
A Framework for Reduced Order Modeling with Mixed
Moment Matching and Peak Error Objectives

Keith R. Santarelli
Electrical and Microsystems Modeling

Sandia National Laboratories
Albuquerque, NM, USA

krsanta@sandia.gov

ABSTRACT
We examine a new method of producing reduced order mod-
els for LTI systems which attempts to minimize a bound on
the peak error between the original and reduced order mod-
els subject to a bound on the peak value of the input. The
method, which can be implemented by solving a set of linear
programming problems that are parameterized via a single
scalar quantity, is able to minimize an error bound subject to
a number of moment matching constraints. Moreover, be-
cause all optimization is performed in the time-domain, the
method can also be used to perform model reduction for infi-
nite dimensional systems, rather than being restricted to finite
order state space descriptions. We begin by contrasting the
method we present here to two classes of standard model re-
duction algorithms, namely moment matching algorithms and
singular-value-based methods. After motivating the class of
reduction tools we propose, we describe the algorithm (which
minimizes the L1 norm of the difference between the original
and reduced order impulse responses) and formulate the cor-
responding linear programming problem that is solved during
each iteration of the algorithm. We then show how to in-
corporate moment matching constraints into the basic error
bound minimization algorithm, and present an example which
utilizes the techniques described herein. We conclude with
some general comments for future work.

1. INTRODUCTION
The study of model order reduction (MOR) is a problem

that has pervaded the engineering community for over thirty
years. Stated simply, MOR attempts to replace a system de-
scription that is deemed “complex” by a simpler, approximate
model that still accurately represents the salient features of
the original system. The motivation for the inception of MOR
tools from a simulation standpoint is clear: problems with
fewer components, in general, take less time to simulate, so
creating tools which reduce the size of a model without sig-
nificantly sacrificing accuracy has great potential impact.

Much of the original work in MOR has roots in the sys-
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tems and control community, with Moore’s work on principle
component analysis [14] and Glover’s work on optimal model
reduction in the Hankel norm [9] being the basis for a num-
ber of model reduction tools that are still used today. Outside
of the realm of control, a great deal of attention has been
placed on the development of MOR tools for simulation pur-
poses (see, e.g., [2, 4, 5, 7, 8, 15, 16, 18, 19]). The paper
by Gugercin et. al. [10] provides a comparison of the perfor-
mance of several different linear model reduction techniques
that are used today.

1.1 MOR for LTI Systems: Moment match-
ing vs. Singular Values

As the focus of this paper revolves around MOR for LTI sys-
tems, we briefly review two of the main classes of model re-
duction methods for LTI systems, along with their associated
benefits, as a means of motivating the particular problems
and techniques that we investigate here. Two MOR methods
for LTI systems that are popular in the literature today are
methods which perform moment matching of transfer func-
tions, and methods which compute singular value decom-
positions (SVD) of a linear operator that is associated with
the state space description of the LTI system undergoing re-
duction. Moment matching methods operate by constrain-
ing either the value of the transfer function or some deriva-
tive (moment) of the transfer function to be the same for
both the original and reduced order models at a specified set

of frequencies (i.e., G(ms
l
)(sl) = G

(ms
l
)

r (sl), m = 0, 1, . . .,
l = 1, 2, . . . , L, where G(s) represents the transfer function
of the original system, Gr(s) represents the transfer function
of the reduced order system, and sl ∈ C represent N com-
plex frequencies to be matched). One advantage of moment
matching is that it can be used to preserve key frequency
response characteristics between the original and reduced
order systems. For instance, moment matching methods can
be used to ensure that the DC gain for a reduced order sys-
tem is the same as in the original system, an important prop-
erty for systems which are primarily driven by step inputs.
A disadvantage of these methods, however, is that, in gen-
eral, they do not provide bounds on the error between the
response of the original system and the response of the re-
duced order system for arbitrary inputs.

By contrast, SVD-based methods for model reduction do
provide bounds on the error between the responses of the
original and reduced order systems. Based upon computing
the singular values of a joint controllability/observability mea-
sure, these methods produce a truncated state space de-
scription of the original system to serve as a reduced order
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approximation. When the inputs of interest are finite power
signals, the outputs of the reduced order model are guaran-
teed to be “close” to the outputs of the original model in the
sense that the power in the difference between the original
system output and reduced system output is small. While
such results provide a notion that the reduced order models
are “good” for a wide range of inputs, classical SVD-based
methods suffer from the fact that they do not incorporate mo-
ment matching constraints into the problem set-up. Hence, if
exact matching of certain frequency response properties be-
tween the original and reduced order models is critical, SVD-
based methods are typically not the method of choice.

If possible, it is clearly desirable to develop MOR tools
which can both incorporate moment matching constraints into
the reduction problem, and provide error bounds for general
classes of inputs. To date, however, results that provide for
mixed formulations which incorporate both error bounds and
which simultaneously preserve general properties of the fre-
quency response are limited. Phillips et. al. in [17] provide an
algorithm which, while not able to preserve moment match-
ing properties explicitly, does provide an SVD-based method
that is guaranteed to preserve passivity of the reduced or-
der model. Gugercin et. al. in [11] explain how the solution
to a model reduction problem which minimizes the H2-norm
of the corresponding error system is guaranteed to match
moments at mirror images of the pole locations of the re-
duced order model (e.g., G(−sl) = Gr(−sl) where sl ∈ C

is a pole of the reduced order model Gr(s)). This result is
limited, however, since the matching frequencies cannot be
chosen arbitrarily. Moreover, certain useful frequencies can-
not be matched (such as frequencies along the imaginary
axis), since the reduced order models are stable and, hence,
Re{sl} < 0.

Some recent work by Astolfi in [1] considers a technique
which can simultaneously match moments and produce small
error bounds via the introduction of a free parameter into the
state space description of the corresponding reduction prob-
lem. Nevertheless, when attempting to use model reduction
tools for the inherent purpose of simulation, the error bounds
produced by this tool— and the error bounds produced by all
SVD-based reduction methods—are not the most desirable
because of the way they measure error. One of the primary
motivations of the work we present herein is that error is mea-
sured in a manner that is more useful for designers than the
standard measures of error. We now present an example to
illustrate the main issue along with a proposed resolution.

1.2 Measures of Error: Power vs. Peak Am-
plitude

Fig. 1 illustrates a hypothetical example where the red sig-
nal represents the output of an original full order system and
the blue signal represents the output of a reduced order model
that was created using an SVD-based technique. The moral
of the example is this: an SVD-based method will consider
the red and blue responses to be “close” because the power
in the difference between the two signals is apparently small
(note that the large spike in the full-order signal is very nar-
row and, hence, contributes very little energy). While such
a measure of closeness may be appropriate for certain ap-
plications, if the signals depicted in Fig. 1 represent a criti-
cal parameter whose value should never exceed 1, then it is
clear that the reduced order model does not adequately rep-
resent the original model since the response of the full-order
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Figure 1: Hypothetical responses of an original and
reduced order system produced via an SVD-based
method.

system significantly exceeds 1 while the response of the re-
duced order system stays well below 1.

From a simulation perspective, a somewhat more useful
notion of error can be measured in terms of peak amplitude.
Formally, if we consider right-sided continuous-time signals
y : [0,∞) → R, then the peak amplitude can be taken as the
standard infinity norm:

||y||∞ = sup
t≥0

|y(t)|. (1)

In the context of model reduction, if we define y(t) as the re-
sponse of an original system and yr(t) as the response of a
reduced order system for an identical input u(t), it is reason-
able to desire that ||y − yr||∞ be a small quantity. Indeed, if
for a particular pair y(t) and yr(t) we define ǫ = ||y − yr||∞,
then it immediately follows from the definition in Eqn. 1 that

|y(t) − yr(t)| ≤ ǫ ∀t ≥ 0. (2)

1.3 Problem Formulation: L1 Norm minimiza-
tion

We now focus on formulating the formal problem to be in-
vestigated in this paper. Our focus is limited strictly to LTI
systems, for which we wish to develop bounds of the follow-
ing nature: if we denote by L∞(R+)

L∞(R+) =

{

u : [0,∞) → R : sup
t≥0

|u(t)| < ∞

}

(3)

then for every input u ∈ L∞(R+), we wish to find some
(hopefully small) real number M > 0 such that

||y − yr||∞ ≤ M ||u||∞. (4)

If such a bound exists for an original system model and a
reduced system model for every bounded input u, then the
peak output of the error between the original and reduced
model is always less than some multiple of the peak input
value. In particular, due to the assumption of linearity, when
M < 1, such a bound provides a guarantee that the point-
wise error between y(t) and yr(t) will never be more than a
fixed percentage of the peak input value. When we denote
by h(t) the impulse response operator of the original system
and by hr(t) the impulse response of the reduced order sys-
tem, it is a well-known fact (see, for instance, [13]) that the
smallest value of M as given in Eqn. 4 is the L1 norm of the



error system with impulse response h(t) − hr(t):

||h − hr||1 =

∫ ∞

0

|h(t) − hr(t)|dt. (5)

Hence, the problem of finding a reduced order model of a
given LTI system for which the peak error between the origi-
nal output and reduced order output is small can be posed in
the following manner: for a given order N , find some choice
of hr(t) of order N for which ||h − hr||1 is small. Ideally, one
would like to find that choice of hr(t) of order N such that
the quantity ||h − hr||1 is minimized, and that is the essential
viewpoint that we take here. While the problem of finding that
choice of hr(t) which globally minimizes the L1 norm of the
error system is nonconvex and intractable to compute from a
practical perspective, we focus here on methods that search
for local minimizers over a sufficiently rich set of choices for
hr(t) so as to provide reduced order approximations that are
both sufficiently accurate and computationally tractable.

The problem of producing reduced order models via mini-
mization of the L1 norm appears to have been seldom con-
sidered in the literature. El-attar et. al. first considered this
problem in the context of some examples [6]. In the discrete-
time setting, Sebakhy et. al. consider a simple form of im-
pulse response truncation to minimize the l1 norm of an er-
ror sequence (||e||1 =

∑∞

k=1 |ek|) [22]. The closest work to
the problem we consider here appears to be a result from
the System Identification literature in which a reduced or-
der model for a discrete-time system which minimizes the l1
norm of an error metric is computed via a linear programming
approach [12]. While there are substantial differences with
the class of problems being considered here as compared
to [12], the underlying technique of casting such problems as
linear programs is the same. As we discuss in a later section,
a major advantage of this approach is that mixed problems in
which the L1 norm of an error system is minimized subject to
a set of moment matching constraints can be easily handled
by our approach since the set of moment matching condi-
tions can be cast as a set of linear constraints on a set of
decision variables. Also, as a byproduct of our approach, the
tools we develop here will be able to perform MOR for infinite
dimensional systems, a stark contrast to standard moment
matching and SVD-based tools which operate only on finite
order state space descriptions.

The work we present here is a significantly abbreviated
version of another document [21] which includes a formal
mathematical discussion of associated convergence issues
related to the algorithm we describe here, as well as an ad-
ditional example, and extensions to multi-input, multi-output
(MIMO) systems.

2. ALGORITHM FOR REDUCED ORDER
MODELING VIA L1 NORM MINIMIZA-
TION

In this section, we describe a technique for computing re-
duced order models via an attempt to minimize the L1 norm
of the corresponding error system h(t) − hr(t). We first con-
sider a relaxed problem in which the reduced order model is
constrained to be a linear combination of a fixed set of basis
functions and show that this problem can be cast as an LP.
We then turn to the process of selecting an appropriate set
of basis functions.

2.1 Relaxation: Approximation via a Fixed Ba-
sis

At the heart of the algorithm we propose is an approxima-
tion scheme where the reduced order model is constrained
to be a linear combination of a fixed set of functions:

hr(t) =

N
∑

k=1

akgk(t) (6)

where gk(t), k = 1, 2, . . . , N , represent a set of fixed, known
functions with finite L1 norm, and where the parameters ak ∈
R represent a set of decision parameters that we wish to se-
lect to make ||h − hr||1 as small as possible. As we show
here, this problem can be cast as an LP that can be solved
using existing software packages. The reader unfamiliar with
linear programming is referred to [3] for an excellent introduc-
tion to the subject.

To begin, note that the problem of minimizing ||h − hr||1 is
equivalent to:

min

∫ ∞

0

z(t)dt (7)

subject to z(t) ≥ h(t) −

N
∑

k=1

akgk(t)

z(t) ≥ −

(

h(t) −
N
∑

k=1

akgk(t)

)

since the two inequality constraints are equivalent to z(t) ≥
|h(t) − hr(t)|, and the choice of z(t) which minimizes the
integral expression must achieve this inequality with equal-
ity. Note that Eqn. 7 represents an infinite dimensional LP
with decision variables ak and z(t) for all t ≥ 0. In order to
solve this LP, we must resolve two issues: first, the infinite
dimensional LP must be replaced by an appropriate finite di-
mensional LP to fit the form of standard LP solvers. This will
be achieved by gridding the real time axis in an appropriate
manner. A second issue arises from the fact that the horizon
in Eqn. 7 is infinite. In practice, it is possible to solve a finite
horizon LP whose optimal solution is an upper bound for the
optimal solution of the original infinite horizon problem. We
deal with the second of these issues first.

To begin, note that for any T > 0
∫ ∞

0

z(t)dt =

∫

T

0

z(t)dt +

∫ ∞

T

z(t)dt (8)

≤

∫

T

0

z(t)dt +

∫ ∞

T

|h(t)|dt +
N
∑

k=0

|ak|

∫ ∞

T

|gk(t)|dt.

By introducing the slack variables wk ≥ |ak| for k = 1, 2, . . . , N ,
Eqn. 8 leads to the following LP:

min

∫

T

0

z(t)dt + h̄ +
N
∑

k=1

βkwk (9)

subject to z(t) ≥ h(t) −

N
∑

k=1

akgk(t)

z(t) ≥ −

(

h(t) −
N
∑

k=1

akgk(t)

)

wk ≥ ak

wk ≥ −ak



where T is a specified horizon, k = 1, 2, . . . , N , and where

h̄ =

∫ ∞

T

|h(t)|dt (10)

βk =

∫ ∞

T

|gk(t)|dt.

By virtue of Eqn. 8, the minimal cost of the LP in Eqn. 9
provides an upper bound for the minimal cost of the original
infinite horizon LP of Eqn. 7. Note that for any given choice of
h(t), the quantity h̄ is a constant, and hence may be removed
from the cost function (in practice, T can always be chosen
sufficiently large such that the effect of h̄ on the minimal cost
in Eqn. 9 is negligible).

Now, to relax the infinite dimensional LP to a finite dimen-
sional version, we introduce a grid on the time axis. While
there are many ways to do this, here we consider the sim-
plest method of imposing a grid that is uniformly spaced over
the horizon length T . If we let ∆ represent the sampling inter-
val, and define zm = z(m∆), hm = h(m∆), gkm = gk(m∆),
and M = ⌊T/∆⌋, then an approximation of the integral in
Eqn. 9 via a Riemann sum leads to:

min ∆
M
∑

m=1

zm +
N
∑

k=1

βkwk (11)

subject to zm ≥ hm −
N
∑

k=1

akgkm

zm ≥ −

(

hm −

N
∑

k=1

akgkm

)

wk ≥ ak

wk ≥ −ak

for all k = 1, 2, . . . , N and m = 1, 2, . . . , M . Here we assume
that the value of ∆ is taken sufficiently small (corresponding
to a fine grid) so that the difference between the true value
of the integral in Eqn. 9 and the approximate value in Eqn.
11 is negligible. As before, the decision variables ak provide
the relative weights for each basis function gk(t) in our ap-
proximation hr(t), and the auxiliary parameters wk and zm

determine an upper bound on the minimal L1 norm to the
original problem of Eqn.7.

2.2 L1 Norm Minimization Algorithm
The LP formulation of the last section begs the question:

how does one choose the basis functions gk(t)? The choice
we use in this paper is given by the following:

gk(t) = tke−αt (12)

where α is a parameter with Re{α} > 0. Noting that the
Laplace transform Gk(s) of gk(t) is given by

Gk(s) = k!

(

1

s + α

)k+1

, (13)

we see that choosing the basis gk(t) of Eqn. 12 corresponds
to finding a reduced order model with repeated poles. The
basic algorithm that we use, then, is the following: we im-
pose a grid on the right half plane Re{α} > 0 and solve the
corresponding LP for each value of α in the grid. The value
of α which yields the minimal upper bound on ||h − hr|| is
chosen as the optimal value, and the minimizing values of

ak for this value of α determine the impulse response of the
reduced order model.

While the choice of gk(t) may appear restrictive, we dis-
cuss in [21] how a very large subset of impulse responses
h(t) can be well-approximated via such a basis for an arbi-
trary value of α with Re{α} > 0.

3. ADDITION OF MOMENT MATCHING CON-
STRAINTS

We now turn to the incorporation of moment matching con-
straints into the L1 minimization algorithm discussed in Sec-
tion 2. Note that for any fixed basis choice gk(t), a moment
matching constraint of order m at a frequency s0 takes the
form

1

m!
H(m)(s0) =

1

m!

N
∑

k=1

akG
(m)
k

(s0) (14)

where H(m)(s) and G
(m)
k

(s) represent the m−th derivatives
of the Laplace transforms of the original impulse response
h(t) and basis functions gk(t), respectively. The moments of
Gk(s) of Eqn. 13 can be calculated explicitly as

G
(m)
k

(s) =







(

α

s+α

)k

m = 0

(−1)m
i(i+1)···(i+m−1)αk

m!

(

1
s+α

)k+m

m = 1, 2, . . .
.

(15)
Hence, whenever the value of the parameter α in Eqn. 12 is
fixed, each moment matching constraint is a linear equality
constraint on the decision variables ak and can be added as
an additional constraint to the corresponding LP formulation.

4. PRACTICAL CONSIDERATIONS
The success of the above algorithm largely hinges on the

ability to select a good value of the parameter α. This is
directly correlated to the choice of the grid set, which we de-
note here via the symbol A. In what follows, we focus on the
case where α is a real parameter, though appropriate modi-
fications can be made in the case that α is complex.

Perhaps the simplest way of selecting the set A is to uni-
formly grid the real axis:

A = {α : α = j∆a, j = 1, 2, . . . , J} (16)

where ∆a > 0 and J is a user-specified constant. It is clear
that smaller choices of ∆a and larger choices of J provide a
finer grid of the real axis and, hence, should produce smaller
upper bounds on the minimal value of ||h − hr||1.

While simple, the above brute-force method can be compu-
tationally expensive if the user tries to search for a relatively
tight upper bound on the minimal value of ||h − hr||1. While
the number of LPs which are solved grow linearly with J , it is
typical to refine a grid by dividing the value of ∆a by a partic-
ular value, i.e., by replacing ∆a by ∆a/2. Assuming even that
the maximal value of α ∈ A does not increase during grid re-
finement, this causes the corresponding value of J to grow
exponentially with successive refinements, eliminating some
of the benefits of parameterizing the basis vectors gk(t) via a
single scalar.

A simple heuristic approach which bypasses some of the
above difficulty is the following: initially impose a coarse grid
and refine the grid until one is fairly confident that the sam-
pling is sufficiently fine to be indicative of the true behavior of
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Figure 2: Block diagram of circuit with an RLC bandpass
filter and ideal transmission line.

the minimal cost (this can be done, for instance, by examining
a graph of the minimal cost at the sample points in the current
grid). Once the grid is determined to be sufficiently fine, one
can locate an interval around which a minimizing value of α
appears to lie and then refine the grid only in this interval.
When appropriately carried out, such a procedure can only
guarantee convergence to some local minimum, rather than
the minimal value on the interval I = [∆a, J∆a] (the smallest
interval containing the original grid). Still, it has been empiri-
cally observed in multiple examples that the minimal value of
the cost function tends to vary slowly and with few changes in
monotonicity, so that carrying out a procedure in this manner
is likely to converge to the minimum on I for many problem
instances.

5. EXAMPLE: BANDPASS FILTER WITH
TIME DELAY

Fig. 2 depicts a circuit consisting of an RLC bandpass
filter, along with an ideal transmission line. The transmis-
sion line is modeled mathematically as a pure time delay
tD . For a unit time delay, and for the values R = 2, L = 1,
C = 1/10001, the input-output transfer function of this circuit
is given by

H(s) ,
Vout(s)

Vin(s)
= e−s 2s

(s + 1)2 + 10, 000
(17)

with corresponding impulse response

h(t) =

{

e−(t−1) (2 cos 100(t − 1) − 0.02 sin 100(t − 1)) t ≥ 1
0 t < 1

.

(18)
It is clear that H(s) is infinite-dimensional due to the pres-

ence of the term exp(−s), and our goal here is to find a finite
dimensional approximation with small error norm ||h − hr||1
subject to the additional constraint that the H(s) and Hr(s)
match exactly at the resonant frequency of the RLC filter,
i.e. that H(100j) = Hr(100j). Because of the highly os-
cillatory nature of the impulse response, approximating the
original h(t) by an approximation whose parameter α is real
is unwise, since this would require a very high order polyno-
mial multiplying exp(−αt) to match h(t) with any reasonable
amount of accuracy. Through trial and error, it was quickly
discovered that using a value of α = −αr + 100j, where αr

is a positive real parameter, appears to yield the best results,
an unsurprising phenomenon since the system naturally os-
cillates at 100 rad/sec.

Using a 12th order model, we find that a value of αr = 3.25
yields an error norm upper bound of ||h − hr||1 ≤ 0.297. The
impulse response of the original and reduced order models
is shown in Fig. 3. While it is difficult to resolve finer features
in this graph, observe qualitatively that hr(t) is small on the
interval 0 ≤ t ≤ 1 where h(t) is identically 0, and quickly
“catches up” to the oscillatory portion of h(t) for t ≥ 1.
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Figure 3: Impulse response of original model and
reduced order model produced via mixed L1/moment
matching algorithm.
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Figure 4: Comparison of responses of original
model, L1/moment matching reduced order model, and
Padé/TBR reduced order model for the input cos(100t).

As a comparison, we created an alternative reduced order
model using the following technique: the time delay in Eqn.
17 was approximated via a high order (50th order) Padé ap-
proximation, and the resulting system was reduced to a 12th
order system using a Truncated Balanced Realization (TBR)
algorithm. Since TBR operates on finite-dimensional LTI sys-
tems, one must first approximate the non-rational portion by
a rational approximation before applying the algorithm.

Performing the above process, we found that the reduced
order model obtained via this alternate method produces an
L1 error norm ||h − hr||1 = 8.889, more than an order of
magnitude larger than the reduced order model obtained via
the mixed L1/moment matching algorithm. Also for compar-
ison, we computed the response of the original system, re-
duced order system obtained via L1/moment matching, and
the reduced order system obtained via the Padé approxima-
tion and TBR for the input cos 100t. The responses we ob-
tained are depicted in Fig. 4. Observe that the responses
of the original model and reduced order model obtained via
mixed L1/moment matching track each other exactly. Such
tracking is guaranteed from the moment matching constraint
H(100j) = Hr(100j). By contrast, the response of the sys-
tem produced via the Padé approximation and TBR exhibits
a phase lag.

6. CONCLUSION
We have introduced a new framework for model order re-



duction of LTI systems that is well-suited for simulation pur-
poses. The framework, which can preserve key frequency
characteristics of the original model while simultaneously min-
imizing a bound on the “closeness” of the original and re-
duced order responses in a point-wise sense, can be imple-
mented efficiently using a relatively small number of user-
specified iterations, as demonstrated by two specific exam-
ples.

One specific direction in which the work described here
can be extended involves investigating methods which pro-
duce tighter error bounds. While the bounds provided here
are least upper bounds in the sense that there always exists
an input for which the corresponding difference in outputs
will achieve the L1 norm error bound with equality, such in-
puts are typically very specific and not encountered in typical
application. Methods of constraining the set of inputs to be
less “diabolical” via the addition of additional constraints on
the input (e.g., bounds on the derivative of the input) or via
some sort of weighting procedure are desirable.

Finally, while gridding the set A is not too daunting of a
task, it is of interest to examine whether there are intelligent
of methods of selecting good values of the parameter α to
circumvent gridding entirely. A recent publication [20] exam-
ines the use of Laguerre expansions for a model reduction
problem which attempts to minimize a quadratic cost func-
tion, and computation of the optimal value of α is observed
to converge in a process that requires very few iterations.
While the problem considered in [20] is significantly different
from what we consider here, it would be interesting to inves-
tigate whether there exists a class of similar problems which
can be used as a heuristic for determining good values of α
for the given L1 setting.

7. REFERENCES
[1] Astolfi A. A new look at model reduction by moment

matching for linear systems, Proc. 46th Conf. Decision
and Control, 2367-2372, New Orleans, 2007.

[2] Bashir O, Willcox K, Van Bloemen Waanders B, Hill J
and Ghattas O. Reduced-order model construction for
high-dimensional systems, CSRI Summer Proc. 2006,
251-263, Sandia National Laboratories, 2006.

[3] Bertsimas D and Tsitsiklis J. Introduction to Linear
Optimization, Athena Scientific, 1997.

[4] Bond B and Daniel L. Stabilizing schemes for
piecewise-linear reduced order models via projection
and weighting functions, Proc. 2007 Int. Conf.
Computer-aided Design, 860-867, San Jose, 2007.

[5] Dong N and Roychowdhury J. General-purpose
nonlinear model-order reduction using
piecewise-polynomial representations, IEEE Trans.
Computer-aided Design of Integrated Circuits and
Systems, (27(2):249-264, 2008.

[6] El-Attar RA and Vidyasagar M. Order reduction by l1
and l∞ norm minimisation, IEEE Trans Auto. Control,
AC-23:731-734, 1978.

[7] Feldmann P and Freund RW. Efficient linear circuit
analysis by Padé approximation via the Lanczos
process, IEEE Trans. Computer-aided Design ,
14:639-649, 1995.

[8] Gad E and Nakhla M. Model reduction for DC solution
of large nonlinear circuits, Proc. 1999 Int. Conf.
Computer-aided Design, 376-379, San Jose, 1999.

[9] Glover K. All optimal hankel-norm approximations of
linear multivariable systems and their L∞−error
bounds, Int. J. Control, 39:1115-1193, 1984.

[10] Gugercin S and Antoulas AC. A comparative study of 7
algorithms for model reduction, Proc. 39th Conf.
Decision and Control, 2367-2372, Sydney, 2000.

[11] Gugercin S, Antoulas AC and Beattie CA. H2 model
reduction for large-scale linear dynamical systems,
SIAM J. Matrix Analysis and Applications,
30(2):609-638, 2008.

[12] Hakvoort R. Worse-case system identification in l1:
error bounds, optimal models and model reduction,
Proc. 31st Conf. Decision and Control, 499-504,
Tucson, 1992.

[13] Khalil H. Nonlinear Systems, Prentice-Hall, second
edition, 1996. %bibitemknockaertKnockaert L. On
orthonormal Münt-Laguerre Filters,

[14] Moore BC. Principal component analysis in linear
systems: controllability, observability and model
reduction, IEEE Trans. Auto. Control, AC-26:17-32,
1981.

[15] Nakhla N, Nakhla M and Achar R. Spare and passive
reduction of massively coupled large multiport
interconnects, Proc. 2007 Int. Conf. Computer-aided
Design,622-626, San Jose, 2007.

[16] Odabasioglu A, Celik M and Pileggi L. PRIMA: passive
reduced-order interconnect macromodeling algorithm,
IEEE Trans. Computer-aided Design of Integrated
Circuits and Systems, 17(8):645-654, 1998.

[17] Phillips J, Daniel L and Silveira LM. Guaranteed
passive balancing transformations for model order
reduction, IEEE Trans. Computer-aided Design of
Integrated Circuits and Systems, 22(8): 1027-1041,
2003.

[18] Rewienski M and White J. A trajectory piecewise-linear
approach to model order reduction and fast simulation
of nonlinear circuits and micromachined devices, Proc.
2001 Int. Conf. Computer-aided Design, 252-257, San
Jose, 2001.

[19] Roychowdhury J. Reduced-order modeling of
time-varying systems, IEEE Trans. Circuits and
Systems–II: Analog and Digital Signal
Processing,46(10):1273-1288, 1999.

[20] Salimbahrami B, Eid R and Lehmann B. On the choice
of an optimal interpolation point in Krylov-based order
reduction, Proc. of the 47th Conf. on Decision and
Contr., 4209-4214, Cancun, 2008.

[21] Santarelli K. A Framework for Reduced Order Modeling
with Mixed Moment Matching and Peak Error
Objectives. Technical Report, Sandia National
Laboratories, Dec. 2008.

[22] Sebakhy OA and Aly MN. Discrete-time model
reduction with optimal zero locations by norm
minimisation, IEEE Proc. Control Theory Appl.,
145(6):499-506, 1998.


