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ABSTRACT

Although the transport of photons and electrons/positrons is described by the same Boltzmann
transport equation, the cross sections are very different, resulting in very different solution
convergence properties for the two particle types. The SCEPTRE project is a suite of deterministic
codes for solving the linear steady-state Boltzmann transport equation, containing two very
different solver approaches: a sweeps-based approach for solving the first-order transport equation
that is efficient for photon transport, and a conjugate-gradients algorithm for solving the second-
order transport equation that is efficient for electron/positron transport. The two solver algorithms
are coupled through a common set of tools for handling the spatial finite elements methods,
angular discrete-ordinates methods, scattering source terms, and input, pre- and post-processing
capabilities. We evaluate the two solver algorithms by comparing solver run times for photon- and
electron-transport problems, investigating properties such as parallel performance, finite-elements
basis function type, preconditioning, and scaling with angular quadrature order and Legendre
cross section expansion order.
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1. INTRODUCTION

SCEPTRE (Sandia's Computational Engine for Particle Transport for Radiation Effects) is a suite
of deterministic codes for solving the linear steady-state Boltzmann transport equation. It solves
the first- and/or second-order forms of the transport equation by means of the multigroup energy
discretization, the discrete ordinates angular discretization, and finite element spatial
discretization on unstructured meshes [1],[2]. Currently, SCEPTRE is primarily applied to
predict the effects of x-rays and secondary electrons on cables and other electronic components.
The high resolution needed for the accurate modeling of electron transport near conductor-
dielectric boundary layers requires the use of large meshes and massively parallel computations.

The first-order solver in SCEPTRE uses discontinuous finite element differencing. The solution
method employs conventional source iteration and a parallel wavefront (sweeping) algorithm on
distributed meshes. The sweeping algorithm mostly respects the streaming dependency graph;
some dependencies may be ignored during the sweep in order to avoid cyclic dependencies and
to improve performance. This approach typically preserves the iteration count needed for
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solution convergence of a serial computation; there is little or no degradation in iterative
effectiveness as the processor count increases. However, this approach also causes degradation in
the scaling of each iteration as the number of processors increases, since it becomes increasingly
difficult to keep each processor occupied with useful tasks. Although SCEPTRE can in principle
be used with any mesh partitioning, to date we have used only conventional partitioning
approaches, which further limits the parallel scaling of the first-order method.

The second-order solver in SCEPTRE uses continuous finite element differencing. This
discretization yields a symmetric positive definite (SPD) matrix that couples all angular and
spatial variables, permitting the use of a parallel conjugate gradient (PCG) solver and eliminating
the need for source iteration. This approach, unlike that for the first-order form, yields good
scalability of each iteration as the processor count increases. SCEPTRE includes three different
second-order solver algorithms: even-odd parity flux (EOPF) [3], self-adjoint angular flux
(SAAF) [4] and least-squares finite elements (LSFE) [5]. The three algorithms have different
strengths and weaknesses, e.g. the LSFE method can be used for problems containing internal
void regions without special treatment, and the problem size for EOPF method is half that of the
other methods due to symmetry. SCEPTRE includes both S, (discrete ordinates) and Py
(spherical harmonics) second-order solver algorithms, but only the S, algorithm will be
considered here since the P, algorithm has not yet been extensively tested.

The iterative solution process of the first-order form is fundamentally different than that of the
second-order form, resulting in a different set of strengths and weaknesses for each approach. In
SCEPTRE the user can choose on a group-by-group basis whether to use the first-order solver or
one of the second-order solvers. This is extremely beneficial for coupled photon-electron
transport problems, since the two solvers have very different convergence properties for different
particle types and different energy regimes. The solver that is best suited for solving each particle
type at each energy can be chosen to provide the most efficient global solve. This is especially
beneficial for multi-particle applications, where the cross sections may be radically different, e.g.
the transport mean free path of 200-keV photons is 4-5 orders of magnitude larger than that of
200-keV electrons, and the scattering ratio of 200-keV photons is about 0.1, while that of 200-
keV electrons is typically greater than 0.9.

In general, the first-order solver works better for streaming-dominated problems, such as photon
transport, and the second-order solvers work better for problems with higher scattering ratios,
such as electron transport. The convergence rate of the first-order solver is strongly influenced by
the scattering ratio, while the convergence rate of the second-order solvers depends upon the
condition number of the matrix resulting from the space-angle discretization of the problem. For
the second-order solvers, effective preconditioning can greatly reduce the condition number of
the matrix, resulting in drastic reduction in solver times, but further work remains to be done to
arrive at optimal preconditioning. The convergence properties of the first- and second-order
algorithms in many ways complement each other.

The first- and second-order transport algorithms share many components in common, including
finite-elements tools, cross section handling, angular quadrature, angular moments, distributed
source data, boundary conditions and transport field containers. The transport field containers
and distributed source data are based on discontinuous finite elements. Since the second-order
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solvers use continuous finite elements, a mapping is required from discontinuous data structures
to continuous for the second-order solvers, and then back again to map the results to the
discontinuous data structures for compatibility with the first-order solver. These mappings are
performed seamlessly and efficiently with Trilinos tools [6].

2. PROBLEM DESCRIPTION

The problem considered is a two-dimensional cross section of a coaxial cable, with dimensions
and materials as shown in Table I. The cable is small and relatively transparent to photons but
not to electrons, as can be seen by looking at the typical cross sections shown in Tables Ila and
IIb. The cross sections were computed by the CEPXS code [7], which is a physics code for
computing multigroup-Legendre cross sections for use in deterministic and multigroup Monte
Carlo radiation transport codes.

Table I. Coaxial cable specifications

Layer Material | Outer Radius (cm) | Thickness (cm)
iron 0.0478 0.0956
Center Conductor | copper 0.0594 0.0116
silver 0.0606 0.0012
Dielectric PTFE 0.15113 0.09053
Outer Conductor | copper 0.17907 0.02794
Table Ila. 200-kev photon cross sections
iron copper silver teflon
ot 1.17004x10° | 1.42261x10° | 3.16203x10° | 2.62917x10™"
G50 1.13938x10™" | 1.45778x10™" | 3.08826x10™" | 1.30645x10™
oy 1.08554x10™ | 1.38100x10™" | 2.83913x10™ | 1.28180x10
O 1.01109x10™ | 1.28283x107" | 2.62529x10™ | 1.23410x10
Cs3 9.31516x107 | 1.18137x10™" | 2.40030x10™" | 1.16613x10™
scattering ratio 0.0974 0.102 0.0977 0.0497

At present, the primary application of SCEPTRE is to predict the effect of x-rays and secondary
electrons on cables and other electronic components. The result of interest in these types of
calculations is the electron emission from the conductors and penetration into the dielectric
materials. Because of the large magnitude of the electron cross sections and the large magnitude
of the production of electrons in high atomic number materials, the gradient of the electron
fluence near material interfaces is very large, so that a fine spatial resolution (typically sub
micron) is needed near interfaces for acceptable accuracy. Ideally, it would be desirable to use a
different mesh for different particle types and even for different energy regimes, with the spatial
dependence of the mesh refinement driven by the spatial gradients in the solution. However, the
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mapping of source terms in parallel from coarse to fine meshes is a difficult bookkeeping
problem and is not currently implemented in SCEPTRE. This is not a serious problem for the
first-order sweeps-based algorithm, but for the second-order algorithms, transporting photons on
an over-refined mesh increases the condition number of the resulting matrix, resulting in slow
convergence. Effective preconditioning of the matrix can substantially mitigate this effect,
however.

Table I1b. 200-kev electron cross sections

iron copper silver teflon
ot 6.97961x10" | 8.34048x10" | 1.18091x10° | 1.04219x10*
G 6.44678x10* | 7.75741x10” | 1.12025x10° | 8.58885x10°
Gs1 6.39921x10" | 7.69881x10" | 1.10984x10° | 8.54100x10°
Ce 6.32079x10" | 7.60309x10” | 1.09359x10° | 8.45897x10°
G 6.21969x10" | 7.48034x10” | 1.07343x10° | 8.34969x10°
G 6.10023x10" | 7.33574x10" | 1.05020x10° | 8.21724x10°
O 5.96529x10" | 7.17264x10” | 1.02443x10° | 8.06450x10°
G 5.81699x10" | 6.99346x10” | 9.96485x10* | 7.89366x10°
Gs7 5.65695x10" | 6.80013x10” | 9.66656x10" | 7.70649x10°

scattering ratio 0.924 0.930 0.949 0.824

Typical finite-elements meshes of the cross section of a coaxial cable are shown in Figs. 1a and
1b. Fig. 1a shows a quadrilateral mesh of the coaxial cable, refined to 2 um near the conductor-
dielectric interafaces. The triangular mesh is shown in Fig. 1b, which was obtained by splitting
quadrilaterals in half. Creating a mesh in this way results in large aspect ratios. The aspect ratios
can be decreased, with the result of increasing the size of the mesh.

3. RESULTS

This section compares the performance of the second-order SAAF algorithm and the first-order
sweeps-based algorithm by comparing convergence iteration count and solver runtimes for a
variety of properties, including finite-elements basis function type and mesh refinement,
preconditioning, parallel performance, and scaling with angular quadrature order and Legendre
cross section expansion order. Test problems were run on Sandia's Thunderbird cluster, with
hardware environment of dual 3.6 GHz intel EM64T processors with 6 GB RAM. Thunderbird's
high-speed message passing fabric is Infiniband. The Infiniband fabric is a two level CLOS
topology with eight top-level core switches and 280 leaf switches (24 ports per leaf switch) that
the compute nodes connect to. Each leaf switch has 16 downlinks (16 compute nodes per leaf
switch) and 8 uplinks. Thus, the network is 2-to-1 oversubscribed in terms of raw number of
links. SCEPTRE was compiled with optimization with GCC version 3.4.6 and Open MPI version
1.2.7.
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Figure la. Quadrilateral mesh of coaxial cable, showing close up near inner conductor-
dielectric layer.

Figure 1b. Triangular mesh of coaxial cable, showing close-up near inner conductor-
dielectric layer.
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3.1 Finite-Element Basis Function Type and Mesh Refinement

Table I11a shows results for the transport of 200-keV photons on the coaxial cable meshes shown
in Figs. la and 1b. Linear (quad4 and tri3) and quadratic (quad8 and tri6) finite-element basis
functions were compared. 8" order angular quadrature and 3" order Legendre cross section
expansion were used in the calculations, with convergence tolerance of 10°®, which were run on
four processors. The first- and second-order algorithms use different expressions of convergence
tolerance: the SAAF solver uses the 2-norm of the point wise relative residual from the PCG
iterations as the tolerance, and the first-order solver uses a norm of the solution difference
between successive iterates. More work is needed to evaluate the effect of the convergence
tolerance on the results of interest in the calculations. The SAAF calculations used a block-
diagonal preconditioner, which is described in Sec. 3.2.

A number of interesting observations can be made from the results. The first-order algorithm
scales roughly with the number of elements in the mesh, while the SAAF algorithm scales more
directly with the number of nodes. The SAAF runtimes are much larger for quadratic basis
functions (quad8 and tri6) as compared with linear basis functions, partly as a result of the
increase in the number of nodes and partly as a result of increased cost of the preconditioning.

Table Il11a. Comparison of transport algorithms for various element types and mesh
refinement for 200-keV photon transport

SgPs, tol=10°, 4 processors SAAF (preconditioned) First Order
Elem Type | Num Elems | Num Nodes | Num Iters | Solver Time (s) | Num Iters | Solver Time (s)

quad4 4,845 4,884 6 8.61 6 7.45

quad8 4,845 14,612 " 47.5 " 12.2
tri3 9,690 4,884 " 8.37 " 14.1
trié 9,690 19,457 " 55.4 " 17.8

Refined Meshes:

quad4 19,380 19,457 6 67.1 6 35.0

tri3 38,760 19,457 " 53.5 ! 59.0

The results for 200-keV electron transport are shown in Table I11b. Linear (quad4 and tri3) and
quadratic (quad8 and tri6) finite-element basis functions were compared. 12" order angular
quadrature and 7" order Legendre cross section expansion were used in the calculations, with
convergence tolerance of 10, which were run on 32 processors. A higher-order Legendre cross
section expansion is used for the electron transport calculations, due to the higher degree of
anisotropy in the electron scattering physics. No preconditioning was used for the SAAF results,
as an effective preconditioner for the electron transport has not yet been found, so that
preconditioning has little effect or even a negative effect on convergence of electron groups.

The first-order algorithm iteration counts are much higher for electron transport, as compared
with those for photon transport, as expected due to the higher scattering ratio of electron cross
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sections. The first-order solver times are quite a bit higher for electron transport than for photon
transport, even with using 32 processors instead of 4.

Like the photon-transport results, the first-order algorithm scales roughly with the number of
elements in the mesh, while the SAAF algorithm scales more directly with the number of nodes.
The SAAF runtimes are much larger for quadratic basis functions (quad8 and tri6) as compared
with linear basis functions, partly as a result of the increase in the number of nodes and partly as
a result of increased cost of the preconditioning.

Unlike the photon results, the SAAF algorithm performs better with a refined mesh with linear
basis functions, rather than a coarser mesh with quadratic basis function. Further work remains to
be done to determine computational efficiency as a function of accuracy of refining a mesh vs.
using a higher basis function order.

Table I11b. Comparison of transport algorithms for various element types and mesh
refinement for 200-keV electron transport

S1,P7, tol=10®, 32 processors SAAF (unpreconditioned) First Order
Elem Type | Num Elems | Num Nodes | Num Iters | Solver Time (s) | Num lters | Solver Time (s)
quad4 4,845 4,884 29 3.5 55 36.9
quad8 4,845 14,612 133 49.6 " 71.1
tri3 9,690 4,884 29 3.1 " 53.2
tri6 9,690 19,457 78 32.9 " 98.5
Refined Meshes:
quad4 19,380 19,457 56 19.1 55 155.
tri3 38,760 19,457 57 16.5 " 234.

3.2 Preconditioning the Second-Order Transport Algorithm

As mentioned previously, modeling photon transport on an over-refined mesh, such as a mesh
refined to accurately model electron transport, results in an ill-conditioned matrix and slow
convergence for the second-order transport algorithms. Effective preconditioning can
dramatically improve the convergence. We have found that for the photon transport, a block-
diagonal preconditioner is very effective [8]. Rather than solving the unpreconditioned linear
system

Ax =D, (1a)

a different linear system, M™A, with a lower condition number than the original linear system, A,
is solved instead

MTAX =M . (1b)
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An effective preconditioner, M, should be relatively easy to invert and a good approximation to
the original linear system.

SCEPTRE contains several preconditioning options, including multilevel (ML) and incomplete
factorization (IF), which need further investigation. We have found that an effective
preconditioner for streaming-dominated problems, such as photon transport in small geometries,
is the obtained by using the pure-absorption transport equation, which is nearly equivalent to
using the diagonals of the blocks in the discretized transport linear system, A, as a preconditioner.
This effectively replaces the full system solve, which scales as the number of directions squared,
with a set of preconditioner linear systems, which scale linearly with the number of directions.

Implementing the block-diagonal preconditioner requires a procedure for inverting the
preconditioning operator, M. There are several ways of solving the preconditioner (uncollided-
flux) system, and the results for two different methods are shown here. One method is to use a
PCG algorithm for each discrete direction. This method is fairly easy to implement, scales well
with number of processors, but has the drawback that if A is ill-conditioned, M will also likely be
ill-conditioned, resulting in slow convergence.

Another method is to use a direct solver to invert the preconditioner linear system for each
discrete direction, and then to keep it for use in subsequent iterations. The KLU sparse LU
factorization algorithm [10] is implemented in the Trilinos package and has been implemented in
SCEPTRE. This approach results in very efficient convergence of the SAAF algorithm but is a
serial implementation. Parallel direct solvers have not yet been implemented into SCEPTRE.
Table IV compares the results of the SAAF algorithm with the first-order algorithm for several
preconditioning options. Despite being limited to a serial implementation, the KLU option works
quite well, resulting in iteration counts and run times comparable to the first-order algorithm.

Table 1V. Effect of preconditioning of SAAF algorithm on 200-keV photon transport

Sg P3, t0l=10"°, quadratic-triangular (tri6) mesh
SAAF First order solver
num procs | o preconditioning block-diagonal preconditioning
PCG KLU (serial) | iters time
iters time iters time iters | time
1 20,268 23 1,821. 6 113. 6 56.9
4 " 11,340. " 866. " 55.4 " 17.8

3.3 Scattering Order, Extended-Transport Correction and Scattering Ratio

The convergence rate of the first-order algorithm is strongly affected by the scattering ratio, i.e.
the ratio of the scattering cross section with the total cross section. The convergence rate of the
second-order algorithm, however, depends on the condition number of the system matrix and is
insensitive to the scattering ratio. It is for this reason that the second-order algorithm performs
well for electron transport problems, where the scattering ratio is large.
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Table V shows the solver times for the first- and second-order algorithms for the model coaxial
cable problem, for the quadratic-triangular (tri6) mesh, Sis angular quadrature, 32 processors,
with convergence tolerance of 10°®. Since the electron scattering is highly forward peaked, the
Legendre-polynomial approximation of the angular dependence of the electron cross sections
converge slowly, so that using an extended transport correction, or 5-function correction, of the
cross sections improves accuracy of the angular dependence of the cross sections [10]. In this
approach, a d-function scattering term with magnitude equal to the scattering cross section
moment with order one greater than the Legendre order of the cross section expansion, is
subtracted from the total cross section and the scattering moments.

O'tETC =0 =054 (1a)

ETC
Os1 =051 =051 (1b)

The extended transport correction reduces the effective scattering ratio, resulting in faster
convergence of the first-order algorithm. The order of the Legendre expansion needed for a given
application depends on accuracy considerations, but P7 is not an unreasonable scattering order to
consider. If the Legendre order is too large, unreasonably large angular quadrature order would
be needed. The timings for the transport without the extended transport correction gives upper
limits on the run times for large Legendre expansion orders.

Table V. Effect of Scattering Ratio on Solver Time for 200-keV Electron Transport

32 processors, Sis angular quadrature, tol=10°, quadratic-triangular (tri6) mesh
P, order _ Scattering _ratio Solve_r time (s)
iron | copper | silver | teflon | SAAF | firstorder solver
With extended transport correction
1 0.191 | 0.209 | 0.305 | 0.0662 96.5 25.5
3 0.394 | 0.420 | 0.536 | 0.169 96.2 52.3
7 0.643 | 0.666 | 0.753 | 0.372 97.1 193.4
Without extended transport correction
1 0924 | 0.930 | 0.949 | 0.824 139. 398.
3 " " " " 131. 530.
7 " " " " 117. 973.

3.2 Parallel Performance

Parallel performance results are shown in Tables Vla and VIb for photon and electron transport,
respectively. 8" order angular quadrature and 3" order Legendre cross section expansion were
used in the photon-transport calculations, with convergence tolerance of 10, Two measures of
parallel performance are given in the tables: 1) a relative performance, which is parallel
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efficiency relative to that of the previous number of processors, and 2) a cumulative
performance, which is the parallel efficiency relative to the serial run. 12" order angular
quadrature and 7" order Legendre cross section expansion were used in the photon-transport
calculations, with convergence tolerance of 107,

Table Vla. Parallel Performance for 200-keV Photon Transport

Sg P3, tol=10"°, quadratic-triangular (tri6) mesh
SAAF (preconditioned) First order solver
num procs solver time (s) parallel performance solver time (s) parallel performance
rel cum rel cum
1 1,846 - 1 56.9 - 1
2 1,703. 0.54 0.54 315 0.90 0.90
4 900. 0.95 0.51 17.8 0.88 0.80
8 446. 1.0 0.52 9.50 0.94 0.75
16 216. 1.0 0.53 5.15 0.92 0.69
32 112. 0.96 0.52 2.81 0.92 0.63

Table VIb. Parallel Performance for 200-keV Electron Transport

S12 P7, tol=107, linear-triangular (tri3) mesh
SAAF First order solver
num procs solver time (s) parallel performance solver time (s) parallel performance

rel cum rel cum
1 72.3 - 1 1,073 - 1
2 40.4 0.89 0.89 660. 0.81 0.81
4 20.7 0.98 0.87 377. 0.88 0.71
8 10.7 0.97 0.84 197. 0.96 0.68
16 5.65 0.95 0.80 108 0.91 0.62
32 3.06 0.92 0.74 52.3 1.0 0.64

3.4 Angular Quadrature Order

The first-order solver time scales linearly with number of directions. The dependence of the
second-order solver time on number of directions is more complicated. The full linear solver
time scales as the number of directions squared, while the preconditioner system solver time
scales linearly with the number of directions, so the effective dependence will be somewhere
between linear and quadratic, in practice. p is the observed order of the dependence of the solver
time on the number of S, directions.

As expected, the observed p for the first-order algorithm is nearly 1. For the unpreconditioned
second-order algorithm, the observed p is nearly 2, while for the photon calculation include
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block diagonal preconditioning with the sparse direct solve of the preconditioner system, p is
nearly 1, and for the block-diagonal preconditioner with PCG solve, p is between 1 and 2.

Table Vlla. 200-keV Photon Transport

32 procs, P; Scattering, tol=10®, quadratic-triangular (tri6) mesh
SAAF (block-diagonal preconditioner) First order solver
Sn order | num dirs PCG KLU (serial)
iters | time | p | iters| time (S) p |iters|time(s)| p

4 12 23 | 20.8 6 13.2 6 0.92
8 40 " 111. | 1.39| " 45.1 102 " 3.1 1.01
12 84 " 1261.]115) " 99.7 107 " 6.4 |0.98
16 144 " 1449.]1.01|] " | outof memory " 10.8 |0.97

Table VIIb. 200-keV Electron Transport

32 procs, P; Scattering, tol=107, linear-triangular (tri3) refined mesh
s, order | num dirs |~ 2nd orde.r solver : First orde.r solver
iters | Solvertime (s)| p | iters | Solvertime(s) | p

4 12 60 0.59 26 9.45

8 40 55 3.97 1.58 | 26 34.4 1.07
12 84 55 16.0 1.88 | 26 79.0 1.12
16 144 55 48.6 2.06 | 26 138. 1.03

4. SUMMARY

This article has presented preliminary comparisons of the performance of the first-order sweeps-
base algorithm and the second-order PCG algorithm in the SCEPTRE project. Generally, the
first-order algorithm performs better for photon transport, due to the small scattering ratio of
photon cross sections, and the second-order algorithm performs better for electron transport, due
to the efficiency of the PCG algorithm. More work is needed to incorporate acceleration methods
into the first-order algorithm, and to develop preconditioning methods that work well for second-
order algorithm for electron transport. Some conclusions that may be drawn from this study
include: 1) the first-order algorithm is efficient for higher-order finite-element basis functions,
while the second-order performs better for linear basis functions, 2) both algorithms scale well in
parallel, 3) the first-order algorithm depends strongly on the order of Legendre expansion of the
cross sections for electron transport, while the second-order algorithm is insensitive to it, 4) the
first-order algorithm scales linearly with the number of S;, directions, while the unpreconditioned
second-order algorithm scales with the number of directions squared.
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