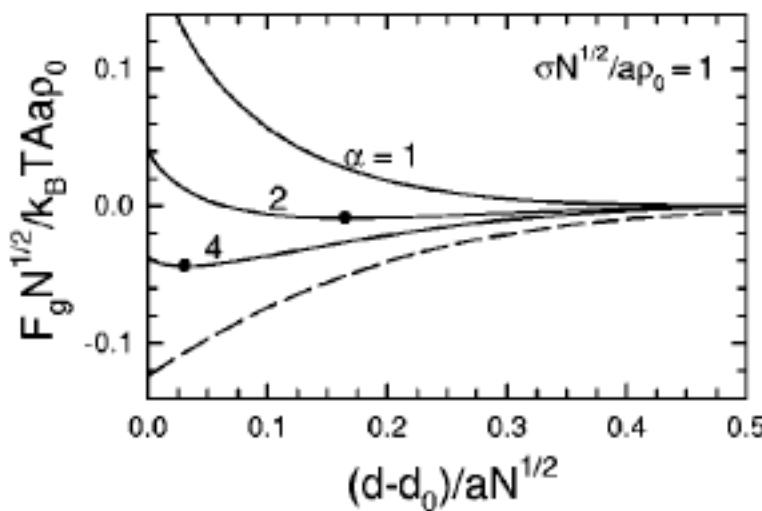
- focus on entropic interactions
 - particles coated with polymer
 - immersed in homopolymer of same type
 - $\chi = 0$

Forces Between Flat Surfaces

grafted chains on flat surfaces

behavior depends on:

N, P, σ



cause of attraction:
surface tension between
brush and melt
“autophobic dewetting”
• for long matrix chains
• high surface coverage

Matsen and Gardiner,
J Chem Phys, 2001

What happens on curved surfaces?

from Xu et al., *J. Polym. Sci. B Polym. Phys.* **44**, 2811, (2006)

SCF calculations
 $N = P = 50$, $D = 30a$

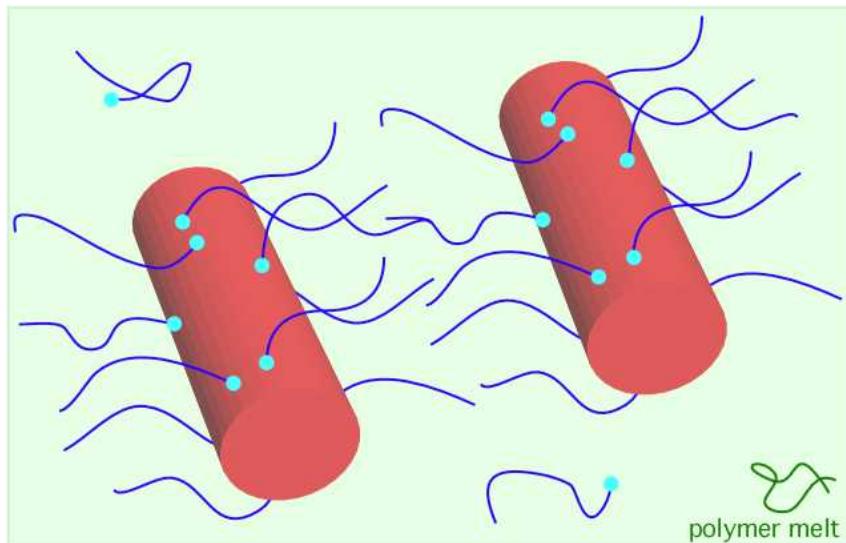
QuickTime™ and a
decompressor
are needed to see this picture.

QuickTime™ and a
decompressor
are needed to see this picture.

do see attractions due to autophobic dewetting

The Problem:

dispersion of nanosized objects in a polymer melt
same rules as for polymer-stabilized colloids?



- adsorbed chains length N
 - sticky ends, energy ε
- matrix chains length P
- athermal ($\chi = 0$)
- nanorods with diameter D

is the force repulsive or attractive?
will the chains desorb?
is there a curvature effect?

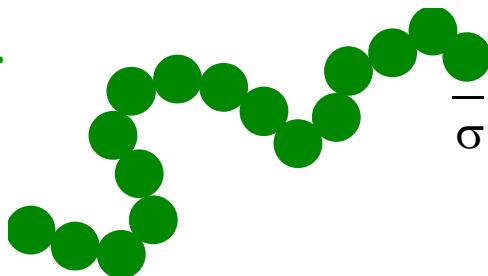
Coarse-Grained Calculations

athermal system: only interactions are entropic

polymer: model as chain of hard spheres

nanorod: model as impenetrable cylinder

polymer



nanorod

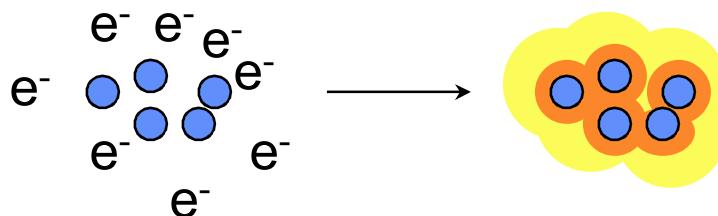
Kuhn length for PS: 1.485 nm

calculate force using
fluids density functional theory (DFT)

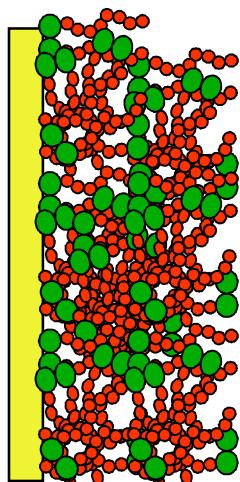
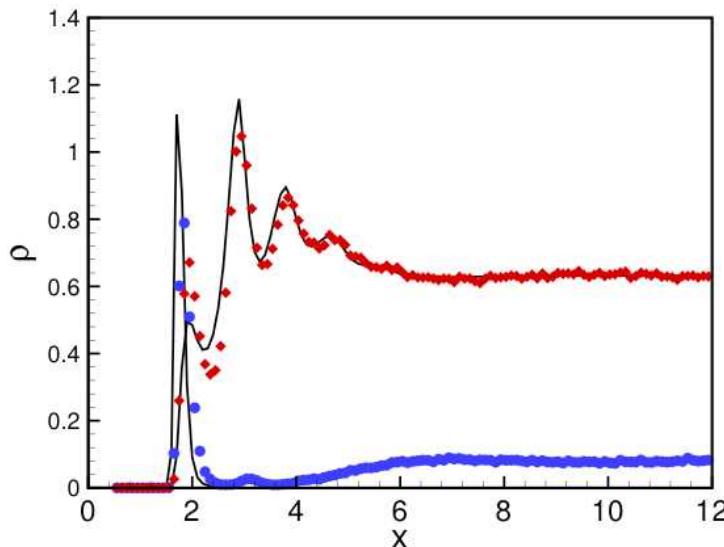
Density Functional Theory (DFT)

$$\Omega[\rho(r)] : V(r) \rightarrow \rho(r)$$

External field Density profile



Electronic Structure
(Closed system with N -electrons)



Fluid Structure
(Often open system with fixed chemical potential)

Structure of a Fluids-DFT

ansatz for Helmholtz free energy:

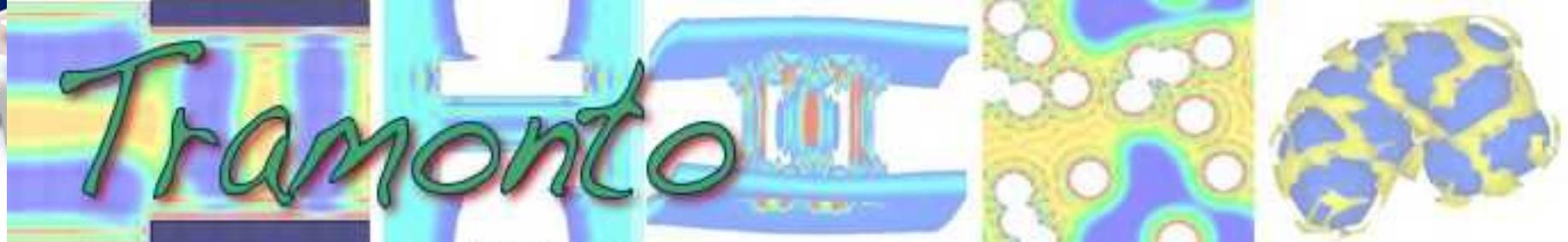
$$\begin{aligned} F[\rho(\mathbf{r})] &= F^{id} + F^{HS} + F^{att} + \dots \\ &= \int \rho(\mathbf{r}) [\ln(\rho(\mathbf{r}) - 1)] d\mathbf{r} + \int \Phi(\{n_\gamma\}) d\mathbf{r} \\ &\quad + \sum_i \sum_j \int d\mathbf{r} \int d\mathbf{r}' \rho_i(\mathbf{r}) \rho_j(\mathbf{r}') u_{ij}^{att}(|\mathbf{r} - \mathbf{r}'|) + \dots \end{aligned}$$

form in grand canonical (open) ensemble

$$\Omega[\rho(\mathbf{r})] = F[\rho(\mathbf{r})] + \int \rho(\mathbf{r}) [V^{ext}(\mathbf{r}) - \mu] d\mathbf{r}$$

minimize free energy

$$\frac{\delta \Omega}{\delta \rho(\mathbf{r})} = 0 \longrightarrow \text{equations to solve for } \rho(\mathbf{r})$$



Laura Frink, PI

<http://software.sandia.gov/tramonto>

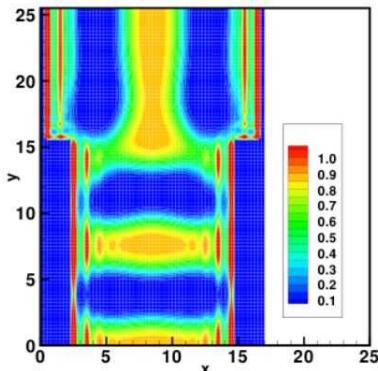
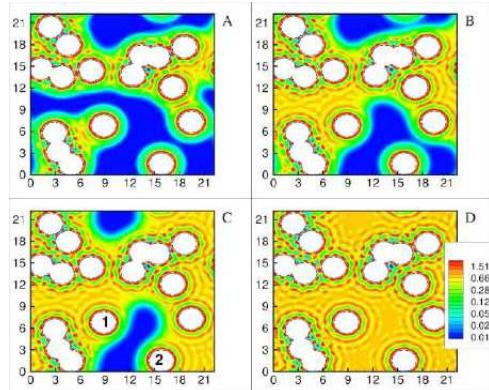
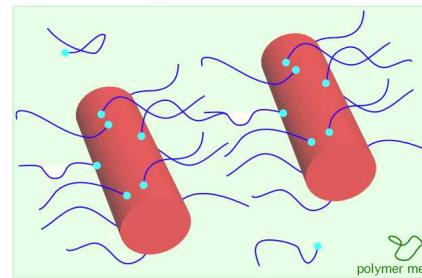
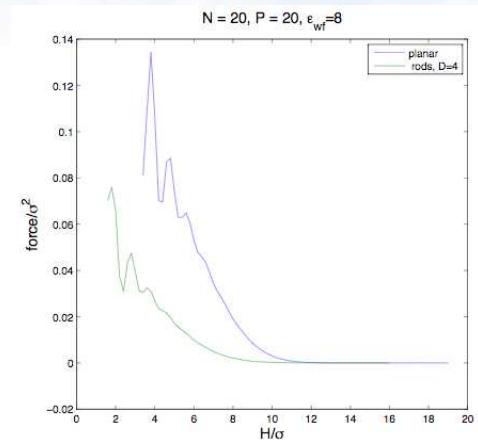
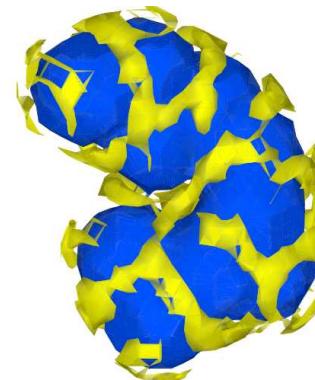
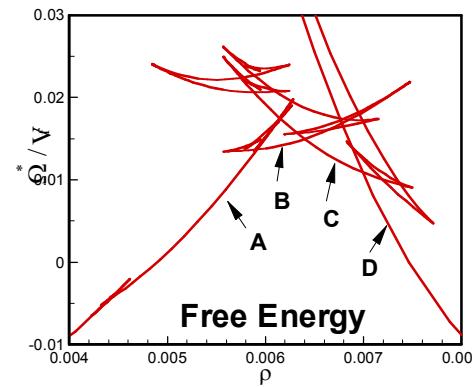
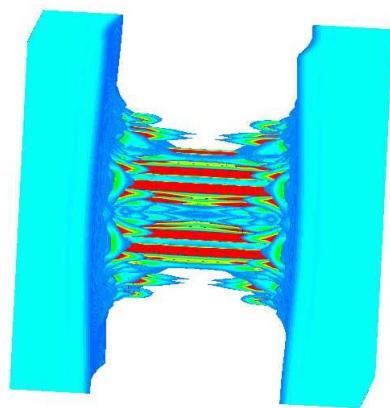
F-DFTs = nonlinear integral equations

- solve in 3D, Cartesian grid
- Newton-Raphson solver
- parallel
- sophisticated linear solver algorithms
- arc-length continuation algorithms

The Trilinos Project

What can F-DFT do?

- forces between particles
- phase behavior
- solvation free energies
 - implicit solvent
- complex geometries
- complex chain architectures
- compare to simulation (MD)



Our approach: CMS-DFT

- chains are flexible
- 2nd order density expansion

Chandler, McCoy, Singer (1986);
McCoy et al. (1990s)

$$\rho_\alpha(r) = \frac{\rho_\alpha^b}{N_\alpha} \sum_{s=1}^{N_\alpha} \frac{G_s(r) G_s^i(r)}{e^{-\beta U_\alpha(r)}}$$

Chain density distribution

$$U_\alpha(r) = V_{ext}(r) - \sum_\gamma \int c_{\alpha\gamma}(r - r') [\rho_\gamma(r') - \rho_\gamma^b] dr'$$

Unknown field
 $c(r) = c_{rep}(r) - u_{att}(r)$

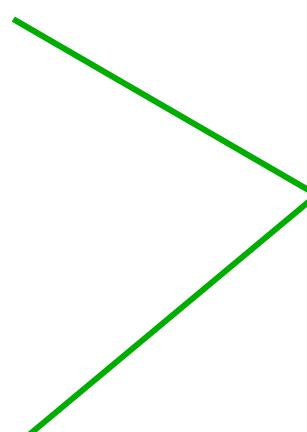
$$G_s(r) = e^{-\beta U_{\alpha,s}} \int w(r - r') G_{s-1}(r') dr'$$

PRISM RPM
Theory Approx

$$G_s^i(r) = e^{-\beta U_{\alpha,s}} \int w(r - r') G_{s+1}^i(r') dr'$$

$$G_1 = G_N^i = e^{-\beta U(r)}$$

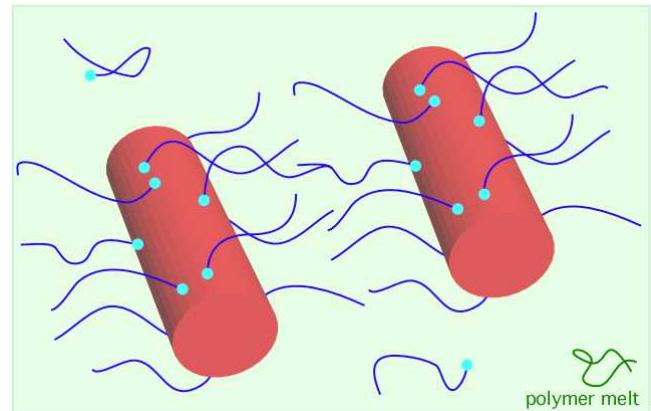
$$w(r) = \frac{1}{4\pi\sigma^2} \delta(|r| - \sigma)$$



Chain Architecture
(gaussian chains)

Calculation Details

- parallel cylinders
- athermal (repulsive interactions)
- adsorbed chains
 - $N = 20$
 - $\rho_b d^3 = 0.04$
- matrix chains
 - $P = 20, 30, 40$
 - $\rho_b d^3 = 0.76$



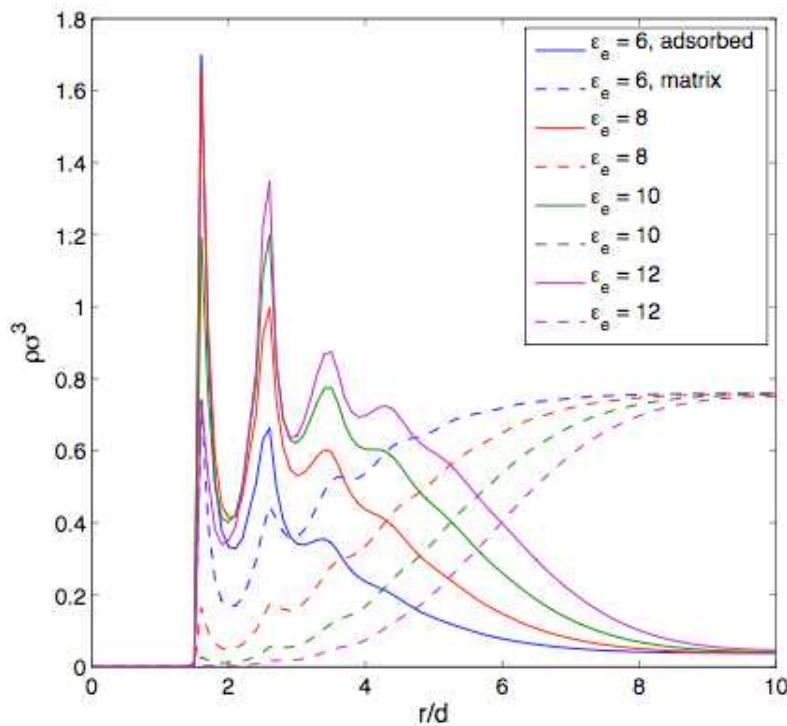
surface interactions:

- repulsive for matrix chains, sites 2-20 on adsorbing chains
- attractive to one end of adsorbing chains, depth ε_e

Nanorods: Brush Profiles

$N = 20, P = 20$

$D = 3d$

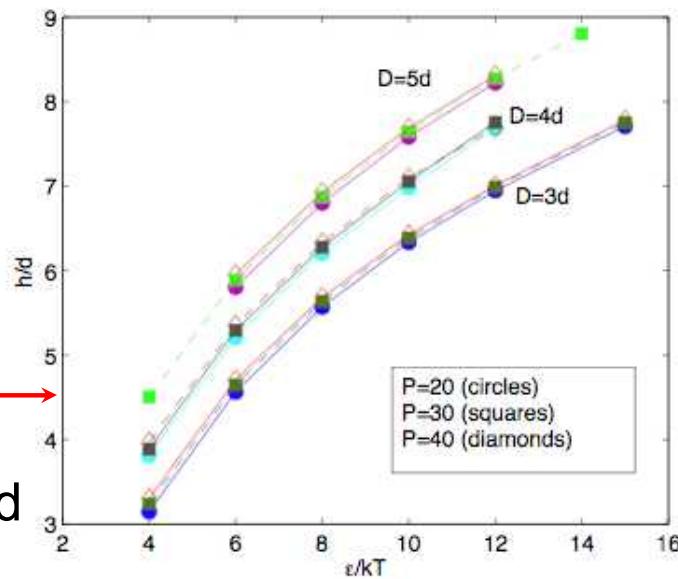


$D = 4d$

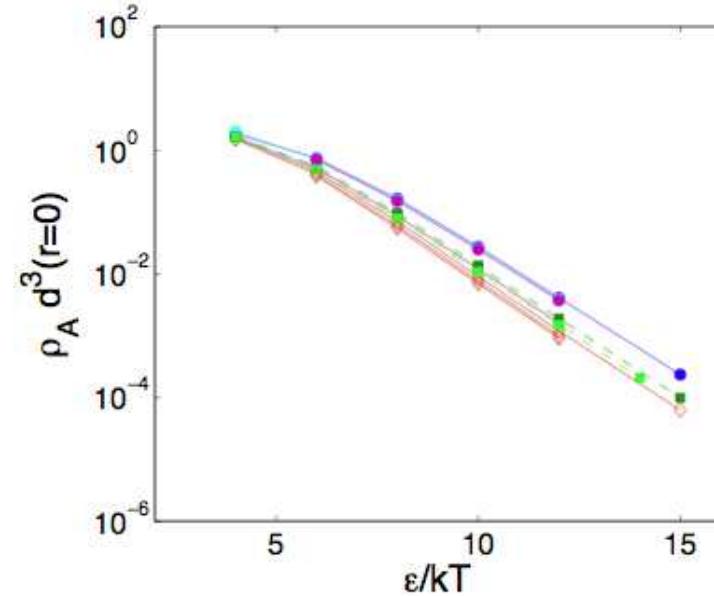


Brush Structure

height of brush



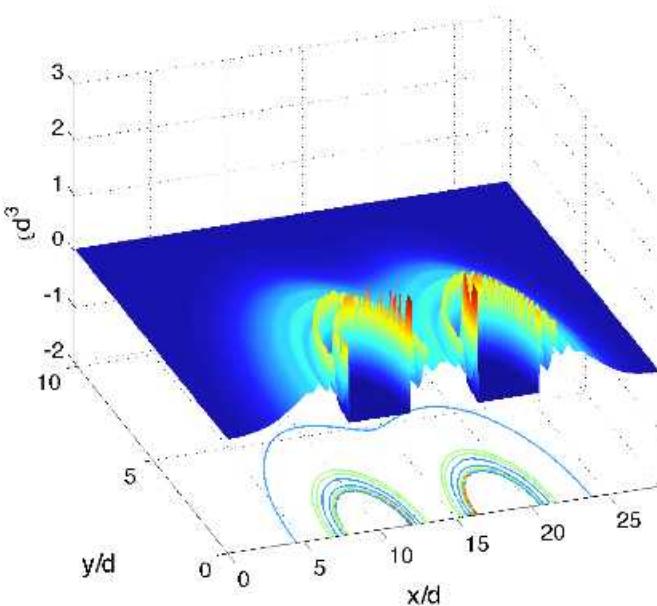
penetration of matrix chains



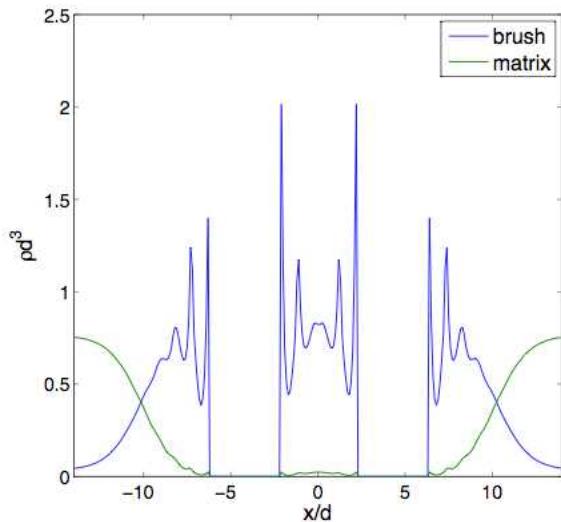
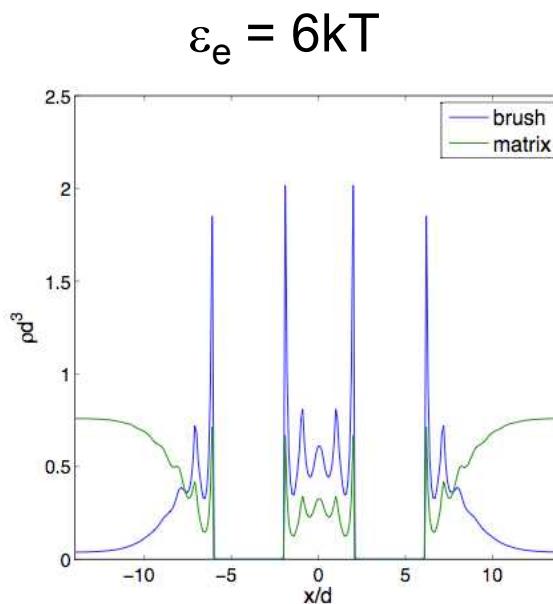
small ϵ : wet ideal brush
larger ϵ : towards dry brush

Two Nanorods

$N = 20, P = 20, D = 4d$



$\epsilon_e = 10kT$



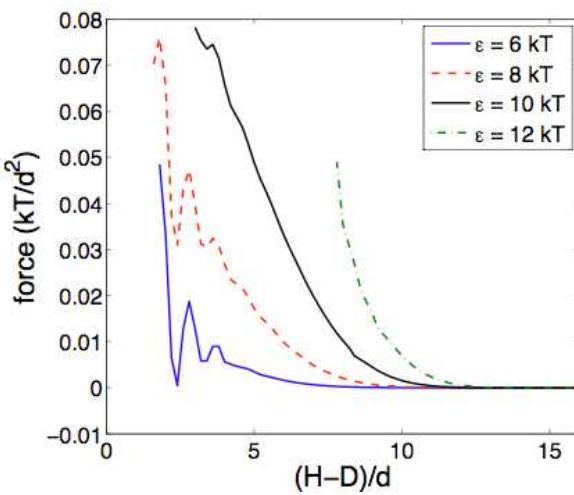
$\epsilon_e = 6kT$

Force between rods

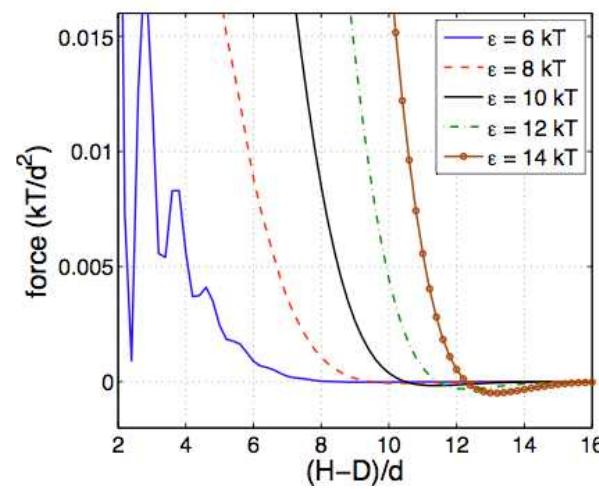
$$F = \frac{1}{A} \frac{\partial \Omega}{\partial H} = \frac{1}{\pi D} \frac{\partial(\Omega/L)}{\partial H}$$

$D = 4d$

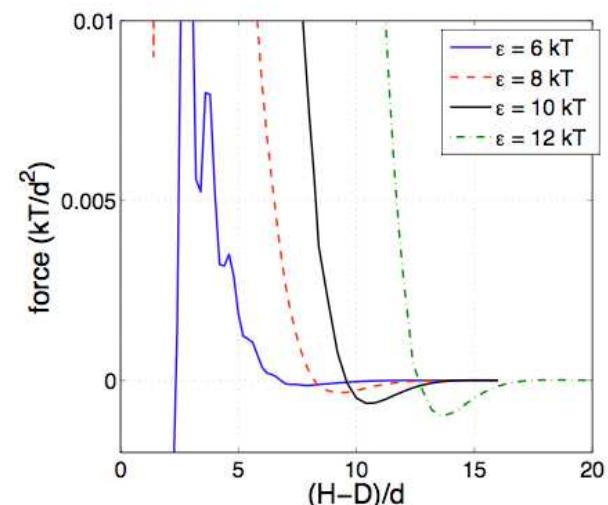
$P = 20$



$P = 30$



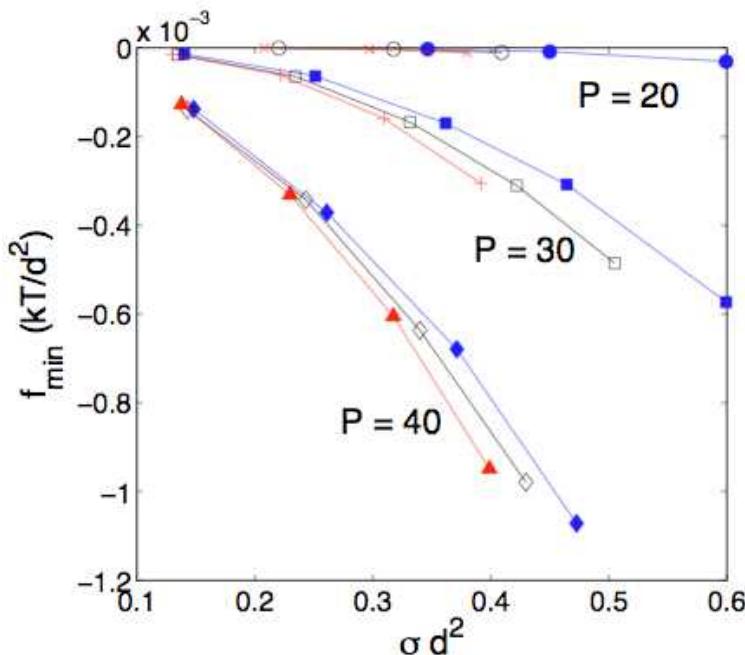
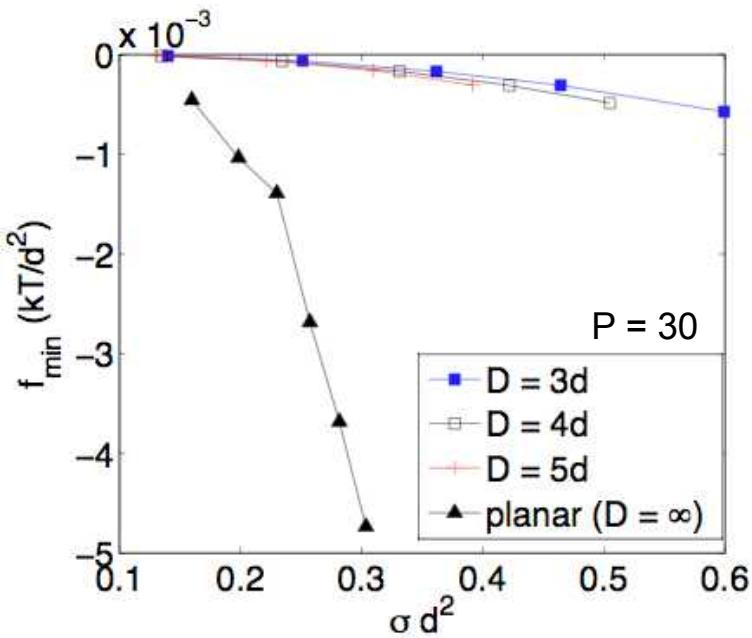
$P = 40$



autophobic dewetting still present
always some attraction at contact

Attractive Minimum

depth of minimum vs. density of adsorbed chains



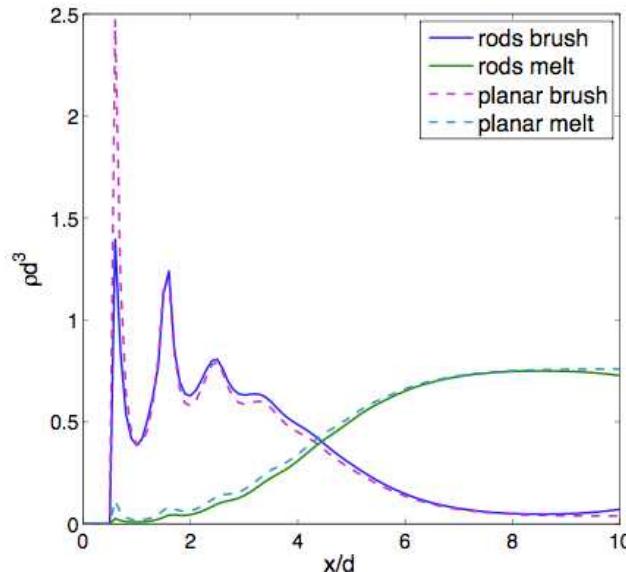
- depth increases for:
 - longer matrix chains
 - more adsorbed chains
 - larger rod diameter

- trends consistent with SCF for flat, spherical brush interactions
(Matsen and Gardiner, J Chem Phys, 2001;
Xu et al., J. Polym. Sci B, 2006)

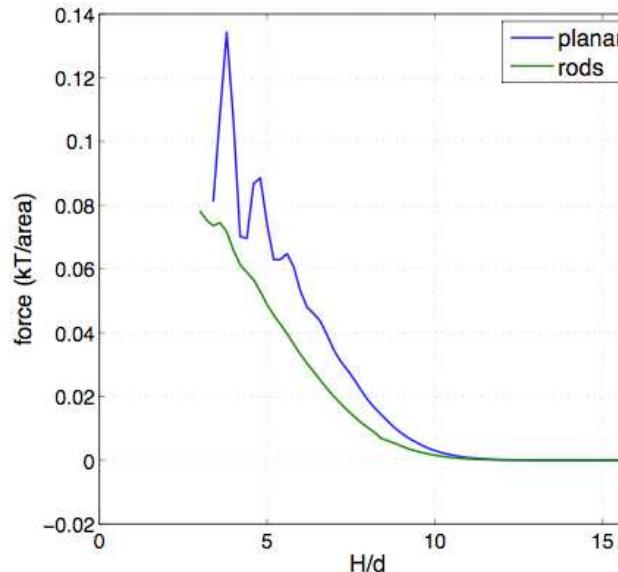
Less force due to curvature

planar brush: $\varepsilon = 8 \text{ kT}$

cylindrical brush: $\varepsilon = 10 \text{ kT}$

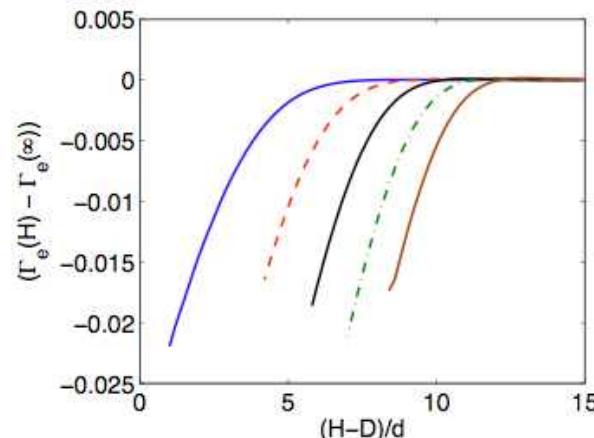


similar brush heights, profiles
force less in curved system



$P = 20$
 $D = 4d$

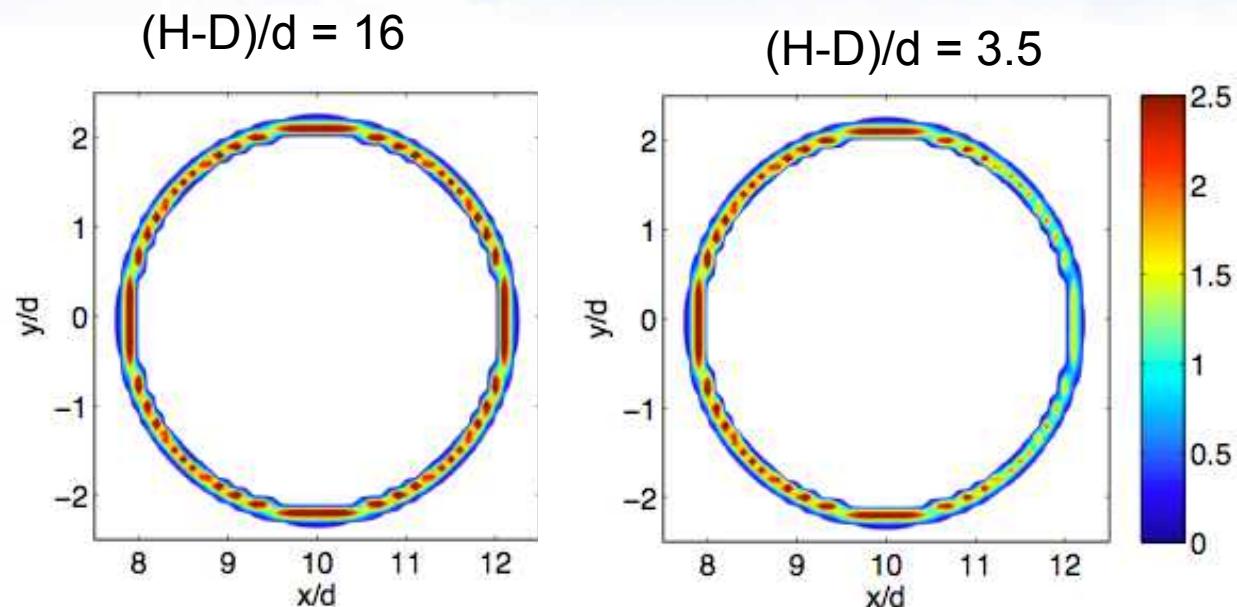
chains do desorb
($D=4d$, $P=30$)



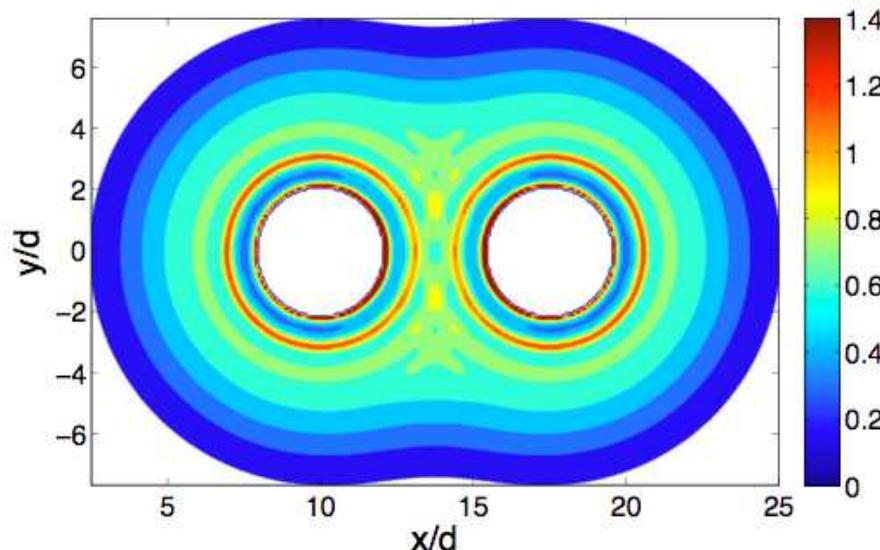
Chains rearrange as rods approach

$D = 4d$, $P = 20$,
 $\varepsilon = 10 kT$

end
densities



brush density



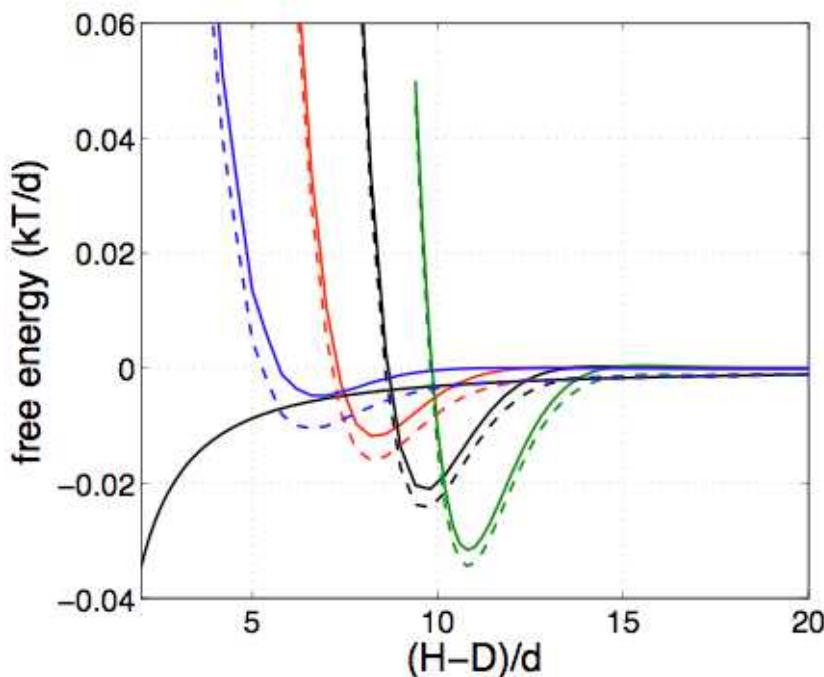
Experimental Implications

$$D = 5d, P = 40$$

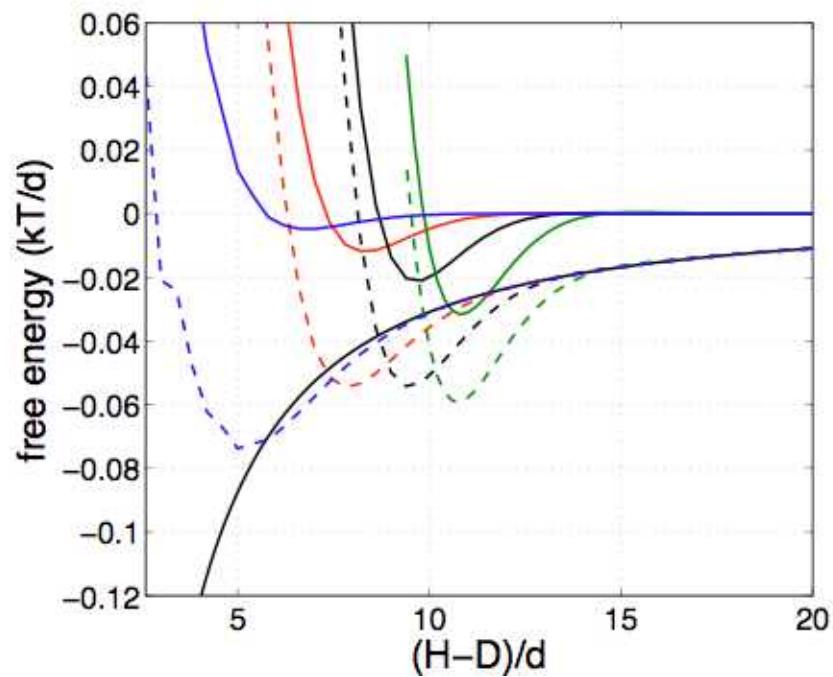
rod-rod van der Waals:

$$W = -\frac{ALR^{1/2}}{24H^{3/2}}$$

$$A = 1.2 \text{ kT}$$



$$A = 12 \text{ kT}$$



Summary

- chains desorb but still get repulsions
- repulsive force less for same brush height due to curvature
- always an attractive force present
 - autophobic dewetting
 - smaller than for flat brushes
 - increases with P , ϵ , D
- attractions can be significant

A. L. Frischknecht, *J. Chem. Phys.*, **128**, 224902 (2008)

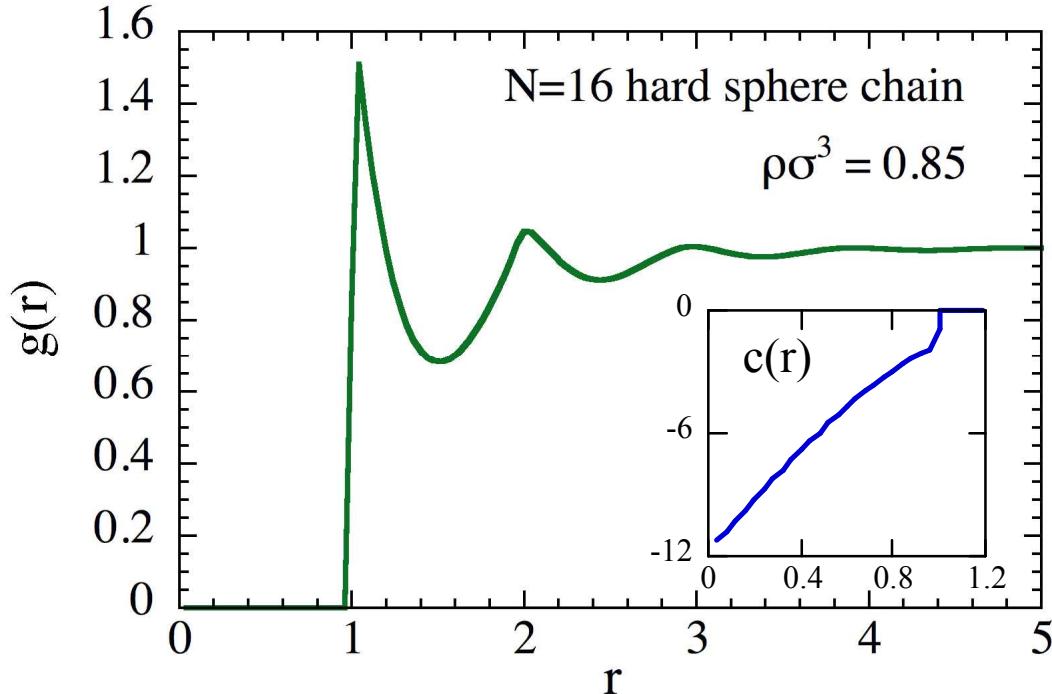
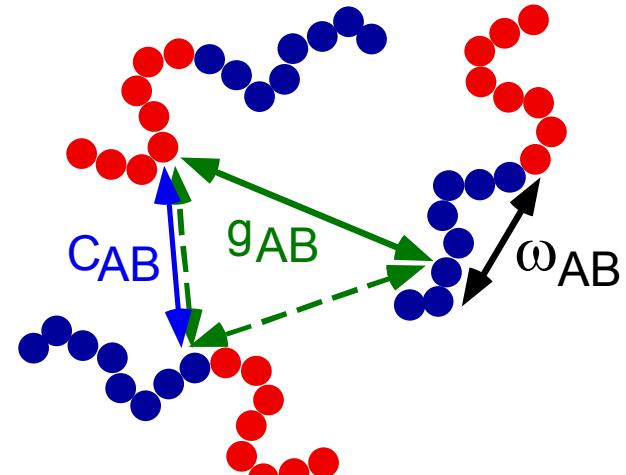
Thanks

- LDRD
- C2
- Laura Frink
- Nelson Bell

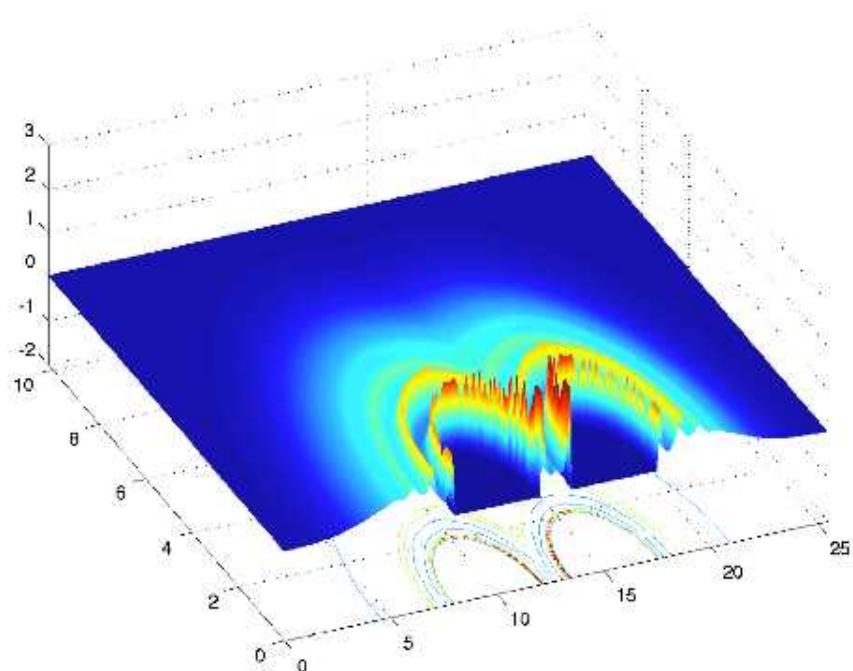
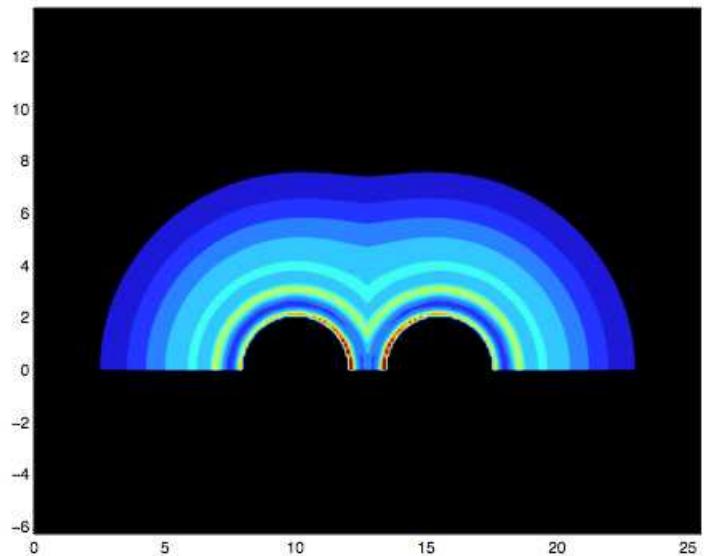
Input to CMS-DFT: PRISM Theory

Curro and Schweizer

- Liquid state theory for homogeneous polymer fluids
 - intramolecular correlations ω_{AB}
 - intermolecular correlations $g_{AB}(r)$, $c_{AB}(r)$
- Excellent for repulsive interactions

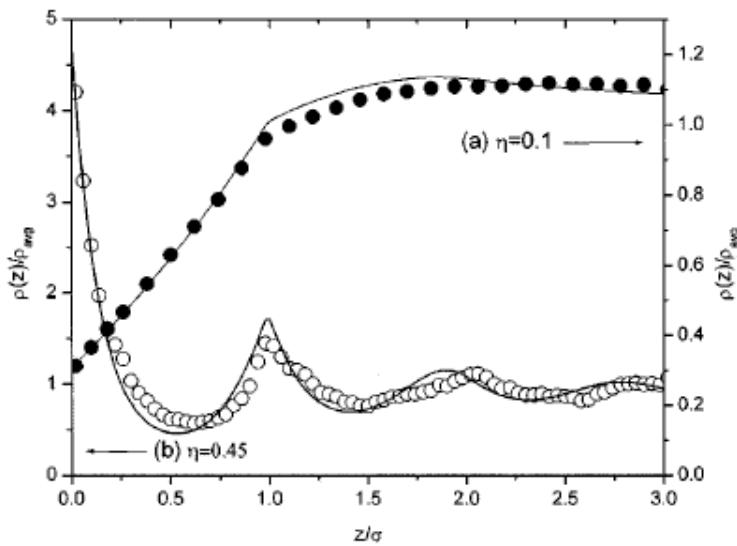


Chains go around rods



Advantages/Capabilities of F-DFT

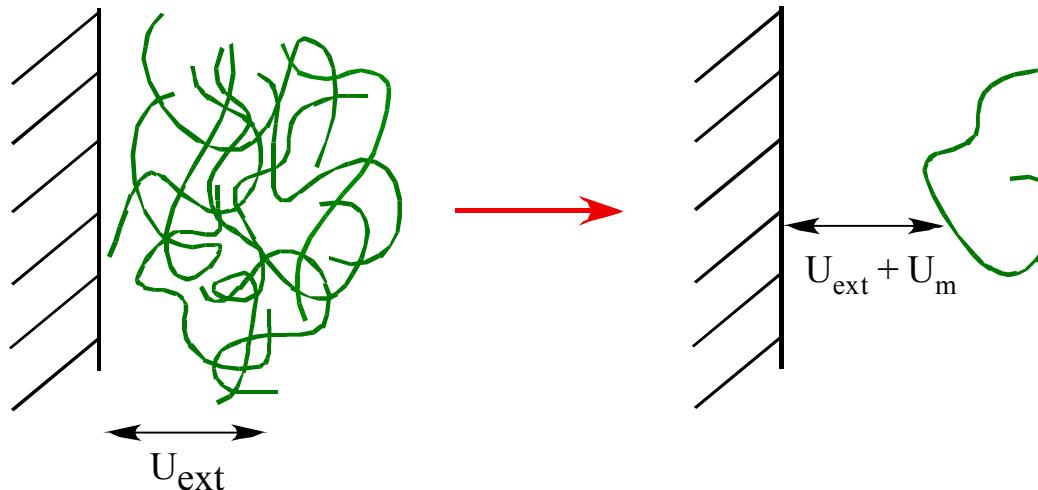
- treat different length scales
 - packing of individual “atoms” or sites
 - nano to mesoscopic length scales
- different kinds of fluids
 - hard spheres
 - attractive, Coulombic interactions
 - polymers
- compare directly to simulation results
- phase-space studies



Tripathi & Chapman, PRL, 2005

CMS-DFT

Chandler, McCoy, Singer (1986);
McCoy et al. (1990s)



- Minimize free energy, $\Omega[T, V, \mu; \rho(r)]$
- Solve self-consistently for density profile and mean field:

$$\rho(r) = G[U_{eff}(r)]$$

$$U_{eff}(r) = U_{ext}(r) + U_M[\rho(r)]$$

