V\‘ " SAND2008- 7508C
Haar Wavelet Compression and
Empirical Variance Scaling of Large
Hyperspectral Images

EAS 2008 Paper 334
11/18/08

Michael R. Keenan and Mark H. Van Benthem
Sandia National Laboratories, Alouquerque, NM

0

IR ¥ n Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
VAT i‘l for the United States Department of Energy’s National Nuclear Security Administration National

e XX
clear Securty Adminsraton under contract DE-AC04-94AL85000. Laboratories



F2d

* Motivation for work

« Importance of noise scaling
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* Proper scaling of data prior to analysis is critical to
obtaining the best unbiased estimate of factors

« Empirical estimates of noise do not assume an
underlying noise distribution

 The Haar wavelet is easy to compute
— Simple to understand compression
— Appropriate for hyperspectral chemical images
— Reduces data analysis time (PCA, MCR, PARAFAC)
— Improves signal-to-noise ratio (SNR)

Motivation
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Importance of Noise Scaling

 Least squares procedures assume that errors are
normally distributed and this noise variance is
independent and identically distributed (iid)

 If this assumption is invalid, the method allows
larger error variances to have undue influence on
the results

* For data with non-iid noise, (e.g., Poisson, binomial,
etc) noise scaling (or weighting) attempts to restore
the normal, iid assumption
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Methods of Noise Scaling

* Maximum likelihood (MLE)

— Scales each variable and observation individually
 Difficult to get a good estimate of the uncertainty

« A poor variance estimate can lead to a worse result than doing
nothing

— Time and computationally intensive
« Optimal scaling
— Based on explicit form of the nature of noise
« Assumes a rank-1 noise structure
— Like ML, weights each datum by its uncertainty

— Noise variance can be estimated in various ways
« Analytical distributions (Gaussian, Poisson, binomial)
- Empirical estimates of variance
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oise Estimates from Hyperspectral Images

« Min/Max Autocorrelation Factors*
— Estimates the noise covariance matrix

— Relies on nature of remote sensing images
« Signal in adjacent image pixels: strongly correlated
* Noise in adjacent image pixels: uncorrelated

« Shift Difference*

— Vertical or/and horizontal neighbor difference
« Poisson® and Binomial* Scaling

— Data and errors distribution-based

*Green, et al., IEEE Trans. Geosci. & Remote Sens., 26(1), 1988 Sandia
T M. R. Keenan and P. G. Kotula, Surf. Interface Anal., 36(3), 203 (2004) @ National
+ M. R. Keenan , et. al., Surf. Interface Anal. 40(2), 97-106 (2008) Laboratories
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The Haar Wavelet

Simple wavelet transform
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— Apply transform to each two-row, -column pair
— Basically, a summation of the data elements

For odd or non-radix-2 dimensioned data, the data can be
zero-padded to desired size

In images, transform is applied to each color
Could also apply to wavelength or other data modalities
Haar wavelet is orthogonal and symmetric

— Preserves data structure (order of application
unimportant)

— Treats adjacent pixels in equivalently —
— Follows the linear-additive model @ ot




How the Haar Transform Works

Given the matrix
below. One pass of
the transform yields...

6 2 1 7 1 4
4 2 1.0 3 6 05 -25 -1.75
0 1 55 18 1 0 225 0.75-025 -3 -0.25
6 1 466 9 0 8 | X;o.5 175 1 -05
301 45 9 9 5 05 05 175 -1 [@ 05 -1.75 0
0 6 4 2 0 8 3 8 15 0 -15-175/-15 05 -1 225
4 2 8 9 9 7 2 3 0.75-025 15 0.75|225-125 1 2.25
1 5 8 0 7 5 3 4 0 225 1 05|15 225 0 O
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Now, a second pass of the transform

With the matrix from
one-pass. A second

pass of the transform
yields...

3.5 35 225 35 2 1.5 125 -1.5
2 5 6 225 1 -0.5 -25 -1.75
225 275 55 6.25(-0.75 -0.25 -3 -0.25
3 6.25 7 3 -0.5 1.75 1 -0.5
05 05 175 -1 0 05 175 0
-1.5 0 15 -175| 15 0.5 -1 225
-0.75 -0.25 15 0.75]225 -125 1 2.25
0 2.25 1 05|15 -225 0 0

Note the “detail”
matrices in yellow hatch
don'’t get transformed
again! But you create a

You can make many passes of the transform to further
compress the matrix or image.

new set of compressed
and detail images.
3.5 -0.75 0625 2 15 -125 -15
3.5625/5.4375/-093750.8125| 1 05 -25 -1.75
0 -0625(075 -1.25(-075 025 -3 -0.25
-1.06250.4375(0.6875-1.1875 -0.5 175 1  -05
05 05 175 - 0 05 175 0
45 0 15 475|115 05 1 225
075 025 15 075|225 -125 1 225
| 0 225 1 05|15 -225 0 0
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A Picture Example

Picture, in upper left quadrant, after one pass

A typical American family on the Rio of Haar transform (4x compression). The
Grande. (The dog stayed at home.) detail images, in the other three quadrants,
Size: 2048 x 1536 pixels have been amplified to show effect.

color, RGB, underwent the same compression. National
Laboratories

Keep in mind that this is a three color (wavelength) photograph. So each @ Sandia



Haar Image Compression and Noise Estimates

Haar Detail Image-Estimated Variance Spectrum
25—

- Data from hyperspectral imaging microscope
« Original image zero-padded
» Detail images give empirical estimate of spectral
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Haar Wavelet-Based Empirical Noise Scaling

Data Model :
Empirical Noise Factor Analysis
D — AST Estimate (PCA, MCR, etc.)
e
Haar Transform v=1'D D =DK
D | D : : /D ..
D= H[D]H _ = ‘ v Scaling Matrllx Factor - D = AST
. K = diag (fj S=K'S
Step-1 detail image A%
_Dv _
D=|D,
D,

Can also generate image-mode scaling matrix.
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Model-based Poisson and Binomial Scaling

Poisson Noiset

1'D!
vV, === i
row - Scaling Matrices Factor Analysis
_ 1'D ~
v, = ' D = GDK
r G =diag " e
Binomial Noiset . V.. Factor D = AS
~ D
V = oy
D [ A=G'A
r,c - — ~
m \V Vel S=K'S
_ 1'V
row —
T Dem1ee ™ | 5Dl (1 Dj AS’
~ =m|l—e™ —>D=—min| 1—— |=
LV ) m
Veor = » Binomial Data transformation
TM. R. Keenan and P. G. Kotula, Surf. Interface Anal. 36, 203 (2004) @

IM. R. Keenan, et. al., Surf. Interface Anal. 40(2), 97-106 (2008)
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TOF-SIMS Provides Both
Poisson and Binomial Data
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Experimental

Copper/Nickel diffusion couple

— Zinc impurity in the copper

— Kirkendall voids
ION-TOF model TOF-SIMS IV

— Bi-ion source

— High-current bunched mode

— 128 x 128 pixels

— 199 mass channels: 1 — 100 amu

— 100 raster frames (100 shots/pixel)
14 total data sets

— Vary PI peak width and suppressor

— Span factor of 27 in secondary ion
production

— Applied multivariate techniques to 5
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First Principal Component

Poisson model
(original data)
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PCA of Poisson-distributed Data

Raw data Poisson Scaling* Haar Scaling
63Cu 63Cu ] 63Cu
85Cy 85Cy 85Cy
58Nj LN 58Nj
60Ni 60Ni 60Ni
1 dl |“ 0 ol . |I 0 ol ol
65C Y HC’J HC
iy
L | 'II
83Cu Na Na
HC Cr
1 ‘ -
' |III
C T |

-1 -0.5 0 0.5 1 Sandia
National
*M. R. Keenan and P. G. Kotula, Surf. Interface Anal., 36, 203 (2004) Laboratories



PCA of Binomially Distributed Data

Raw data Corrected data Binomial Scaling* Haar Scaling
63Cu 85CUy 63Cu 63Cu 83Cuy
65CYy ®Cu N%Cu
HC
5BNi %8N 8N
60Ni 60Ni 60Ni
s3cullescu = I|'|| m— ¥ ! .l.u a
r C| HC HC
s8Nij' |63C U Na Na
Na Cr
I Sa
- - ndia
1 0.5 0 0.5 1 @ N
*M. R. Keenan, et. al., Surf. Interface Anal., 40, 97 (2008) Laboratories
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Results and Conclusions

* Noise scaling is an important (pre)processing step
for non-iid data

 Employing the appropriate model is critical when
using model-based scaling

— Poisson scaling is unsuitable for binomially
distributed data

 Using Haar wavelet to estimate noise is model or
distribution independent
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* Motivation for work
— Seeking best estimate for noise scaling
* Importance of noise scaling
— Transform noise to iid in least squares assumptions
 The Haar wavelet
— Simple, effective wavelet transform
- Estimation of noise in hyperspectral images
— Model-based versus empirical methods

* Performance comparison of empirical with analytical noise
estimate

— Empirical estimate from Haar detail images more flexible
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