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Goal:

o Coupled Few-Electron Quantum Dots in a
Silicon/Silicon Dioxide Inversion Layer

This Talk:

0 Process Characterization
0 Disorder Observation and Mitigation
o Nanostructure Characterization



‘Quantum Dot Spin Qubits in St

Metal Global Gate

Advantages Si Material:
=Low spin-orbit coupling

=High percentage Si?8 reduces nuclear spin Gate Oxide Electron

coupling _ Accumulation
Si Substrate

Advantages of the MOS System:
= Tunable Densities

=Scaling advantage due to gate proximity to
electrons

=No d-dopants required for transport
=Readily CMOS compatible




Coulomb Blockade in MOS Structures

Mobility Feature | ot gize Result
Size
Angus et al. ~5000 cm?Vs |~30nm | ~50nm Stable Coulomb
blockade
: Coulomb blockade
.W. L . al. - ~50 12 ’
H-W.Liuet. a nm nm Pauli blockade
De Graafetal. | 5000 cm?/Vs | ~200nm | <150nm Disorder Dot

Smaller dot reports appear less
affected by disorder

Recent results are stable &
show single electron
characteristics (Pauli blockade)

Target: Repeat successes of
GaAs structures

Angus, et al. Nanoletters 7, 2051 (2007)
H.W. Liu et al. PRB 77, 073310 (2008)
C. De Graaf, et al. PRB 44, 9072 (1991)



‘ Initial Device Structure
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‘ Final Device Structure chobal rop:
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CV Measurements
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Sources ot Disorder Inducing Process
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Sources ot Disorder Inducing Process
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Sources ot Disorder Inducing Process

Damage
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Sources ot Disorder Inducing Process
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‘ Device Operation

QuUAD 3 B8 . 188

Metal Global Gate

Secondary Oxide

Gate Oxide

Si Substrate

Polysilicon gates can be
used for either accumulation
or depletion in addition to the

global accumulation gate

G.M. Jones et al. PRL 89, 073106 (2006)



‘ Device Operation
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Metal Global Gate
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Gate Oxide
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Polysilicon gates can be
used for either accumulation
or depletion in addition to the

global accumulation gate

Polysilicon gates accumulating




‘ Device Operation

Metal Global Gate

Gate Oxide

Si Substrate

Polysilicon gates can be
used for either accumulation
or depletion in addition to the

global accumulation gate

Both global top gate, and polysilicon
gates accumulating




‘ Device Operation

Metal Global Gate

Secondary Oxide

Gate Oxide

Si Substrate

Polysilicon gates can be
used for either accumulation
or depletion in addition to the

global accumulation gate

Global top gate accumulating,
polysilicon gates depleting to form a
quantum dot.




‘ Disorder Dot

= Peak spacing corresponds to a dot

16! diameter of ~65nm, fitting well within
14 the lithographic constriction
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‘ Process Induced Disorder
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Lithographically Induced Coulomb
Blockade

L

FFT Peak = 321 Oscialltions/V

0.15

(€2/h)

Conductance
o
N
o

. { = Using different gate combinations
produce different oscillation
0.05t FFT Peak = 108 Oscialltions/V/ | frequencies

-0.7 -0.6 -0.5 = These oscillation frequencies lead to
Plunger Gate Voltage (V) physically reasonable capacitances
between the gate or gates and a dot
within the center region
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Capacitances: Measured and Calculated

Gate

Model

Measured
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M MO0 |®@|>
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Calculated capacitances compare
favorably in trend and magnitude with
those extracted directly from transport
data
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‘ Stable, Repeatable Coulomb Blockade

Conductance (€°/h)
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Summary

Double top gate MOS quantum confined structures produced

with SNL Si fab facility and additional “back-end” processing

o Stable, repeatable Coulomb blockade peaks observed within
designed structure despite

Critical processing steps have been identified and evaluated

for potential damage to the prospective device

o Thermal metal evaporations and forming gas anneals clearly
improve studied figures of merit

Future direction: More suitable geometries,
and implementation of more disorder
mitigation strategies
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