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 Goal:

 Coupled Few-Electron Quantum Dots in a 
Silicon/Silicon Dioxide Inversion Layer

 This Talk: 
 Process Characterization

 Disorder Observation and Mitigation

 Nanostructure Characterization
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Quantum Dot Spin Qubits in Si
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Gate Oxide

Poly Gate

Secondary Oxide

Metal Global Gate

Electron
Accumulation

Advantages Si Material:
Low spin-orbit coupling

High percentage Si28 reduces nuclear spin 
coupling

Advantages of the MOS System:
Tunable Densities

Scaling advantage due to gate proximity to 
electrons

No δ-dopants required for transport

Readily CMOS compatible
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Coulomb Blockade in MOS Structures

 Smaller dot reports appear less 
affected by disorder

 Recent results are stable & 
show single electron 
characteristics (Pauli blockade)

 Target:  Repeat successes of 
GaAs structures
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H.W. Liu et al. PRB 77, 073310 (2008)

Angus, et al. Nanoletters 7, 2051 (2007)
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Initial Device Structure
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Peak Mobilities ~ 13000 cm2/Vs before post processing @4K
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Final Device Structure
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Process Step Effect on 
DIT

Effect on Qcalc

Poly silicon 
Etch

No Effect Increases negative 
charge to -4E+11

30nm of ALD 
Al2O3

Lower by 
25-50%

Increases negative 
charge to ~ -1E+11

Thermal 
Evaporation

Lower by 
25-50%

No Effect

Values for 35nm Gate Oxide, 
and electron beam 

evaporation:

Dit=2.39E+10 cm-2eV-1

Qcalc=6.58E+10 cm-2
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Sources of Disorder Inducing Process 
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Device Operation

Polysilicon gates can be 
used for either accumulation 
or depletion in addition to the 

global accumulation gate

Si Substrate

Gate Oxide

Poly Gate

Secondary Oxide

Metal Global Gate

G.M. Jones et al. PRL 89, 073106 (2006)
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Device Operation

Polysilicon gates can be 
used for either accumulation 
or depletion in addition to the 

global accumulation gate

Si Substrate

Gate Oxide

Poly Gate

Secondary Oxide

Metal Global Gate

Polysilicon gates accumulating
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Device Operation

Polysilicon gates can be 
used for either accumulation 
or depletion in addition to the 

global accumulation gate

Si Substrate

Gate Oxide

Poly Gate

Secondary Oxide

Metal Global Gate

Both global top gate, and polysilicon 
gates accumulating
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Device Operation

Polysilicon gates can be 
used for either accumulation 
or depletion in addition to the 

global accumulation gate

Si Substrate

Gate Oxide

Poly Gate

Secondary Oxide

Metal Global Gate

Global top gate accumulating, 
polysilicon gates depleting to form a 
quantum dot.
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Disorder Dot
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 Peak spacing corresponds to a dot 
diameter of ~65nm, fitting well within 
the lithographic constriction

 Longer period oscillations would 
correspond to a 25nm diameter
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Process Induced Disorder
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Lithographically Induced Coulomb 
Blockade
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 Using different gate combinations 
produce different oscillation 
frequencies

 These oscillation frequencies lead to 
physically reasonable capacitances 
between the gate or gates and a dot 
within the center region
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Capacitances:  Measured and Calculated

Gate Model Measured

A 36.0aF 48.1aF

B 17.0aF 14.1aF

C 17.0aF 17.3aF

D 17.0aF 14.7aF

E 36.0aF 48.1aF

F 15.0aF 20.8aF

A

B C D

E

F

 Calculated capacitances compare 
favorably in trend and magnitude with 
those extracted directly from transport 
data
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1μm

Stable, Repeatable Coulomb Blockade
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Summary

 Double top gate MOS quantum confined structures produced 
with SNL Si fab facility and additional “back-end” processing

 Stable, repeatable Coulomb blockade peaks observed within 
designed structure despite

 Critical processing steps have been identified and evaluated 
for potential damage to the prospective device

 Thermal metal evaporations and forming gas anneals clearly 
improve studied figures of merit

 Future direction: More suitable geometries, 
and implementation of more disorder 
mitigation strategies

1μm
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