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Motivation

• Proper scaling of data prior to analysis is critical to 
obtaining the best unbiased estimate of factors

• Empirical estimates of noise do not assume an 
underlying noise distribution

• The Haar wavelet is easy to compute

– Simple to understand compression

– Appropriate for hyperspectral chemical images

– Reduces data analysis time (PCA, MCR, PARAFAC)

– Improves signal-to-noise ratio (SNR)



Importance of Noise Scaling

• Least squares procedures assume that errors are 
normally distributed and this noise variance is 
independent and identically distributed (iid)

• If this assumption is invalid, the method allows 
larger error variances to have undue influence on 
the results

• For data with non-iid noise, (e.g., Poisson, binomial, 
etc) noise scaling (or weighting) attempts to restore 
the normal, iid assumption 



Methods of Noise Scaling

• Maximum likelihood (MLE)

– Scales each variable and observation individually
• Difficult to get a good estimate of the uncertainty

• A poor variance estimate can lead to a worse result than doing 
nothing

– Time and computationally intensive

• Optimal scaling

– Based on explicit form of the nature of noise
• Assumes a rank-1 noise structure

– Like ML, weights each datum by its uncertainty

– Noise variance can be estimated in various ways
• Analytical distributions (Gaussian, Poisson, binomial)

• Empirical estimates of variance



Noise Estimates from Hyperspectral Images

• Min/Max Autocorrelation Factors*

– Estimates the noise covariance matrix

– Relies on nature of remote sensing images

• Signal in adjacent image pixels: strongly correlated

• Noise in adjacent image pixels: uncorrelated

• Shift Difference*

– Vertical or/and horizontal neighbor difference

• Poisson† and Binomial‡ Scaling 

– Data and errors distribution-based  

*Green, et al., IEEE Trans. Geosci. & Remote Sens., 26(1), 1988

† M. R. Keenan and P. G. Kotula, Surf. Interface Anal., 36(3), 203 (2004)

‡ M. R. Keenan , et. al., Surf. Interface Anal. 40(2), 97-106 (2008)



The Haar Wavelet

• Simple wavelet transform

– Apply transform to each two-row, -column pair

– Basically, a summation of the data elements

• For odd or non-radix-2 dimensioned data, the data can be 
zero-padded to desired size

• In images, transform is applied to each color

• Could also apply to wavelength or other data modalities

• Haar wavelet is orthogonal and symmetric

– Preserves data structure (order of application 
unimportant)

– Treats adjacent pixels in equivalently

– Follows the linear-additive model
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How the Haar Transform Works
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Given the matrix 
below. One pass of 
the transform yields…
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Now, a second pass of the transform
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With the matrix from 
one-pass. A second 
pass of the transform 
yields…

Note the “detail” 
matrices in yellow hatch 
don’t get transformed 
again!  But you create a 
new set of compressed 
and detail images.
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You can make many passes of the transform to further 
compress the matrix or image.



A Picture Example

A typical American family on the Rio 
Grande. (The dog stayed at home.)
Size: 2048 × 1536 pixels

Picture, in upper left quadrant, after one pass 
of Haar transform (4x compression).  The 
detail images, in the other three quadrants, 
have been amplified to show effect.

Keep in mind that this is a three color (wavelength) photograph. So each 
color, RGB, underwent the same compression.



• Data from hyperspectral imaging microscope
• Original image zero-padded

• Detail images give empirical estimate of spectral 
variance

• Spectral variance is obtained from the sum of 
squares of the first Haar step detail images

Haar Image Compression and Noise Estimates
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Analysis Scheme for 
Haar Wavelet-Based Empirical Noise Scaling
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Can also generate image-mode scaling matrix.



Model-based Poisson and Binomial Scaling
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Binomial Data transformation

Binomial Noise‡
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†M. R. Keenan and P. G. Kotula, Surf. Interface Anal. 36, 203 (2004)

‡M. R. Keenan , et. al., Surf. Interface Anal. 40(2), 97-106 (2008)
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TOF-SIMS Provides Both
Poisson and Binomial Data

TDC detector is insensitive to coincident ion arrivals



Experimental

• Copper/Nickel diffusion couple

– Zinc impurity in the copper

– Kirkendall voids

• ION-TOF model TOF-SIMS IV

– Bi-ion source

– High-current bunched mode

– 128 x 128 pixels

– 199 mass channels: 1 – 100 amu

– 100 raster frames (100 shots/pixel)

• 14 total data sets

– Vary PI peak width and suppressor

– Span factor of 27 in secondary ion 
production

– Applied multivariate techniques to 5

Cu Ni
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PCA of Poisson-distributed Data

Raw data Poisson Scaling* Haar Scaling
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*M. R. Keenan and P. G. Kotula, Surf. Interface Anal., 36, 203 (2004)



PCA of Binomially Distributed Data
Raw data Corrected data Binomial Scaling* Haar Scaling
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*M. R. Keenan, et. al., Surf. Interface Anal., 40, 97 (2008)



Results and Conclusions

• Noise scaling is an important (pre)processing step 
for non-iid data 

• Employing the appropriate model is critical when 
using model-based scaling

– Poisson scaling is unsuitable for binomially 
distributed data

• Using Haar wavelet to estimate noise is model or 
distribution independent



Summary

• Motivation for work

– Seeking best estimate for noise scaling

• Importance of noise scaling

– Transform noise to iid in least squares assumptions

• The Haar wavelet

– Simple, effective wavelet transform

• Estimation of noise in hyperspectral images

– Model-based versus empirical methods

• Performance comparison of empirical with analytical noise 
estimate 

– Empirical estimate from Haar detail images more flexible
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