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ABSTRACT 
 

Although the transport of photons and electrons/positrons is described by the same Boltzmann 
transport equation, the cross sections are very different, resulting in very different solution 
convergence properties for the two particle types. The SCEPTRE project is a suite of deterministic 
codes for solving the linear steady-state Boltzmann transport equation, containing two very 
different solver approaches: a sweeps-based approach for solving the first-order transport equation 
that is efficient for photon transport, and a conjugate-gradients algorithm for solving the second-
order transport equation that is efficient for electron/positron transport. The two solver algorithms 
are coupled through a common set of tools for handling the spatial finite elements methods, 
angular discrete-ordinates methods, scattering source terms, and input, pre- and post-processing 
capabilities. We evaluate the two solver algorithms by comparing solver run times for photon- and 
electron-transport problems, investigating properties such as parallel performance, finite-elements 
basis function type, preconditioning,  and scaling with angular quadrature order and Legendre 
cross section expansion order. 
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1. INTRODUCTION 
 
SCEPTRE (Sandia's Computational Engine for Particle Transport for Radiation Effects) is a suite 
of deterministic codes for solving the linear steady-state Boltzmann transport equation. It solves 
the first- and/or second-order forms of the transport equation by means of the multigroup energy 
discretization, the discrete ordinates angular discretization, and finite element spatial 
discretization on unstructured meshes [1],[2]. Currently, SCEPTRE is primarily applied to 
predict the effects of x-rays and secondary electrons on cables and other electronic components. 
The high resolution needed for the accurate modeling of electron transport near conductor-
dielectric boundary layers requires the use of large meshes and massively parallel computations. 
 
The first-order solver in SCEPTRE uses discontinuous finite element differencing. The solution 
method employs conventional source iteration and a parallel wavefront (sweeping) algorithm on 
distributed meshes. The sweeping algorithm mostly respects the streaming dependency graph; 
some dependencies may be ignored during the sweep in order to avoid cyclic dependencies and 
to improve performance. This approach typically preserves the iteration count needed for 
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solution convergence of a serial computation; there is little or no degradation in iterative 
effectiveness as the processor count increases. However, this approach also causes degradation in 
the scaling of each iteration as the number of processors increases, since it becomes increasingly 
difficult to keep each processor occupied with useful tasks. Although SCEPTRE can in principle 
be used with any mesh partitioning, to date we have used only conventional partitioning 
approaches, which further limits the parallel scaling of the first-order method. 
 
The second-order solver in SCEPTRE uses continuous finite element differencing. This 
discretization yields a symmetric positive definite (SPD) matrix that couples all angular and 
spatial variables, permitting the use of a parallel conjugate gradient (PCG) solver and eliminating 
the need for source iteration. This approach, unlike that for the first-order form, yields good 
scalability of each iteration as the processor count increases. SCEPTRE includes three different 
second-order solver algorithms: even-odd parity flux (EOPF) [3], self-adjoint angular flux 
(SAAF) [4] and least-squares finite elements (LSFE) [5]. The three algorithms have different 
strengths and weaknesses, e.g. the LSFE method can be used for problems containing internal 
void regions without special treatment, and the problem size for EOPF method is half that of the 
other methods due to symmetry. SCEPTRE includes both Sn (discrete ordinates) and Pn 
(spherical harmonics) second-order solver algorithms, but only the Sn algorithm will be 
considered here since the Pn algorithm has not yet been extensively tested. 
 
The iterative solution process of the first-order form is fundamentally different than that of the 
second-order form, resulting in a different set of strengths and weaknesses for each approach. In 
SCEPTRE the user can choose on a group-by-group basis whether to use the first-order solver or 
one of the second-order solvers. This is extremely beneficial for coupled photon-electron 
transport problems, since the two solvers have very different convergence properties for different 
particle types and different energy regimes. The solver that is best suited for solving each particle 
type at each energy can be chosen to provide the most efficient global solve. This is especially 
beneficial for multi-particle applications, where the cross sections may be radically different, e.g. 
the transport mean free path of 200-keV photons is 4-5 orders of magnitude larger than that of 
200-keV electrons, and the scattering ratio of 200-keV photons is about 0.1, while that of 200-
keV electrons is typically greater than 0.9. 
 
In general, the first-order solver works better for streaming-dominated problems, such as photon 
transport, and the second-order solvers work better for problems with higher scattering ratios, 
such as electron transport. The convergence rate of the first-order solver is strongly influenced by 
the scattering ratio, while the convergence rate of the second-order solvers depends upon the 
condition number of the matrix resulting from the space-angle discretization of the problem. For 
the second-order solvers, effective preconditioning can greatly reduce the condition number of 
the matrix, resulting in drastic reduction in solver times, but further work remains to be done to 
arrive at optimal preconditioning. The convergence properties of the first- and second-order 
algorithms in many ways complement each other. 
 
The first- and second-order transport algorithms share many components in common, including 
finite-elements tools, cross section handling, angular quadrature, angular moments, distributed 
source data, boundary conditions and transport field containers. The transport field containers 
and distributed source data are based on discontinuous finite elements. Since the second-order 
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solvers use continuous finite elements, a mapping is required from discontinuous data structures 
to continuous for the second-order solvers, and then back again to map the results to the 
discontinuous data structures for compatibility with the first-order solver. These mappings are 
performed seamlessly and efficiently with Trilinos tools [6]. 
 

2. PROBLEM DESCRIPTION 
 
The problem considered is a two-dimensional cross section of a coaxial cable, with dimensions 
and materials as shown in Table I. The cable is small and relatively transparent to photons but 
not to electrons, as can be seen by looking at the typical cross sections shown in Tables IIa and 
IIb. The cross sections were computed by the CEPXS code [7], which is a physics code for 
computing multigroup-Legendre cross sections for use in deterministic and multigroup Monte 
Carlo radiation transport codes. 
 
 

Table I. Coaxial cable specifications 
 

Layer Material Outer Radius (cm) Thickness (cm) 

Center Conductor 
iron 0.0478 0.0956 

copper 0.0594 0.0116 
silver 0.0606 0.0012 

Dielectric PTFE 0.15113 0.09053 
Outer Conductor copper 0.17907 0.02794 

 
 

Table IIa. 200-kev photon cross sections 
 

 iron copper silver teflon 
σt 1.17004x100 1.42261x100 3.16203x100 2.62917x10-1 
σs0 1.13938x10-1 1.45778x10-1 3.08826x10-1 1.30645x10-2 
σs1 1.08554x10-1 1.38100x10-1 2.83913x10-1 1.28180x10-2 
σs2 1.01109x10-1 1.28283x10-1 2.62529x10-1 1.23410x10-2 
σs3 9.31516x10-2 1.18137x10-1 2.40030x10-1 1.16613x10-2 

scattering ratio 0.0974 0.102 0.0977 0.0497 
 
 
At present, the primary application of SCEPTRE is to predict the effect of x-rays and secondary 
electrons on cables and other electronic components. The result of interest in these types of 
calculations is the electron emission from the conductors and penetration into the dielectric 
materials. Because of the large magnitude of the electron cross sections and the large magnitude 
of the production of electrons in high atomic number materials, the gradient of the electron 
fluence near material interfaces is very large, so that a fine spatial resolution (typically sub 
micron) is needed near interfaces for acceptable accuracy. Ideally, it would be desirable to use a 
different mesh for different particle types and even for different energy regimes, with the spatial 
dependence of the mesh refinement driven by the spatial gradients in the solution. However, the 
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mapping of source terms in parallel from coarse to fine meshes is a difficult bookkeeping 
problem and is not currently implemented in SCEPTRE. This is not a serious problem for the 
first-order sweeps-based algorithm, but for the second-order algorithms, transporting photons on 
an over-refined mesh increases the condition number of the resulting matrix, resulting in slow 
convergence. Effective preconditioning of the matrix can substantially mitigate this effect, 
however. 
 
 

Table IIb. 200-kev electron cross sections 
 

 iron copper silver teflon 
σt 6.97961x104 8.34048x104 1.18091x105 1.04219x104 
σs0 6.44678x104 7.75741x104 1.12025x105 8.58885x103 
σs1 6.39921x104 7.69881x104 1.10984x105 8.54100x103 
σs2 6.32079x104 7.60309x104 1.09359x105 8.45897x103 
σs3 6.21969x104 7.48034x104 1.07343x105 8.34969x103 
σs4 6.10023x104 7.33574x104 1.05020x105 8.21724x103 
σs5 5.96529x104 7.17264x104 1.02443x105 8.06450x103 
σs6 5.81699x104 6.99346x104 9.96485x104 7.89366x103 
σs7 5.65695x104 6.80013x104 9.66656x104 7.70649x103 

scattering ratio 0.924 0.930 0.949 0.824 

 
 
Typical finite-elements meshes of the cross section of a coaxial cable are shown in Figs. 1a and 
1b. Fig. 1a shows a quadrilateral mesh of the coaxial cable, refined to 2 μm near the conductor-
dielectric interafaces. The triangular mesh is shown in Fig. 1b, which was obtained by splitting 
quadrilaterals in half. Creating a mesh in this way results in large aspect ratios. The aspect ratios 
can be decreased, with the result of increasing the size of the mesh. 
 

3. RESULTS 
 
This section compares the performance of the second-order SAAF algorithm and the first-order 
sweeps-based algorithm by comparing convergence iteration count and solver runtimes for a 
variety of properties, including finite-elements basis function type and mesh refinement, 
preconditioning,  parallel performance, and scaling with angular quadrature order and Legendre 
cross section expansion order. Test problems were run on Sandia's Thunderbird cluster, with 
hardware environment of dual 3.6 GHz intel EM64T processors with 6 GB RAM. Thunderbird's 
high-speed message passing fabric is Infiniband. The Infiniband fabric is a two level CLOS 
topology with eight top-level core switches and 280 leaf switches (24 ports per leaf switch) that 
the compute nodes connect to. Each leaf switch has 16 downlinks (16 compute nodes per leaf 
switch) and 8 uplinks. Thus, the network is 2-to-1 oversubscribed in terms of raw number of 
links. SCEPTRE was compiled with optimization with GCC version 3.4.6 and Open MPI version 
1.2.7. 
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Figure 1a. Quadrilateral mesh of coaxial cable, showing close up near inner conductor-
dielectric layer. 

 
 
 

 
 
 

Figure 1b. Triangular mesh of coaxial cable, showing close-up near inner conductor-
dielectric layer. 
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3.1 Finite-Element Basis Function Type and Mesh Refinement 
 
Table IIIa shows results for the transport of 200-keV photons on the coaxial cable meshes shown 
in Figs. 1a and 1b. Linear (quad4 and tri3) and quadratic (quad8 and tri6) finite-element basis 
functions were compared. 8th order angular quadrature and 3rd order Legendre cross section 
expansion were used in the calculations, with convergence tolerance of 10-8, which were run on 
four processors. The first- and second-order algorithms use different expressions of convergence 
tolerance: the SAAF solver uses the 2-norm of the point wise relative residual from the PCG 
iterations as the tolerance, and the first-order solver uses a norm of the solution difference 
between successive iterates. More work is needed to evaluate the effect of the convergence 
tolerance on the results of interest in the calculations. The SAAF calculations used a block-
diagonal preconditioner, which is described in Sec. 3.2. 
 
A number of interesting observations can be made from the results. The first-order algorithm 
scales roughly with the number of elements in the mesh, while the SAAF algorithm scales more 
directly with the number of nodes. The SAAF runtimes are much larger for quadratic basis 
functions (quad8 and tri6) as compared with linear basis functions, partly as a result of the 
increase in the number of nodes and partly as a result of increased cost of the preconditioning.  
 
 

Table IIIa. Comparison of transport algorithms for various element types and mesh 
refinement for 200-keV photon transport 

 
S8P3, tol=10-8, 4 processors SAAF (preconditioned) First Order 

Elem Type Num Elems Num Nodes Num Iters Solver Time (s) Num Iters Solver Time (s)
quad4 4,845 4,884 6 8.61 6 7.45 
quad8 4,845 14,612 " 47.5 " 12.2 

tri3 9,690 4,884 " 8.37 " 14.1 
tri6 9,690 19,457 " 55.4 " 17.8 

Refined Meshes:
quad4 19,380 19,457 6 67.1 6 35.0 

tri3 38,760 19,457 " 53.5 " 59.0 
 
 
The results for 200-keV electron transport are shown in Table IIIb. Linear (quad4 and tri3) and 
quadratic (quad8 and tri6) finite-element basis functions were compared. 12th order angular 
quadrature and 7th order Legendre cross section expansion were used in the calculations, with 
convergence tolerance of 10-8, which were run on 32 processors. A higher-order Legendre cross 
section expansion is used for the electron transport calculations, due to the higher degree of 
anisotropy in the electron scattering physics. No preconditioning was used for the SAAF results, 
as an effective preconditioner for the electron transport has not yet been found, so that 
preconditioning has little effect or even a negative effect on convergence of electron groups.  
 
The first-order algorithm iteration counts are much higher for electron transport, as compared 
with those for photon transport, as expected due to the higher scattering ratio of electron cross 
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sections. The first-order solver times are quite a bit higher for electron transport than for photon 
transport, even with using 32 processors instead of 4. 
 
Like the photon-transport results, the first-order algorithm scales roughly with the number of 
elements in the mesh, while the SAAF algorithm scales more directly with the number of nodes. 
The SAAF runtimes are much larger for quadratic basis functions (quad8 and tri6) as compared 
with linear basis functions, partly as a result of the increase in the number of nodes and partly as 
a result of increased cost of the preconditioning. 
 
Unlike the photon results, the SAAF algorithm performs better with a refined mesh with linear 
basis functions, rather than a coarser mesh with quadratic basis function. Further work remains to 
be done to determine computational efficiency as a function of accuracy of refining a mesh vs. 
using a higher basis function order. 
 
 

Table IIIb. Comparison of transport algorithms for various element types and mesh 
refinement for 200-keV electron transport 

 
S12P7, tol=10-8, 32 processors SAAF (unpreconditioned) First Order 

Elem Type Num Elems Num Nodes Num Iters Solver Time (s) Num Iters Solver Time (s) 
quad4 4,845 4,884 29 3.5 55 36.9 
quad8 4,845 14,612 133 49.6 " 71.1 

tri3 9,690 4,884 29 3.1 " 53.2 
tri6 9,690 19,457 78 32.9 " 98.5 

Refined Meshes:
quad4 19,380 19,457 56 19.1 55 155. 

tri3 38,760 19,457 57 16.5 " 234. 
 
 
3.2 Preconditioning the Second-Order Transport Algorithm 
 
As mentioned previously, modeling photon transport on an over-refined mesh, such as a mesh 
refined to accurately model electron transport, results in an ill-conditioned matrix and slow 
convergence for the second-order transport algorithms. Effective preconditioning can 
dramatically improve the convergence. We have found that for the photon transport, a block-
diagonal preconditioner is very effective [8]. Rather than solving the unpreconditioned linear 
system 
 

,bx =A                                                                             (1a) 
 

a different linear system, M-1A, with a lower condition number than the original linear system, A, 
is solved instead 
 

.1bx −= MAM -1                                                                      (1b) 
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An effective preconditioner, M, should be relatively easy to invert and a good approximation to 
the original linear system.  
 
SCEPTRE contains several preconditioning options, including multilevel (ML) and incomplete 
factorization (IF), which need further investigation. We have found that an effective 
preconditioner for streaming-dominated problems, such as photon transport in small geometries, 
is the obtained by using the pure-absorption transport equation, which is nearly equivalent to 
using the diagonals of the blocks in the discretized transport linear system, A, as a preconditioner. 
This effectively replaces the full system solve, which scales as the number of directions squared, 
with a set of preconditioner linear systems, which scale linearly with the number of directions. 
 
Implementing the block-diagonal preconditioner requires a procedure for inverting the 
preconditioning operator, M. There are several ways of solving the preconditioner (uncollided-
flux) system, and the results for two different methods are shown here. One method is to use a 
PCG algorithm for each discrete direction. This method is fairly easy to implement, scales well 
with number of processors, but has the drawback that if A is ill-conditioned, M will also likely be 
ill-conditioned, resulting in slow convergence.  
 
Another method is to use a direct solver to invert the preconditioner linear system for each 
discrete direction, and then to keep it for use in subsequent iterations. The KLU sparse LU 
factorization algorithm [10] is implemented in the Trilinos package and has been implemented in 
SCEPTRE. This approach results in very efficient convergence of the SAAF algorithm but is a 
serial implementation. Parallel direct solvers have not yet been implemented into SCEPTRE. 
Table IV compares the results of the SAAF algorithm with the first-order algorithm for several 
preconditioning options. Despite being limited to a serial implementation, the KLU option works 
quite well, resulting in iteration counts and run times comparable to the first-order algorithm. 
 

Table IV. Effect of preconditioning of SAAF algorithm on 200-keV photon transport 
 

S8 P3, tol=10-8, quadratic-triangular (tri6) mesh 

num procs 

SAAF First order solver

no preconditioning block-diagonal preconditioning
iters time PCG KLU (serial) 

iters time iters time iters time 
1 20,268  23 1,821. 6 113. 6 56.9 
4 " 11,340. " 866. " 55.4 " 17.8 

 
 
3.3 Scattering Order, Extended-Transport Correction and Scattering Ratio 
 
The convergence rate of the first-order algorithm is strongly affected by the scattering ratio, i.e. 
the ratio of the scattering cross section with the total cross section. The convergence rate of the 
second-order algorithm, however, depends on the condition number of the system matrix and is 
insensitive to the scattering ratio. It is for this reason that the second-order algorithm performs 
well for electron transport problems, where the scattering ratio is large. 
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Table V shows the solver times for the first- and second-order algorithms for the model coaxial 
cable problem, for the quadratic-triangular (tri6) mesh, S16 angular quadrature, 32 processors, 
with convergence tolerance of 10-8. Since the electron scattering is highly forward peaked, the 
Legendre-polynomial approximation of the angular dependence of the electron cross sections 
converge slowly, so that using an extended transport correction, or δ-function correction, of the 
cross sections improves accuracy of the angular dependence of the cross sections [10]. In this 
approach, a δ-function scattering term with magnitude equal to the scattering cross section 
moment with order one greater than the Legendre order of the cross section expansion, is 
subtracted from the total cross section and the scattering moments. 
 

1, +−= Lst
ETC
t σσσ                                                              (1a) 

 
1,,, +−= Lsls

ETC
ls σσσ                                                            (1b) 

 
 
The extended transport correction reduces the effective scattering ratio, resulting in faster 
convergence of the first-order algorithm. The order of the Legendre expansion needed for a given 
application depends on accuracy considerations, but P7 is not an unreasonable scattering order to 
consider. If the Legendre order is too large, unreasonably large angular quadrature order would 
be needed. The timings for the transport without the extended transport correction gives upper 
limits on the run times for large Legendre expansion orders. 
 
 

Table V. Effect of Scattering Ratio on Solver Time for 200-keV Electron Transport 
 

32 processors, S16 angular quadrature, tol=10-8, quadratic-triangular (tri6) mesh

Pn order Scattering ratio Solver time (s) 
iron copper silver teflon SAAF first order solver 

With extended transport correction 
1 0.191 0.209 0.305 0.0662 96.5 25.5 
3 0.394 0.420 0.536 0.169 96.2 52.3 
7 0.643 0.666 0.753 0.372 97.1 193.4 

Without extended transport correction 
1 0.924 0.930 0.949 0.824 139. 398. 
3 " " " " 131. 530. 
7 " " " " 117. 973. 

 
 
3.2 Parallel Performance 
 
Parallel performance results are shown in Tables VIa and VIb for photon and electron transport, 
respectively. 8th order angular quadrature and 3rd order Legendre cross section expansion were 
used in the photon-transport calculations, with convergence tolerance of 10-8. Two measures of 
parallel performance are given in the tables: 1) a relative performance, which is parallel 
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efficiency relative to that of the previous number of processors, and 2) a cumulative 
performance, which is the parallel efficiency relative to the serial run. 12th order angular 
quadrature and 7th order Legendre cross section expansion were used in the photon-transport 
calculations, with convergence tolerance of 10-8. 
 

Table VIa. Parallel Performance for 200-keV Photon Transport 
 

S8 P3, tol=10-8, quadratic-triangular (tri6) mesh 

num procs 
SAAF (preconditioned) First order solver 

solver time (s) parallel performance solver time (s) parallel performance
rel cum rel cum 

1 1,846 - 1 56.9 - 1 
2 1,703. 0.54 0.54 31.5 0.90 0.90 
4 900. 0.95 0.51 17.8 0.88 0.80 
8 446. 1.0 0.52 9.50 0.94 0.75 

16 216. 1.0 0.53 5.15 0.92 0.69 
32 112. 0.96 0.52 2.81 0.92 0.63 

 
 

Table VIb. Parallel Performance for 200-keV Electron Transport 
 

S12 P7, tol=10-8, linear-triangular (tri3) mesh 

num procs 
SAAF First order solver 

solver time (s) parallel performance solver time (s) parallel performance
rel cum rel cum 

1 72.3 - 1 1,073 - 1 
2 40.4 0.89 0.89 660. 0.81 0.81 
4 20.7 0.98 0.87 377. 0.88 0.71 
8 10.7 0.97 0.84 197. 0.96 0.68 

16 5.65 0.95 0.80 108 0.91 0.62 
32 3.06 0.92 0.74 52.3 1.0 0.64 

 
 
3.4 Angular Quadrature Order 
 
The first-order solver time scales linearly with number of directions. The dependence of the 
second-order solver time on number of directions is more complicated. The full linear solver 
time scales as the number of directions squared, while the preconditioner system solver time 
scales linearly with the number of directions, so the effective dependence will be somewhere 
between linear and quadratic, in practice. p is the observed order of the dependence of the solver 
time on the number of Sn directions. 
 
As expected, the observed p for the first-order algorithm is nearly 1. For the unpreconditioned 
second-order algorithm, the observed p is nearly 2, while for the photon calculation include 
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block diagonal preconditioning with the sparse direct solve of the preconditioner system, p is 
nearly 1, and for the block-diagonal preconditioner with PCG solve, p is between 1 and 2. 
 
 

Table VIIa. 200-keV Photon Transport 
 

32 procs, P3 Scattering, tol=10-8, quadratic-triangular (tri6) mesh 

Sn order num dirs 
SAAF (block-diagonal preconditioner) First order solver PCG KLU (serial) 

iters time p iters time (s) p iters time (s) p 
4 12 23 20.8  6 13.2  6 0.92  
8 40 " 111. 1.39 " 45.1 1.02 " 3.1 1.01

12 84 " 261. 1.15 " 99.7 1.07 " 6.4 0.98
16 144 " 449. 1.01 " out of memory  " 10.8 0.97

 
 

Table VIIb. 200-keV Electron Transport 
 

32 procs, P3 Scattering, tol=10-8, linear-triangular (tri3) refined mesh 

Sn order num dirs 2nd order solver First order solver 
iters Solver time (s) p iters Solver time (s) p 

4 12 60 0.59  26 9.45  
8 40 55 3.97 1.58 26 34.4 1.07

12 84 55 16.0 1.88 26 79.0 1.12
16 144 55 48.6 2.06 26 138. 1.03

 
 

4. SUMMARY 
 
This article has presented preliminary comparisons of the performance of the first-order sweeps-
base algorithm and the second-order PCG algorithm in the SCEPTRE project. Generally, the 
first-order algorithm performs better for photon transport, due to the small scattering ratio of 
photon cross sections, and the second-order algorithm performs better for electron transport, due 
to the efficiency of the PCG algorithm. More work is needed to incorporate acceleration methods 
into the first-order algorithm, and to develop preconditioning methods that work well for second-
order algorithm for electron transport. Some conclusions that may be drawn from this study 
include: 1) the first-order algorithm is efficient for higher-order finite-element basis functions, 
while the second-order performs better for linear basis functions, 2) both algorithms scale well in 
parallel, 3) the first-order algorithm depends strongly on the order of Legendre expansion of  the 
cross sections for electron transport, while the second-order algorithm is insensitive to it, 4) the 
first-order algorithm scales linearly with the number of Sn directions, while the unpreconditioned 
second-order algorithm scales with the number of directions squared. 
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