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j;" Main Question

* how best to disperse a nanoparticle in a polymer?
—what materials?
—use surfactant or polymer brush?
—what molecular weight vs. nanoparticle size?

« colloidal size-particles: treat as flat

» nanoparticles: must treat curvature

This talk

 focus on entropic interactions
— particles coated with polymer
— immersed in homopolymer of same type
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Forces Between Flat Surfaces

Fo(d)

grafted chains on flat surfaces
behavior depends on:
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polymer melt

cause of attraction:
surface tension between
brush and melt
“autophobic dewetting”

» for long matrix chains

* high surface coverage

Matsen and Gardiner,
J Chem Phys, 2001
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;' What happens on curved surfaces?

—?
B

from Xu et al., J. Polym. Sci. B Polym. Phys. 44, 2811, (2006)

SCF calculations
N =P =50, D=30a

QuickTime™ and a -
decompressor QuickTime™ and a

are needed to see this picture. decompressor
are needed to see this picture.

do see attractions due to autophobic dewetting
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j;" The Problem:

dispersion of nanosized objects in a polymer melt

same rules as for polymer-stabilized colloids?

- adsorbed chains length N
-sticky ends, energy ¢

- matrix chains length P

- athermal (y = 0)

- nanorods with diameter D

GRVERER

polymer melt

is the force repulsive or attractive?
will the chains desorb?
IS there a curvature effect?
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Coarse-Grained Calculations

| 3

athermal system: only interactions are entropic
polymer: model as chain of hard spheres
nanorod: model as impenetrable cylinder

polymer nanorod

Kuhn length for PS: 1.485 nm

calculate force using
fluids density functional theory (DFT)
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:;" Density Functional Theory (DFT)

Qfp(r)] - V(r)— p(r)

External Density

field profile
e €¢
e 00 @€ 0O fo Electronic Structure
9 ¢ _ (Closed system with N-electrons)
o

Fluid Structure
(Often open system
with fixed chemical
potential)
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Structure of a Fluids-DFT

ansatz for Helmholtz free energy:

Flp(0)|=F*+F* 4+ F™ ...
— [ p®)lin(p(x) ~ 1)dr + [ & ({ny})dr

+);):/dr/df p:(r)p () (| — ) + .

form in grand canonical (open) ensemble
Qlp(r)] = Flp()] + [ p)[V"(r) — wldr

minimize free energy

5Q
op(r)

=0 —— equations to solve for p(r)
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Laura Frink, PI

http://software.sandia.gov/tramonto
F-DFTs = nonlinear integral equations

* solve in 3D, Cartesian grid

* Newton-Raphson solver

e parallel

* sophisticated linear solver algorithms
» arc-length continuation algorithms

The Trilinos Project
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;}-. What can F-DFT do?
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«forces between particles
*phase behavior
*solvation free energies

simplicit solvent A

forcela®

scomplex geometries

10
Hig

- scomplex chain architectures
. scompare to simulation (MD)
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Our approach: CMS-DFT

Chandler, McCoy, Singer (1986);
« chains are flexible McCoy et al. (1990s)
« 2" order density expansion

b Ny

G.(rG:
p,(r)= P Z 2 (_Z)U (Srgr) Chain density distribution
N, - e~
U=V~ 2 | € =1, ()= pl2dr - Unknown field
a ex - oy 14 4 C(I") — Crep(l’) . uatt(r)
(* PRISM RPM
G(r)y=e ™ | wir-rG_ (")dr Theory  Approx
Gi(r)= g Ples . w(r—r)G., (rdr Chain Architecture
) (gaussian chains)
G =G, =e ™"
1
w(r)=———=0(r|-o)
no
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"‘,.)‘ Calculation Details

.

» parallel cylinders
« athermal (repulsive interactions)
» adsorbed chains
*N =20
* p,d® =0.04
» matrix chains
- P =20,30,40
*p,d®=0.76

(\

polymer melt

surface interactions:
* repulsive for matrix chains, sites 2-20 on adsorbing chains
« attractive to one end of adsorbing chains, depth ¢,
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Nanorods: Brush Profiles

N=20,P=20
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Brush Structure

|

height of brush penetration of matrix chains
o’ - - & | 10° ¢
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m D=4d ‘-
¢ 10° | "
¢ & v ¥ p-agy s .
u g i) . ’ .
=8 - o 10_2: 2
8 -
- <
5 . | = -
. e 0 .
Ideal 4 & P=40 (dizmonds)
R=45d, s J b
2 4 6 B 10 12 14 16 5 10 P
kT E_,I'rkT

small &: wet ideal brush
larger ¢: towards dry brush
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Two Nanorods
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force (kT!dz}

Force between rods

L 11 aQ/L)

A6H 7D 6H
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autophobic dewetting still present
always some attraction at contact
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Attractive Minimum

depth of minimum vs. density of adsorbed chains
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«depth increases for:
longer matrix chains
*more adsorbed chains
elarger rod diameter

(KT/d?)
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min
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A P =30
. = D=3d
» | = D=4d
D =5d

a | * planar (D =x)

A 0.2 0.3 0.4 0.5 0.6
{}'d2

trends consistent with SCF for

at, spherical brush interactions

(Matsen and Gardiner, J Chem Phys, 2001;
Xu et al., J. Polym. Sci B, 2006)
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Less force due to curvature

planar brush: € = 8 kT
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- - -planar melt |

chains do desorb
(D=4d, P=30)

cylindrical brush: ¢ = 10 kT
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similar brush heights, profiles

force less in curved system
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Chains rearrange as rods approach

r
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=
D =4d, P = 20,
e=10 kT
end
densities

brush density

(H-D)/d = 16 (H-D)/d = 3.5

Sandia
National
Laboratories




|

w

free energy (kT/d)

\

Experimental Implications

D=5d, P=40

rod-rod van der Waals:

A=12KT
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Summary

» chains desorb but still get repulsions

* repulsive force less for same brush
height due to curvature

- always an attractive force present
— autophobic dewetting
— smaller than for flat brushes
— increases with P, ¢, D

- attractions can be significant

A. L. Frischknecht, J. Chem. Phys., 128, 224902 (2008)

Thanks

| « LDRD e Laura Frink
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=~ Inputto CMS-DFT: PRISM Theory

Curro and Schweizer

g(r)

* Liquid state theory for homogeneous polymer fluids

 Excellent for repulsive interactions
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— intramolecular correlations m,g

— intermolecular correlations gag(r), Cag(r)
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Chains go around rods
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= /." Advantages/Capabilities of F-DFT

B

treat different length scales .

* packing of individual “atoms” or sites
* nano to mesoscopic length scales

odifferent kinds of fluids

* hard spheres
e attractive, Coulombic interactions
 polymers

compare directly to simulation results Tripathi & Chapman, PRL, 2005
*phase-space studies

0o 05 1.0 15 2.0 25 an
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CMS-DFT

Chandler, McCoy, Singer (1986);
McCoy et al. (1990s)
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» Minimize free energy, Q[T,V,u; p(r)]
» Solve self-consistently for density
profile and mean field:

o

p(r)= GlU, ()]

U, (r)=U,,(r)+U,[p(r)]
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