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Last Time: Comparison of Grain Boundary
Energies in different metals: Ni vs. Al

Foiles-Hoyt EAM Ni vs. Ercolessi and Adams Al

* Most of the variation in

boundary energy is structural,
not chemical.

 What scales boundary energy?
e Shear modulus ratio: 2.4

= Supports a dislocation
model for grain boundary
structure

» <111> twist boundaries are
relatively lower energy in Ni.

* The “special” 211 boundary is
relatively lower energy in Al.
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Which shear modulus is really the best?

GB energy, 388 GB, ni1 vs Ercolessi & Adams Al
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Actually Voight average shear (mu) and C,, are about equally

good when comparing Ni and Al
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Let’'s compare Ni and Au
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Hmmgh! Just about anything works in this case!

Note that there is much less scatter comparing the results for Ni and Au

— Both potentials use similar functional forms
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Comparison of Au and Al suggests a winner

GB energy, 388 GB, Ercolessi & Adams Al vs au1
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C,, appears the best modulus to use when comparing energies of

different materials
— David Seidman was right
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 D. Udler and D.N. Seidman, Phys. Rev. B54, 134 (1996)



Last Time: Calculation of Temperature Dependence of y
279 [111] symmetric tilt boundary
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If know free energy at some T, can integrate to desired T

Use quasi-harmonic calculations to compute y for T < 0.25 T,

Need AE(T) and o(T) to perform integration
Both of these obtainable from MD simulation
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There is a significant drop in interface free energy with temperature
Question from last time: How does this compare with softening of elastic constants

for the same interatomic potential?
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MD calculation of the temperature dependent
elastic constants

Generalize to EAM potentials the method of T. Cagin and J.R. Ray,
Phys. Rev. B37, 699 (1988).

— Fluctuation formulas are for microcanonical (NVE) ensemble

— EAM generalization follows M.S. Daw and M.Il. Baskes, Phys. Rev. B29,
6443 (1984)
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Computed temperature dependence for the Ni
potential similar to experimental data for metals

Calculated Elastic Constants for Ni potential
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Have not found experimental data for Ni

For Al where experimental data exists up to T,
— B(T)/B(T=0)=0.78
— C(T,)/C(T=0) = 0.57
— C'(T,)/C(T=0) = 0.45 @ Sandia
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Grain Boundary Free Energy scales with C,,
reasonably wellup to T ~ 0.75T,,

Sigma79 Tilt - Free Energy Scaled by Elastic Constants
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« Results suggest that for moderate temperatures the variation of
grain boundary free energy is dominated by elastic softening

* For high temperatures other mechanisms contribute
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