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Yucca Mountain Repository License Application

DOE/RW-0573 Rev 0O R i
June 2008

» General Information (Gl)
General Description

Proposed Schedules for Construction, Receipt and
Emplacement of Waste

Physical Protection Plan
Material Control and Accounting Program o
Site Characterization st

Yucca Mountain Repository License Application

GENERAL INFORMATION

° Safety AnaIyS|S Report (SAR) Yucca Mountain Repository License Application
Repository Safety Before Permanent Closure SAFETY ANALYSIS REPORT
Repository Safety After Permanent Closure

Research and Development Program to Resolve
Safety Questions

Performance Confirmation Program
Administrative and Programmatic Requirements

Chapter 2:
Repoaltory Safety
After Permanen t Closure
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The Yucca Mountain License Application

* Available from the NRC (http://www.nrc.gov/waste/hlw-disposal/yucca-lic-
app.html#appdocuments)

e 17 volumes
Total number of pages — 8,646 (3M+ words)
Total number of figures — 2,830
Total number of tables — 930
Number of inches thick — 78
Weight of each complete copy — 110 Ibs.
 The LA is accompanied by:
a Final Supplemental EIS (http://ocrwm.doe.gov/ym_repository/seis/index.shtml)
198 key supporting documents (~38k additional pages)

Chapter T
344 pages 4,268 1010l pagen wagen 54 pages
- ] F . un 3 fign
SAFETY)| SAFETY SAFETY| SAFETY)| SAFETY)| SAFETY| SAFETY SAFETY SAFETY|| SAFETY SAFETY SAFETY SAFETY SAFETY) SAFETY)|
,,,,,, ANALYsis|| fANALYsIS| || AnaLYsis| | |AnALYSIS| | JANALYSIS| |ANALYSIS| | |ANALYSIS| | | ANALYSIS ANALYSIS| | JAnALYsis| | [ANALYSIS| | JANALYSIS|| JANALYSIS|| JANALYSIS ANALYSIS
REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT REPORT
Surtace Faciities
s L 40 rwberance
85 gures.
at entria st eirs
873 retermicn
camane
1 | .
e The LA:
i S || | S I el | EESIRL ) | GRS | P 1";’1"':"‘3:; e | S A || SR Tl
Volume 1 Volume 2 Volume 3 Volume 4 Volume 5 | | Volume & Volume 7 Volume 8 Volume 8 "IZTtlgles Volume 10 || Volume 11 | | Volume 12 | | Volume 13
| , | A W A i .l ) ) F 3071426 w | ) W i W
90 lbs.

General Training On Methodologies For Geological Disposal in North America
IAEA Network of Centers of Excellence




TSPA-LA Documentation

SNL 2008, Total System Performance Assessment Model/Analysis for
the License Application, MDL-WI1S-PA-000005 REV 00 AD 01

Four volumes
4272 pages

2008,
= “Total ¢

11,843 pages of supporting
technical documents that
provide direct input

Tatal System Performance Assessment
MideliAnalysis for the License Application

Addendum 01
MDL-WIS-AA-000005 REV 00 AD 01
Total Pages Number of Number of
2 Tables Figures
Volume [ 1111 183 255
Volume II 600 41 221
Volume III 1767 130 519
Addendum 794 34 321
TOTALS 4272 388 1316
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Purpose of TSPA

Performance Assessments provide answers to

four questions:

1. What events and processes can take place at the facility?

2. How likely are these events or processes?

3. What are the consequences of these events or processes?

4. How reliable are the answers to the first 3 questions?
TSPA evaluates the uncertainty in the evolution of the
geologic setting and engineered barrier system

Predictive models are supported by field and lab tests, in-
situ monitoring and natural analogs

Uncertainties in these models and associated parameters
exist

TSPA uses a range of defensible and reasonable
parameter distributions and propagates the uncertainty
to evaluate the effect and consequence

General Training On Methodologies For Geological Disposal in North America £ ;

IAEA Network of Centers of Excellence




Representative Uses of TSPA

« Evaluate regulatory requirements

« Quantify performance margin and barrier capability
e Determine most sensitive models and parameters
* Prioritize information and testing needs

« Evaluate design options/alternatives

e Evaluate consequences of features, events and
processes

« Determine significance of data, parameter and model
uncertainty

 Prioritize repository risks
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Regulatory Framework for the TSPA-LA

» United States Environmental Protection Agency (EPA) sets Public
Health and Environmental Protection Standards for Yucca Mountain,
40 CFR Part 197

« United States Nuclear Regulatory Commission (NRC) defines
licensing criteria for Disposal of High-Level Radioactive Wastes in a
Proposed Geologic Repository at Yucca Mountain, Nevada, 10 CFR
Part 63 consistent with the EPA Standard

 The TSPA-LA addresses the criteria established by the NRC in 10
CFR Part 63

* In the absence of final dose standards that apply beyond 10,000
years, the TSPA-LA addressed the criteria proposed by the NRC in
Implementation of a Dose Standard After 10,000 Years, proposed
rule (Federal Register v. 70, p. 53313) that implements the standards
proposed by the EPA in 2005

EPA final standard approved 30 September 2008
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Definition of Performance Assessment

« Defined for Yucca Mountain by the U.S. Environmental Protection
Agency at 40 CFR 197.12 (amended 30 September 2008)

Performance assessment means an analysis that

(1) ldentifies the features, processes, (except human intrusion),
and sequences of events and processes (except human
intrusion) that might affect the Yucca Mountain disposal system
and their probabilities of occurring;

(2) Examines the effects of those features, events, processes, and
sequences of events and processes upon the performance of
the Yucca Mountain disposal system; and

(3) Estimates the annual committed effected dose equivalent
incurred by the reasonably maximally exposed individual,
including the associated uncertainties, as a result of releases
caused by all significant features, events, processes, and
sequences of events and processes, weighted by their
probability of occurrence.
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Regulatory Framework (cont.)

Relevant to TSPA, EPA and NRC regulations define

The scope of the performance assessment
Criteria for the screening of FEPs

Characteristics of the “Reasonably Maximally Exposed
Individual” (RMEI)

Probabilistic performance measures
Implemented through a Monte Carlo uncertainty analysis

A requirement for the identification and description of multiple
barriers that contribute to waste isolation

Compliance limits for estimated mean annual dose and
groundwater concentrations for

Individual protection
Individual protection following human intrusion
Groundwater protection
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Steps in lterative Performance Assessment

e Screen Features, Events, and Processes (FEPs) and
develop scenario classes

* Develop models and abstractions, along with their scientific
basis, for logical groupings of FEPs within scenario classes

« Evaluate uncertainty in model inputs

« Construct integrated TSPA model using all retained FEPs
and perform calculations for the scenario classes and
“modeling cases” within scenario classes

« Evaluate total system performance, incorporating uncertainty
through Monte Carlo simulation

General Training On Methodologies For Geological Disposal in North America # 2
IAEA Network of Centers of Excellence




Evaluating FEPs and
Defining Scenarios

* Probability and
significance criteria for
FEPs provided in 10 CFR
63.114

» 374 FEPs evaluated
222 excluded from TSPA
152 included

 Four scenario classes
defined for analysis
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FEP Analysis %

Scenario
Development

Implementation

Identify and Classify FEPs Potentially
Important to Postclosure Performance,
Including Input from International Radioactive
Waste Disposal Programs

Y

Consequence, and NRC Regulations to

%

Determine Inclusion and Exclusion

¥

Scenario Classes from Retained FEPs

'

Construct Calculation of Total
Mean Annual Dose

{ Screen List of FEPs Using Probability,

i

Specify the Implementation of Nominal
and Disruptive Events Scenario Classes
in TSPA

Construct Nominal and Disruptive Events ]

00817DC_0240.ai




FEP Screening Criteria

« 10 CFR 197.36(a)(1) (amended 30 September 2008)

The DOE’s performance assessments conducted to show
compliance with §§197.20(a)(1), 197.25(b)(1), and 197.30 shall
not include consideration of very unlikely features, events, or
processes, i.e., those that are estimated to have less than one
chance in 100,000,000 per year of occurring.

In addition, unless otherwise specified in these standards or NRC
regulations, DOE’s performance assessments need not evaluate
the impacts resulting from features, events, and processes or
sequences of events and processes with a higher chance of
occurring if the results of the performance assessment would not
be changed significantly in the initial 10,000-year period after
disposal.
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TSPA-LA Scenarios

Four scenario classes divided into seven modeling cases

Nominal Scenario Class lgneous Scenario Class
* Nominal Modeling Case * Intrusion Modeling Case
(included with Seismic Ground * Eruption Modeling Case

Motion for 1,000,000-yr analyses)

Early Failure Scenario Class

» Waste Package Modeling Case
* Drip Shield Modeling Case

Seismic Scenario Class
* Ground Motion Modeling Case
 Fault Displacement Modeling Case
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Steps in lterative Performance Assessment

« Screen Features, Events, and Processes (FEPs) and
develop scenario classes

e Develop models and abstractions, along with their scientific
basis, for logical groupings of FEPs within scenario classes

« Evaluate uncertainty in model inputs

« Construct integrated TSPA model using all retained FEPs
and perform calculations for the scenario classes and
“modeling cases” within scenario classes

« Evaluate total system performance, incorporating uncertainty
through Monte Carlo simulation
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Groundwater Flow at Yucca Mountain
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The Emplacement Environment at Yucca Mountain
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Estimating Dose to Hypothetical Future Humans
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Models and Submodels Supporting the TSPA

TSPA-LA Model
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Steps in lterative Performance Assessment

« Screen Features, Events, and Processes (FEPs) and
develop scenario classes

* Develop models and abstractions, along with their scientific
basis, for logical groupings of FEPs within scenario classes

« Evaluate uncertainty in model inputs

« Construct integrated TSPA model using all retained FEPs
and perform calculations for the scenario classes and
“modeling cases” within scenario classes

« Evaluate total system performance, incorporating uncertainty
through Monte Carlo simulation
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Sources of Uncertainty

Incomplete data
for example, limited hydrologic data from test wells

Spatial variability and scaling issues

data may be available from small volumes (for example,
porosity measurements from core samples), but may be
used in the models to represent large volumes

Measurement error
usually only a very minor source of uncertainty

Lack of knowledge about the future state of the system
probabilities of disruptive events

Alternative conceptual models
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Uncertainty in YM TSPA

Aleatory Uncertainty

— Inherent randomness in events that could occur in the future
— Alternative descriptors: irreducible, stochastic, intrinsic, type A
— Examples:

» Time and size of an igneous event

> Time and size of a seismic event

Epistemic uncertainty

— Lack of knowledge about appropriate value to use for a quantity assumed to have a
fixed value

— Alternative descriptors: reducible, subjective, state of knowledge, type B
— Examples:
» Spatially averaged permeabilities, porosities, sorption coefficients, ...

» Rates defining Poisson processes
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Uncertainty in YM TSPA (cont.)

Epistemic uncertainty incorporated through Latin hypercube sampling of

cumulative distribution functions and Monte Carlo simulation with multiple

realizations

(approx. 400 uncertain epistemic parameters in TSPA-LA)
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Terminology

» “Dose” —annual dose to the Reasonably Maximally Dy (7
Exposed Individual (RMEI) as a function of time MC

— Depends on both aleatory and epistemic uncertainty

aﬁe)

—  Summed over all radionuclides

- “Expected Dose” D, (zle)
— Expectation is taken over aleatory quantities
— Conditional on epistemic uncertainty
— Calculated for each modeling case
. “Mean Dose”
— Expectation is taken over both epistemic and aleatory
— Calculated for each modeling case
« “Total Expected Dose” D(rle)
— Summed over modeling cases by epistemic vector
» “Total Mean Dose” B
— Average of Total Expected Dose E(T) — .-
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Example: Calculation of Expected Seismic Dose
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Example: Eruptive Dose
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Steps in lterative Performance Assessment

« Screen Features, Events, and Processes (FEPs) and
develop scenario classes

* Develop models and abstractions, along with their scientific
basis, for logical groupings of FEPs within scenario classes

« Evaluate uncertainty in model inputs

 Construct integrated TSPA model using all retained FEPs
and perform calculations for the scenario classes and
“modeling cases” within scenario classes

« Evaluate total system performance, incorporating uncertainty
through Monte Carlo simulation
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TSPA Architecture
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TSPA-LA Scenarios

Four scenario classes divided into seven modeling cases

Nominal Scenario Class lgneous Scenario Class
* Nominal Modeling Case * Intrusion Modeling Case
(included with Seismic Ground * Eruption Modeling Case

Motion for 1,000,000-yr analyses)

Early Failure Scenario Class

» Waste Package Modeling Case
* Drip Shield Modeling Case

Seismic Scenario Class
* Ground Motion Modeling Case
 Fault Displacement Modeling Case
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TSPA Scenarios and Modeling Cases

 Nominal Scenario Class (1 modeling case)

No releases until waste package (WP) corrosion creates pathway
WP failures rare before 100,000 years

WP failures due to stress corrosion cracking (SCC) of closure welds
occur as general corrosion removes annealed layer

SCC common by 500,000 years
Releases through SCC occur by diffusion only

Drip shield (DS) failures due to general corrosion occur between
270,000 and 340,000 years

WP “patch” failures due to general corrosion rarely occur before
500,000 years

Mean of 9% of WPs show patch failures at 1 million years
Patch failures allow advective releases
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Scenarios and Modeling Cases (Cont)

» Early Failure Scenario Class (2 modeling cases)
Early Failure WP Modeling Case

Failures occur at time of repository closure
Median probability of early failure = 4.4 x 10> per WP
Probability of 1 or more early failure waste packages = 0.44

Expected number of early failure waste packages (given early
failures occur) = 2.5

Diffusion until DS failure by corrosion

Early Failure DS Modeling Case
Failures occur at time of repository closure
Median probability of early failure = 4.3 x 107 per DS
Probability of 1 or more early failure drip shields = 0.017

Expected number of early failure drip shields (given early
failures occur) = 1.1

Simplifying assumption: WP under early failed DS is also failed
In seeping conditions

Transport by both advection and diffusion

General Training On Methodologies For Geological Disposal in North America £ ;
IAEA Network of Centers of Excellence




Scenarios and Modeling Cases (Cont)

 |gneous Scenario Class (2 modeling cases)

Intrusion Modeling Case
Mean frequency 1.7 x 10-8/yr (uncertain event frequency)

All waste packages and drip shields sufficiently damaged to
provide no barrier to flow and transport

Seepage equal to percolation flux (no capillary barrier)

Eruption Modeling Case

Probability of waste intersection by eruption conditional on
igneous event is 0.08

Mean number of waste packages intersected = 3.8
Mean fraction of waste package content ejected = 0.3
Ash redistribution by fluvial processes after deposition
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Scenarios and Modeling Cases (cont.)

e Seismic Scenario Class (2 Modeling Cases)
Seismic Ground Motion (GM) Damage Modeling Case

Ground motions result in SCC that allow diffusive releases
Frequency of events that damage codisposal (CDSP)
packages: ~ 10>/ yr
Frequency of events that damage transportation, aging, and
disposal (TAD) packages for commercial spent nuclear fuel
(CSNF): ~10%/yr
Cracked area accumulates with additional seismic events
Repeated damage may cause WP rupture (<108 / yr)
Drip shield thins by general corrosion and fails due to dynamic
loading of accumulated rockfall
Nominal corrosion processes included for million-year
analyses
Corrosion affects EBS response to ground motion
Damage analyses consider thinning of Alloy 22 and titanium
SCC allows corrosion of internal steel components
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Scenarios and Modeling Cases (cont.)

e Seismic Scenario Class (2 Modeling Cases)
(cont.)

Seismic Fault Displacement Modeling Case
Annual frequency approximately 2 x 10-7 / yr

Fault displacements rupture waste packages and drip shields,
allowing advection and diffusion

Size of rupture uncertain, 0 to cross-sectional area of WP
mean of ~ 47 waste packages and drip shields damaged
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Steps in lterative Performance Assessment

» Screen Features, Events, and Processes (FEPs) and
develop scenario classes

* Develop models and abstractions, along with their scientific
basis, for logical groupings of FEPs within scenario classes

« Evaluate uncertainty in model inputs

 Construct integrated TSPA model using all retained FEPs
and perform calculations for the scenario classes and
“modeling cases” within scenario classes

« Evaluate total system performance, incorporating uncertainty
through Monte Carlo simulation
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Total System Performance Assessment Results
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Modeling Cases Contributing to Total Mean Annual Dose
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Construction of Total Dose
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Composition of Seismic Ground Motion Dose

Expected Annual Dose (mrem)
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TSPA-LA Radionuclides Important to Mean Dose
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Uncertainty in Total Expected Dose
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Stability of Total Dose (million-year example)

Expected Annual Dose (mrem)
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Total System Performance Assessment Results

Individual Protection Standard: 10,000 yr

LA_v5.005_ED_003000_001.gsm; LA_v5.005_EW _006000_001.gsm;

LA_v5.005_1G_003000_001.gsm; LA_v5.005_SF_010800_001.gsm;

LA_v5.005_SM_009000_001.gsm; vE1.004_GS_9.60.100_10Kyr_ET[event time].gsm;

LA_v5.005_10kyr_Total_Dose_Calcs_Rev01.gsm; LA_v5.005_10Kyr_Total_Dose_Rev01.JNB
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Total System Performance Assessment Results

Expected Annual Dose (mrem)

Individual Protection Standard: 1,000,000 yr

LA_v5.005_ED_003000_000.gsm; LA_v5.005_EW_006000_000.gsm;
LA_v5.005_IG_003000_000.gsm; LA_v5.005_SF_010800_000.gsm,;
LA_v5.005_SM_009000_003.gsm; vE1.004_GS_9.60.100_1Myr_ET[event time].gsm;
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Conclusions

 The TSPA-LA supports the DOE'’s License
Application to the NRC for authorization to
construct a repository at Yucca Mountain

 The TSPA provides probabilistic estimates of
long- term performance, consistent with
supporting technical information and taking into
account uncertainties in the future occurrence of
disruptive events

 All performance measures are well below
regulatory limits
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Backup
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Multiple Barriers Contribute to Waste Isolation

* Upper Natural Barrier System
Topography and surficial soils
Unsaturated zone above the repository
* Engineered Barrier System
Drift environment
Drip Shield
Waste Package
Waste forms and associated shipping containers
Emplacement pallet
Drift invert
* Lower Natural Barrier System
Unsaturated zone below the repository
Saturated zone between the repository and the accessible environment
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Example Barrier Capability Analysis

LA_v5.005_SM_009000_003.gsm:

(a ) LA _v5.005_RN_Activity Released_Calcs_Seis_1Myr_Rlz_Rev01.gsm;
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MDL-WIS-PA-000005 REV 00 AD 01, Figure 8.3-26[a]a
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lterative TSPAs for Yucca Mountain

Advances have occurred over the last ten years in scientific understanding,
design concepts, modeling capability, and regulatory requirements, and
results from prior iterations of Yucca Mountain TSPA are not directly
comparable to the TSPA-LA

Understanding changes in model results helps build confidence in the
TSPA-LA

* Multiple iterations of TSPA prior to 1998
« 1998: TSPA to support the Viability Assessment (TSPA-VA)
« 2000: TSPA to support the Site Recommendation (TSPA-SR)

« 2001: TSPA to support the Final Environmental Impact Statement
(TSPA-FEIS)

« 2008: TSPA-LA
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Yucca Mountain Mean Annual Dose Estimates 1998-2008

Peak_Dose Dose History 2007 Rev01.JNB
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Source: Figure 1 of Swift et al., 2008, “Broader Perspectives on the Yucca Mountain
Performance Assessment,” 2008 IHLRWMC, Las Vegas, NV, Sept. 7-11, 2008
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Major Changes in TSPA from VA to LA

« TSPA-VA

Selected relevant design aspects
28-meter drift spacing
Alloy-22 waste package inner vessel
No drip shield
No disruptive events or early failures included in total dose

Cladding failure occurred by rockfall and corrosion, cladding
remained intact in most waste packages throughout simulation

Dose was release-rate limited rather than solubility-limited

Long-term dose dominated by Np-237, Pu-242 from general
corrosion failures of commercial spent nuclear fuel packages
(CSNF) in dripping regions (Tc-99 important at earlier times)
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Major Changes in TSPA from VA to LA (cont.)

« TSPA-SR
Design changes
81-m drift spacing
Alloy-22 waste package outer barrier
Addition of drip shield
Cladding failure occurs due to ground motion as well as rockfall
Igneous disruption evaluated for 100,000 yr, not shown for 1,000,000 yr
Solubility-limited dose, increase of ~10x over TSPA-VA

Long-term dose dominated by Np-237 from general corrosion failures of CSNF
packages in dripping regions

 TSPA-SR with secondary mineral phases and long-term climate change
Including secondary phases in Np solubility model lowered dose ~10x
Including full-glacial climates at fixed times caused cyclic peaks

« TSPA-FEIS
Modified general corrosion model resulted in later waste package failures
Early waste package failures caused releases prior to general corrosion failure
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Major Changes in TSPA from VA to LA (cont.)

« TSPA-LA
Total dose includes igneous and seismic disruption

Consequences of disruptive events are weighted by their probability of
occurrence

Design includes Transport, Aging and Disposal (TAD) canisters
Average long-term climate specified by proposed EPA, NRC regulations
Dose ~10x lower than previous analyses

General corrosion failure is rare before 500,000 yr (approx. 9% of waste
packages show general corrosion failure at 1 million yr)

Diffusive releases from stress-corrosion cracking following ground motion
are a dominant contributor

Modifications to dose conversion factors, source term, transport in
engineered barrier system (e.g., sorption on corrosion products), no
credit for cladding

Tc-99, 1-129 are major contributors at later times than in prior TSPAs because of
relative importance of diffusion

Pu-242 from advective transport following waste package failure by general
corrosion is the largest single contributor to the maximum mean annual dose,
occurring at 1 million years
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TSPA-LA Total Expected Dose

LA w5005 ED 003000 000.gsm; LA w5005 BEVY 006000 _000.gsm;

LA w5 005 G 003000 000.gsm; LA w5 005 SF 010800 000.gsm;

LA w5005 Sk 009000 003 gsm; vE1.004_GS 9680100 _1Myr_ET[eventtime] gsm;

LA w5 005 Wy Total Dose Calcs Rev00.gsm; LA w5005 Ihyr Total Dose Rev00 JNB
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2005 EPRI Results for Yucca Mountain

Mizan Do
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Source: Figure 5-10 of Apted and Ross 2005, “Program
on Technology Innovation: Evaluation of a Spent Fuel
Repository at Yucca Mountain, Nevada, 2005 Progress
Report, EPRI 1010074, Electric Power Research Institute
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Maximum total dose
estimated by the EPRI
IMARC 9 model:

0.02 mreml/yr, at
1,000,000 yr

Maximum total mean
dose estimated by the
TSPA-LA model:

2.0 mrem/yr, at
1,000,000 yr




Comparison of EPRI and TSPA-LA models

 EPRI IMARC 9 Model

Nominal performance only

Disruptive events evaluated
separately, not included in
full performance assessment

Maximum dose at 1,000,000
years, due to general corrosion
failure

CSNF only
[-129 is dominant contributor
Relative to TSPA-LA
Smaller seepage fraction
Lower corrosion rate

Lower solubility limits for Pu,
Np, Th

Lower specific discharge in
saturated zone

e TSPA-LA model

Nominal and disruptive
performance

Disruptive events dominate total
mean annual dose for most of
the 1,000,000 period

Maximum dose at 1,000,000
years, due to general corrosion
failure from nominal processes

CSNF, DOE spent fuel, and
defense high-level waste

Relative to IMARC 9, largest
contributors to difference in
maximum dose are

Larger seepage fraction

Higher solubility limits for Pu,
Np, and Th

Maximum 1-129 mean dose

~10x larger than IMARC 9
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Recent Performance Assessments for Potential Repository Sites in
Sweden and France

General Training On Methodologies For Geological Disposal in North America

Differences among programs preclude direct comparisons to Yucca
Mountain without extensive caveats

Sweden — Forsmark site
Granite host rock, robust engineered barriers
Less than 1% of copper canisters have failed by 1,000,000 years

Estimated maximum risk at 1,000,000 yr for conservative modeling
assumptions is ~6x10° correspondlng to ~0.08 mSv/yr (~8 mrem/yr)

Source: Section 12.12 and Figure 12-20 of SKB 2006, Long-term
Safety for KBS-3 Repositories at Forsmark and Laxemar—a First
Evaluation, TR-06-09

France — Meuse/Haute Marne site
Clay host rock, emphasis on low-permeability natural barriers

Estimated maximum dose to a conservatively chosen critical group, at
approximately 330,000 years is ~0.02 mSv/yr (~2 mrem/yr)

Source: Table 5.5-8, ANDRA 2005, Dossier 2005: Argile. Tome:
Safety Evaluation of a Geological Repository

All three disposal concepts have the potential to offer highly effective long-
term isolation of radioactive waste
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Conclusions

o Iterative TSPAs for Yucca Mountain in the past decade
have responded to new scientific understanding,
iImproved modeling techniques, and advances in the
conceptual design for the repository

 Difference in results from the TSPA-LA and the EPRI
IMARC-9 model are consistent with different approaches
to models and inputs

* Qualitative observations from assessments perfomed in
Sweden and France indicate that multiple disposal
concepts can offer effective long-term isolation of
radioactive waste
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History of DOE Yucca Mountain TSPAs

TSPA lteration Summary of Key Results
1988 Site Characterization Plan e Applied basic methodology for Monte Carlo uncertainty analyses based on scenarios.
TSPA-1991 ® Demonstration of TSPA approach.

® Models limited to UZ and SZ, and volcanism identified importance of uncertainty in UZ flow paths.

TSPA-1993 e Improved models for UZ, SZ, early models for coupled processes, EBS, biosphere.
® Importance of uncertainty in thermal hydrology, UZ flow, corrosion of engineered materials.

TSPA-1995 ® [ncorporate new science and design, evaluate alternative models.
® |mportance of robust process models for WP degradation, seepage, UZ and SZ transport.

TSPA-VA ® Supported the 1998 Viability Assessment, models based on best current information.

® Ranked importance of uncertainty in each of the major components for 10,000, 100,000, and
1,000,000 years.

® Emphasis on seepage, water chemistry, corrosion, and SZ.

1999 License Application Design ® TSPA tools used to evaluate relative merits of design alternatives.
Selection (LADS) Demonstrated that multiple designs were viable for long-term performance.

Robust modeling system using fully qualified inputs

Conservative approach to some components.

Regulatory importance of volcanism identified.

Conservative treatments of uncertainty complicated realistic understanding.

TSPA for Site Recommendation (2000)

More realistic treatment of uncertainty.

Incorporation of new information since TSPA-SR.

Confirmed potential suitability.

Confirmed importance of volcanism and EBS performance for 10,000 years.
Insights into EBS and natural system effects on peak dose.

FY 2001 Supplemental Science and
Performance Analyses (SSPA)

TSPA for the Final Environmental Updated SSPA to include new information, revised regulatory boundary.

Impact Statement (2001)

2002 Sensitivity Analyses ® Insight into barrier performance.
(one-on and one-off) Risk-importance information regarding model components.
® Importance of volcanic disruption for 10,000-yr regulatory compliance.

TSPA-LA ® Models updated to current information.

00477PR_TSPAKeyResulls_a.ai
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