SAND2008- 7867C

Instruction-Level Simulation of a Cluster at Scale

Abstract

Accurate simulation is necessary to evaluate new archi@cteatures. However, single-node, instruction-
level simulation cannot predict the performance or behagfoa parallel application on a cluster or a
supercomputer.

We present a scalable cluster simulator that couples a-agclgrate node simulator with a supercomputer
network model. Our simulator leverages the computatioesburces of a cluster by executing individual
instances of IBM's Mambo PowerPC simulator on hundreds deso

We integrated a network and NIC model into Mambo and traresbptication data between simulated
machines using the transport layer of the cluster we run @mdtel the network instead of fully simulating
it, which decouples the individual node simulators enougiméke our design scalable.

Our simulator is able to run unmodified parallel messageipgsgpplications on hundreds of simulated
nodes. We can change network parameters, inject netwdflc tdirectly into caches and use different
policies to decide when that is an advantage over depodtiaglata in main memory. Mambo itself can
simulate various numbers of CPUs, different cache and megsipes, and has a multitude of parameters
that allow us to simulate a wide variety of different paradigstems.

The main purpose of this paper is to describe our simulatateiail, evaluate it, and demonstrate its
scalability. We also demonstrate the suitability of ouistdu simulator for architecture research by showing

the impact of cache injection on parallel application perfance.

1. Introduction

The study and implementation of novel architectures playinaportant role in the development and
advancement of applications on future-generation, higheomputing systems. Researchers are exploring
potential architectural changes for clusters, includimgde range of techniques such as hardware matching
support for scalable communication libraries (Brightwedlal. 2006), various techniques for injecting
incoming communication messages into processor cachdwdBet al. 2004a; Huggahalli et al. 2005;
Lebn et al. 2007), and radical architectural changes likecgssor-in-memory (Rodrigues et al. 2005).
Unfortunately, the impact of such changes is difficult todiceanalytically due to the complex interactions

between the architecture, operating system, systemikisraand applications.

Architectural simulators that examine the impact of systdranges on application performance have
not historically scaled well. For example, coarse-graisietulators skew dramatically when these changes
are scaled up over tens or hundreds of systems. Similadye-@ccurate simulators which can accurately
model every event to nanosecond accuracy in a single systate, up poorly. Their running time increases
dramatically even for a small number of processors. Thistdirdesigners in their ability to study how
architectural changes affect scientific application penfnce as a cluster grows in scale.

To address this problem, we present an MPI-based clustarlaion designed to enable studies of
architecture/operating system/application interagtion current and future architectures. Unlike previous
work, our cluster simulator architecture uses existingstelts to simulate future clusters by coupling a
cycle-accurate full-system node simuldtarith an MPI-based high-performance network model.

The contribution of this paper is the design and impleméniatf a scalable cluster simulator that can
be used to analyze the impact of novel architectures onlpbagiplication performance. We describe the
design of our network and NIC model that couples the indigidwde simulators in Section 2 and evaluate
the resulting cluster simulator in Sections 3 and 4. We aedllgree cache injection policies to demonstrate

the capabilities of our simulator (Section 5).

2. Cluster simulator

To study the impact of future architectures on scientificligppons at scale, we built a flexible apparatus
to simulate a cluster of machines based on a cycle-accunatdagor. This cluster simulation infrastructure
allows us to leverage the parallel computation capalslité current clusters to simulate future parallel
architectures or current ones with different performaritaacteristics.

Our cluster simulation infrastructure consists of thedwihg components: a multiprocessor full-system
simulator on each each node of the physical cluster, an O8@nchunication libraries for the simulator, a
shim layer, a modeled NIC, a modeled network, and a runtim@amment to launch the simulated cluster.
Since we will be referring to two clusters — the simulategtduand the physical cluster where the simulated
cluster runs — we will use the following terms for the rest lutpaper. Anoderefers to a physical host
within the real cluster; anachinerefers to a full-system simulator running on a node; ahd@refers to a

modeled NIC that connects machines within the simulatesteiu

LA full systemin this context means all the components that make up a sioceslement (PE) of a cluster node: CPU(s), caches,
main memory, and the components that connect these parts.

Our simulated cluster is launched on a physical cluster lBc@ing one instance of a machine per
node. The machines communicate with each other over a ntbdelgvork through a modeled NIC. The
NIC serves as a bridge between a (simulated) machine andyai¢ph) node. The NIC uses the existing

messaging system on the physical cluster to communicateNWEs running on other nodes.

Application Application
me fE - I
Shim Shim

- K42 K42
' Mambo Simulator Mambo Simulator r
P — o —
—_— —_—
Transport Transport
Launch / \.aunch
Physical
Node A OpenMPI > e¥wlcm B e ———— OpenMPI Node B

Figure 1. Two simulated machines communicating with each other tjindhe physical cluster's network.

Figure 1 illustrates the architecture of our apparatus. & ghysical node of a cluster we launch an
instance of IBM’s Mambo full-system simulator (see Sectibh below). Each Mambo instance runs the
K42 operating system. The application under test uses theCMRPGropp et al. 1996) implementation of
MPI to communicate with the system. This version of MPICHsuseevice layer we call MIAMI to interact
with its peers on other nodes. It does that by interacting wie local NIC model which, in turn, uses the
physical system’s MPI layer to exchange messages with atiags on behalf of the simulated application.
The physical transport in our case is the OpenMPI (Graham. &085) version of MPI running over
Myrinet, Infiniband, and Ethernet, depending on which @uste run our tests on.

The full-system simulator provides a cycle-accurate satioh of a single-node, multiprocessor system.
This machine provides a platform to study architecturatuiess and configurations not yet available in
current hardware. Our goal in developing a cluster simuaiinfrastructure is to leverage existing single-

node simulators in a cluster setting.

2.1 Mambo

The full-system simulator we use in our infrastructure imagmented version of IBM’s Mambo full-system
simulator (Bohrer et al. 2004b) that provides cache injectif incoming network messages (Bohrer et al.
2004a). A simulated machine is a multi-core, cache-cohedistributed shared memory system (Sinharoy

et al. 2005). We run the K42 research operating system (Aqgpatal. 2005) on Mambo.

3

Table 1 shows the configuration of Mambo we have chosen foexperiments presented in this paper.
One of the key features of a cycle-accurate simulator isrtieaty of its configuration parameters can be
changed. Mambo is no exception and we plan to use additimmak@nd different cache organizations to

simulate different machines in the future.

Table 1. Simulated system configuration.

Feature Configuration

Simulator Mambo PowerPC full-system simulator
Architecture Power5 with cache injection to L2/L3
Processor 1.65 GHzfrequency

L11/D cache 64KB/32KB, 2-way/4-way

L2 cache 1.87BB, 3-slice, 10-way, 10 cycle latency
L3 cache 36VIB, 3-slice, 12-way, 80 cycle latency

Cache line 128
Main memory 1024VB, 230 cycle latency

oS K42
Comm. Lib. MPICH-MIAMI w/OS-bypass & 0-copy
Network Cray XT-3 Red Storm

2.1.1 Fast-forward mode

Cycle-accurate simulation is expensive in terms of timew8bwn factors of several orders of magnitudes
are common. Mambo spends a large portion of its time sirmgdtie operation of caches. Cache simulation
can be turned off in Mambo to make it run faster. The simulatedhine then behaves as if no caches were
present and that it can access main memory at L1 cache speeds.

For many experiments that is a useful feature that does ruséihihe end result. For example, in studies
that focus on network characteristics, it may not be alliting@iortant how fast the application itself executes.

For accurate machine simulations however, cache simolagéeds to be on. We have added the ability
to fast-forward in our cluster simulation infrastructuBuring application startup, for example, we would
like the simulation to proceed as quickly as possible. Whettion reaches the inner kernel, we activate
the cache simulation. In Section 4.3 we will demonstrate fisture. We run through the application setup
phase with cache simulation disabled, and then turn it oarbefie reach the computational kernel we are
interested in evaluating.

Fast-forward can also be used to let an application restart &n earlier checkpoint. While reading the
restart data and initializing, cache simulation can beddraff. Once the calculation resumes, we enable

cache simulation. This feature enables us to simulate togg@lication runs in less time.

4

For many of the experiments in Section 4 we ran with cache lsiion turned off, since for most of
those experiments we were not interested in the actual atronlresults from Mambo. The experiments
in Section 5 were done with cache simulation turned on. We lirayplemented fast-forward mode for the

AMG application and use it for all experiments with AMG, usgewe specifically say otherwise.

2.1.2 Interfacing Mambo with the NIC

A machine and its associated NIC interact througshem layer This layer provides a bidirectional path
between the simulated machine and the NIC (see Figure 2)n@side, a machine communicates with its
NIC through memory mapped registers. Using this mechargsoser process can interact with the NIC
directly, bypassing the OS and/or hypervisor if needed.e8sdo these registers is controlled by the OS
and/or hypervisor. On the other side, a NIC communicatds igtmachine through a well-defined interface
called theshim interface The table in Figure 2 shows the operations provided by tiva siterface. The
implementation of this interface is simulator dependamtaddition to the operations listed in the table, the

shim layer provides functions to load and unload networkrodlers and other devices at run time.

Function Description
NG ‘ memoryread/write read/write to main memory
"/ : T cachewrite write to L2/L3 cache
" Shim T oo Simulator schedulgjob launch job on host
;Laye' delay.cycles time delay on host
P — raiseinterrupt I/O interrupt

memorymappedl/O functions to trigger on regs

.

Shim Interface

Figure 2. The shim layer provides the glue between the system sinmdatbthe NIC.

2.2 The network and NIC model

A NIC connects its local machine with the rest of the machingming on the cluster. It acts as a bridge
between its machine and the physical node it is running oe.NIC uses the host node’s transport layer
(MPI) to communicate with NICs running on other nodes of tysteam.

Each message sent between simulated machines is augmegritesl BIC with a timestamp and delay
information about the modeled network. The NIC then sendsittiormation together with the actual data
using the transport layer provided by the host cluster. Eoeiving NIC waits to deliver the message to the

simulated machine until its clock reaches the message&stamp plus the modeled network delay.

5

This is possible because the network of the physical cllistdss lighting fast in comparison to the very
slow running simulated machines. The NICs can deliver ngessat practically any latency and bandwidth
in simulated time. This allows us to present the simulatedhmes with any type of network (physically

possible or not) of our choice.

2.2.1 Synchronization

The clocks on the nodes of a typical cluster are not syncheonand drift over time. Furthermore, the
performance of nodes in a cluster is not the same and imgaeierformance of the simulated machines.
Therefore we need to synchronize the simulated machinesiorewhile so that none of them get too far
ahead of the others in the system.

We accomplish this synchronization by executing a barperation at specific intervals of the simulation
clock. For example, if the synchronization interval is @000, then the simulated machines will execute
the barrier when they reach 50,000, 100,000, 150,000, and,stycles. While the machines wait for each
other in the barrier, the local simulation clocks are stabpe

The delay caused by the barrier is not visible to the simdlaeplication. However, the barrier has
externally visible effects. If one of the machine simulat@ slow in reaching the barrier, because it writes
lengthy debug information to an external disk for examplietha simulated machines are delayed by that.
In other words, the overall execution time of our clusterdator represents the slowest path through all

instances of the individual machine simulators. We willlea#e the impact of synchronization in Section 4.

2.2.2 Network model

To decide when to deliver messages, we use the network ntatastpart of Seshat (Riesen 2006) and has
the characteristics of a Cray XT-3 Red Storm network. Saslaat execution driven discrete event simulator
to study application behavior under varying network chizmastics.

The current network model does not take network topologyg ounsiderations. Therefore it is not
capable to emulate congestion. Two configuration parasatiEw us to vary the bandwidth and latency of

the model. This enables us to simulate faster or slower nm&syo

2.2.3 NIC model

To run parallel applications on our simulated cluster, weetlped a minimal API needed to support MPI:
MIAMI — Minimal Interface for An MPI Implementation. The asynchoos MIAMI API is shown in

Table 2. It supports OS-bypass and allows for zero-copy Népisfers.

Table 2. MIAMI API

Function Description

int init (void); initialize

int finalize(void); clean up

int sizgvoid); number of processes in job
int rank (void); my rank in job
doubleclock(void); time in seconds

int tx_start(void *buf, int len, int cntxt int tag, int dst int Isrc); start a send

int stx_start(void *buf, int len, int cntxt, int tag, int dst, int Isrc); synchronous send

int tx_dong(int handlg; check send completion
int rx_start(void *buf, int len, int cntxt int tag, int src); post a receive

int rx _dong(int handle int *len, int *tag, int *src); check receive completion
int rx _probe(int *flag, int *len, int cntxt int *tag, int *src); probe for message arrival

We implemented a driver on our simulated NIC for the elewametion MIAMI API, and also created
a corresponding device layer for MIAMI in the MPICH implemation of MPI that runs as part of the
simulation. Figure 3 shows how a simulated applicationrades with the local NIC. The application makes

calls into the MPICH library which in turn uses the MIAMI ARb interact with the NIC model.

Application

MPI-MIAMI

K42
Mambo Simulator r
. |

Figure 3. An application on a simulated machine interacting with teal NIC.

Shim Interface

Most MIAMI functions in the NIC are implemented straightfeard as calls into the physical system’s
transport layer. In our case that layer is OpenMPI runnirgy ddyrinet, OpenlIB, or Ethernet depending on

the cluster we are using for our experiments.

Several factors complicate the implementation of MIAMI iardNIC. Our simulation infrastructure is
in itself a complete parallel application, and it must noé tise underlying MPI in an illegal manner. For
example, the infrastructure might be in the middle of a ptaApoint transfer on behalf of the simulated
application when Mambo’s clock reaches a synchronizatiberval and forces a barrier. Other nodes may
still be sending or waiting for messages before they reaein Barrier points. It is important not to cause
deadlock or violate the rules of the MPI standard in suclasibas.

Another complicating factor is that we have to send envelofigmation along with each message the
simulated application sends. We use information insideeheelope to decide when to deliver a particular
message. In order to see the envelope information we hawe#ive the message into a buffer so we can
examine it. This is made difficult when messages arrive ueebgally and the simulated application does not
post a receive until much later. The NIC has to perform cétaitier management and message matching

while maintaining good performance and scalability.

3. Experimental setup

We ran our experiments on two large clustergramoved for blind review)in this section, we briefly
describe the characteristics of these machines, anddistehchmarks and applications we used to evaluate

our infrastructure.

3.1 Test platforms

Cluster® is comprised ofremoved for blind reviewgompute nodes. They are dual &6izIntel EM64T
processors with GB of RAM. Cluster®’s network is an Infiniband fabric with a two level Clos topgjo
The nodes run Red Hat Enterprise Linux with a 2.6.9 kernelwsmadLustre as the parallel file system. We
use the version 1.2.7 OpenMPI library and the version 1.3FEDlibrary to connect to the Infiniband
fabric.

Clustery: has(removed for blind reviewpodes and each has dual &#zintel EM64T processors with
2 GB of RAM. It uses a Myrinet for its interconnect. It also runsdRdat Enterprise Linux with a 2.6.9
kernel and runs OpenMPI version 1.2.2 which uses versiory bPthe MX library to interact with the
Myrinet.

Both of these systems have dual CPU nodes. Due to the way Ke&iaats with Mambo, we are limited
to run a single simulator on each node. That means we cwyreaedd 256 cluster nodes to simulate 256

nodes.

3.2 Benchmarks and applications

We chose five different benchmarks and applications to testsaluate our simulator.

3.2.1 IS from the NAS parallel benchmark suite

IS is the well-known integer sort benchmark from the NAS pearaenchmark suite (Bailey et al. 1995; der
Wijngaart 2002). We used version 2.4 for our experimentscioge IS because it has a very short runtime.
This makes IS very suitable for cycle-accurate simulatiwhich take many hundred to thousand times
longer to finish than the native execution time of the testtthmark.

The second reason we chose IS is that it is a C code. We cyrgmtiot have a Fortran cross compiler
available for our test environment. This prevents us frormiog the remaining NAS parallel benchmarks

which are written in Fortran.

3.2.2 AMG from the Sequoia acceptance suite

AMG is an “algebraic multigrid solver for linear systemssamg from problems on unstructured grids” (Lawrence
Livermore National Laboratory 2008). It is one of severahdfemarks used by Lawrence Livermore Na-
tional Laboratory (LLNL) in its request for proposals andegtance of the Sequoia supercomputer. Sequoia
will be LLNL's next Advanced Simulation and Computing (AS@pnchine.

We chose AMG because it is a communication intensive agpitavhich can, for large problem sizes,
spend 90% of its execution time using the MPI library to tfansnessages. Doing this, AMG uses mostly
MPI collective operations. A small percentage of commuidca are point-to-point messages of relatively
small size (2 — 10 KB) (Lawrence Livermore National Laborat?008).

AMG contains several different solvers which can be setefrtan the command line. The data presented
in this paper is from solver O (the default) and solver 1 rils.chose those two solvers because they seem
to place more demand on the memory subsystem than the otlverssaCache injection (discussed in
Section 5) should benefit these solvers more than the otheilalzle in AMG.

AMG has three distinct phases of operation. The solver ranthé third phase, while the first two
phases are used for problem setup. We augmented AMG so itioan fast forward mode (discussed in
Section 4.3). We let AMG run without cache simulation duringst of its setup phases and turn on cache
simulation a little before we enter the solve phase. Turiche simulation on a little early is necessary to

let the caches warm up before we enter the solve phase.

9

3.2.3 LAMMPS from the Sequoia acceptance suite

LAMMPS (Plimpton 1995) is a classical molecular dynamicdedeveloped at Sandia National Laborato-
ries. For our experiments we use the embedded atom methdd)Ewtallic solid input script used by the

Sequoia benchmark suite and provided on the LAMMPS web Saedia National Laboratory 2008a).

3.24 FFTW

FFTW (Fastest Fourier Transform in the West) is a C libraryclmumputing the discrete Fourier transform
(DFT) in one or more dimensions (Frigo and Johnson 20050Ft@P9). We use the MPI parallel FFTW
version 2.1.5 (MPI transforms are available only in thissi@n). FFTW allows the computation of different
types of transforms, including normal and transpose omttef, with and without work space. The output
data computed by these transforms maintain the same ogdasithe input data for normal, and transpose
order for the transpose transform. The work parameter¥BEs\11toall communication at the expense
of extra storage space, while no work uses point-to-pointroanication. We use the speed test provided by
the parallel FFTW to benchmark complex multi-dimensiomahsforms on several processors. The results

reported in this paper use normal order without work space.

3.25 HPCCG

HPCCG is one of the micro-applications of the Mantevo proj&andia National Laboratory 2008b).
Micro-applications are “small, self-contained progratnattembody essential performance characteristics
of key applications.” HPCCG is intended to be the “best apipnation to an unstructured implicit finite
element or finite volume application in 800 lines or fewerieEe characteristics make HPCCG ideal for

our purposes.

4. Cluster simulator evaluation

In this section, we evaluate several characteristics ofctuster simulation infrastructure. Our goal is to
build a flexible apparatus that is scalable, performs waellratiably, and produces valid results. We present
some initial experiments we have conducted using our alsgteulation infrastructure in the next section.

Here we evaluate the simulator itself.

10

4.1 Repeatability

Since cycle accurate simulation is time consuming it is meotgs possible to repeat a single experiment
very many times to avoid measurement errors. It is therafoportant to know how repeatable individual
results are and how often outliers occur.

Table 3 shows the application reported run times for sevaralir applications. Since we are running
on production clusters, an important consideration is tretunning on the same set of nodes produces

different results, than running on whatever nodes the b&tstem allocates to us.

Table 3. Variations in reported simulation time.

Program Minimum Mean Average Maximum SD Runs
AMG, 8 nodes, same nodes -0.92% 3Mm8 35.2ms +18.17% 3.4ns 7
AMG, 8 nodes, batch -7.70% 36m@s 36.5ms +14.24% 2.9ms 19
HPCCG, 64 nodes, same nodes -0.66% 86 81.2ms +4.06% 1.3ns 2x7
HPCCG, 64 nodes, batch -1.34% 88 8l1.2ms +3.72% 1.1Ims 58
LAMMPS, 16 nodes, same nodes -0.78% 4802 480.1ms +0.63% 2.7ms 7
LAMMPS, 16 nodes, batch -0.85% 480w 480.2ms +0.75% 2.4ms 24
IS, 64 nodes, 7 same nodes -0.00% 7500 750.0ms +0.00% 0.0ms 6x7
IS, 64 nodes, batch -0.00% 750 750.0ms +0.00% 0.0ms 9

We therefore ran several times in two different modes. Irtcivamode we repeatedly submit the job
and let the system determine which nodes are available &br ®fbsequent run. In “same nodes” mode we
submit a single batch script and run the same benchmark seves. Each of the seven runs is then using
the same set of nodes allocated for the duration of the run.

For each application and mode we calculate the minimum, ma&arage, maximum, and standard
deviation of the running time each benchmark reports. Th@rmim and maximum are expressed as a
percentage of the mean.

There is no significant difference whether we run on the saanhefsodes, or let the batch system allocate
nodes for us. However, there is a difference in the behavithebenchmarks. While IS and LAMMPS
show almost no variation from one run to the next, HPCCG andAfMictuate more. Figure 4 shows the
difference between running AMG several times and running/MPS several times in a row.

AMG is much less deterministic. Indeed, in many of our expents we noticed AMG producing

outliers, requiring more runs to observe trends in a givgregrent.

11

120% 4 e e e 120%
c
o =4
% 100% W . .g 100% é—d—o——b—t—0—4—d—a oAby A bbb bd A
& k)
s
2 80% > 80%
£
= g
5 =
3 60% S 60%
7] o
3 £
a 40% S 40%
[0} =
= <
-
R e | 20%
Same set of nodes —&— Same set of nodes —e—
Various nodes —4— Various nodes —4—
0% = 0%
ABCDEFGHIJKLMNOPQRST ABCDEFGHI JKLMNOPQRST
Run Run
(a) AMG on 8 nodes (b) LAMMPS on 16 nodes
Figure 4. Examples of reported simulation times over several runs.
£.000 5 18k 1 AMG on 16 nodes
’ LAMMPS on 8 nodes —4— 16 k \| ‘ : LAMMPS on 64 nodes —e— |
LAMMPS on 64 nodes —e— LAMMPS on 8 nodes —4—
3.500 s HPCCG on 8 nodes —v— | i 1 « HPCCG on 8 nodes —v—
AMG on 16 nodes 14 | | | |
3.000 s
5] s 12k
£ 2.500 s S
= < 10k
2 2.000 s H
© o
= ° 8 k
€ 1.500 s 2
N n 6k -
1.000 s
4 k
500.000 ms
2k
0.000 s — !
10t 10> 10° 10* 10° 10° 10" 10®° 10° 10% 0 PR
Synchronization interval in simulated clock ticks 10 10° 10° 100 10° 100 10° 10 10° 10
Synchronization interval in simulated clock ticks
(a) Impact on simulation time (b) Impact on wall-clock time

Figure 5. Frequency of synchronization impacts reported simulaiioe and measures wall-clock time.

4.2 Impact of synchronization interval

In Section 2.2.1 we discussed how our simulation infrastineckeeps the individual machines synchro-
nized. The choice of synchronization interval has an impadtow long a simulation takes and the accuracy
of the simulation.

For the results shown in Figures 5 and 6 we ran LAMMPS, sirmgat,000 atoms, on 8 and 64 nodes,
HPCCG on 8 nodes with a problem size ofxlIDx 10, and AMG with solver 0 and problem size 1. Since
we are only interested in the synchronization impact, waddrcache simulation off for LAMMPS and
HPCCG. We ran AMG in fast-forward mode with cache simulatidihuntil just before the solver phase

which AMG measures.

12

AMG on 16 nodes
14.0s LAMMPS on 8 nodes —4— |
LAMMPS on 64 nodes —e— ‘
12.0s HPCCG on 8 nodes —v—)
[%2]
S 100s
"
c
3 80s
E
2 60
= 0s
a
40s
20s 1 - s
0.0s

10t 10° 10®° 10* 10° 10° 10 10® 10° 10%°
Synchronization interval in simulated clock ticks

Figure 6. Impact of synchronization interval on drift.

In Figure 5(a) we increase the synchronization intervah@lihez-axis and plot the reported simulation
time. The graph shows that if we increase the interval beydrmdit10° clock cycles, the simulation results
start to deviate from the results obtained when the nodesare tightly synchronized.

We calculate slowdown by dividing the simulation time betw®PI_Init andMPI_Finalize into the
wall-clock time between the calls to those two functiongufé 5(b) shows that increasing the interval
between node synchronizations lowers the slowdown factoatse the wall-clock time required to run
the simulation goes down. Our simulation infrastructurénigself a parallel application. By increasing
the synchronization interval we reduce the amount of me&spagsing and synchronization and, therefore,
increase performance.

Since we should not increase the synchronization intemybbd10° clock cycles, but want to keep it as
high as possible for performance reasons, a rang®®ofo 10° clock cycles seems appropriate. We chose
50,000 for all the results reported in this paper.

Before each synchronization we read the local wall-cloEksing the synchronization we find the lowest
time value and subtract it from the highest time value. Thémgures how much these two extreme nodes
have drifted from each other during the previous intervat k&¥ep a running total and report the average
drift at the end of the simulation.

Figure 6 shows the impact the synchronization interval imedriit. Some applications are more prone to
drift than others, with drift becoming a problem at an ingérof about10° clock cycles.

Synchronizations occur at specific simulation time intkrVvii the nodes drift too much from each other,
fast nodes will have to wait longer for others to reach thgichronization points. The simulation clock is

stopped during these waits.

13

Drift is caused by the environment outside our simulaticamfework. Different nodes run at slightly
different speeds, but a bigger factor is OS noise and I/O,riteWwogging information for example. While
a node is busy writing to an external file system, or doing O&skkeeping tasks, the simulation clock is
not advancing. When that node joins the others in the nextrsgnization it will show up late and we can
measure that delay.

If the synchronization intervals are high (greater tHaf clock cycles), faster nodes can get too far
ahead. That means our network model may deliver some mes$stgen simulation time. This in turn
leads to delays in simulation time at the receiving nodet iahy drift in wall-clock time has an impact
on simulation time. By choosing a good synchronizationrirdewe can keep drift to a minimum and
prevent artificial delays in simulation time.

Another way to look at this is that our simulation framewodng schedules the simulated nodes. It can

only do that, if we keep the synchronization interval sudfitly small; i.e., belowl 0° clock cycles.

4.3 Fast-forward evaluation

In Section 4.3 we described the ability of our infrastruetta disable cache simulation and let the simulation
progress faster. At a strategic point in the applicationtwe cache simulation back on to properly evaluate
an inner kernel or restart a calculation after we have fialized from a checkpoint for example.

When turning cache simulation on, the caches will be emptlyreeed some time to warm up. To avoid
inaccurate results, it is necessary to turn cache simulatioa little before the program section of interest.
A statement inserted into the source code of the programruaesieaccomplishes that.

We ran AMG on 8 nodes with solver 0 and different workloaddwe#che simulation turned off, always
on, and only on during the calculation phase. We obtainedebelts shown in Table 4. For fast-forward
mode we turned cache simulation on during the setup phasiewothe caches to warm up before entering
the calculation phase.

Both wall-clock and simulation time are measured betwéeh Init () andMPI Finalize(). The
slowdown factor is the wall-clock time divided by the sintida time. The results in Table 4 are the average
of three runs each (problem size 3 is six runs for each simoulat

The “Solver only” column is the time AMG reports being in tha& phase. During that phase cache

simulation is turned on in the “always on” and the fast-formvenode. Therefore, the solver times reported

14

Table 4. Cost of cache simulation for 8-node AMG

Problem size Cache simula-Wall-clock Simulation Solver only Slowdown

tion factor
Always off 0:00:19 123.46%ns 29.209ms 158
111 On during solve 0:10:13 137.880s 33.626ms 4,447
Always on 0:14:32 137.56fhs 33.258ms 6,340
Always off 0:02:48 535.78Ms 233.962ms 313
333 On during solve 1:25:43 753.848s 264.116ms 6,822
Always on 1:40:32 786.40rhs 264.944ms 7,671
Always off 0:06:15 1.118& 522.955ms 336
444 On during solve 3:31:09 1.780 610.965ms 7,118
Always on 3:58:37 1.854 614.203ms 7,721

in those two modes should be the same. The difference for mattem size in Table 4 is less than 1%,
which is well within the running time variations of AMG.

Using fast-forward mode to advance a simulation to the poinhterest should help us get the same
simulation results as if we had run the entire simulatiorhvache simulation turned on. Fast-forward

mode for AMG for the cases we measured saves up to 27 minutgstor30% for the small problem size.

4.4 Scaling

We have mentioned before that our infrastructure is its@éllel application. Due to the tight synchro-
nization of the simulated nodes the parallel performandadeinfrastructure is directly tied to the speedup
and parallel efficiency of the simulated application.

LAMMPS scales very well as can be seen in Figure 7(a). Thehgpdqts the reported LAMMPS time
against the number of nodes we ran on. In weak scaling modeavease the overall problem size with
the number of nodes available for the computation. This &ée@ problem size on each node constant. The
flatness of the curve attests to the fact that LAMMPS has \idlg (communication) overhead as more
nodes are added.

We ran with cache simulation turned off and show one run pablpm and node size. The exception is
the large problem size for which we ran three times for eactersize. The minimum, maximum, and mean
are plotted using error bars. However, the differences @sersll that the error bars are not visible behind
the plot points.

In Figure 7(b) we show the wall-clock time of our simulatiorfrastructure for the LAMMPS runs in

Figure 7(a) (fromMPI_Init to MPI_Finalize). Our simulator has some overhead due to the frequent

15

Large problem size —e— 20000 s Large problem size —e—
30.0s Medium problem size —+— 18000 Medium problem size —4—
Small problem size —v— s Small problem size —v—
5054 . e e e 16000 s
3] o 14000 s ¢
£ 200s £
c x 12000 s
2 3
& 150s t © 10000 s
£ y — A A A 4 A T;B
[} : : ! i
100s 7 7 8000 s]
6000 s .
50 | ' ' 4000 s I !
00s 2000 s
1 8 16 64 128 256 1 8 16 64 128 256
Number of nodes Number of nodes
(a) Simulation time (b) Wall-clock time
Figure 7. Simulation and wall-clock time of simulator running LAMMPS
9.0s .
Large problem size —e— 7000 s Large problem size —e—
80s Medium problem size —+— | Medium problem size —4—
: Small problem size —v— 6000 s Small problem size —v—
70s Tiny problem size — ! Tiny problem size
5000 s
[} [}
£ £
= S 4000 s
o [5}
= S
S 40s 2 3000s
£ S
® 30s e
2000 s
20s
1000 s
1.0s
0.0s 0s
1 8 16 64 128 256 1 8 16 64 128 256
Number of nodes Number of nodes
(a) Simulation time (b) Wall-clock time

Figure 8. Simulation and wall-clock time of simulator running HPCCG.

synchronizations which require all-reduce communicatiesery 50,000 simulation clock cycles. Never-
theless, it scales very well and is suitable for simulatirglxscaling applications, such as LAMMPS, to
several hundreds and thousands of nodes.

Figure 8 shows the running time of the simulated HPCCG mapplication and the behavior of our
simulation infrastructure in wall-clock time. Each plotiporepresents a single run of HPCCG with cache
simulation turned off. The simulated HPCCG does not scaliee s well as LAMMPS. Comparing
Figure 8(a) and (b), we can see that the inefficiencies of ouulation infrastructure are masked by
HPCCG's parallel performance characteristics. Despitg thur infrastructure scales well enough to run

HPCCG on several hundred nodes.

16

5. Cache injection

The purpose of creating the simulation infrastructure dleed in this paper is to conduct experiments
where cycle-accurate node simulation is important whefuatiag message-passing parallel applications.
In this section, we look at cache injection and its impact arafel applications.

Our version of Mambo has the capability of letting the NICettj data directly into the L2 or L3
caches. Writing to memory is performed by issuing writealidate bus transactions. Writing to a cache is
performed in chunks of one cache block and the state of thutiregblock is set to clean exclusive (Tendler
et al. 2002). Writes of less than one block are handled by & wwith flush operation (flush the cache line
first and then write the data into memory). Writes to a cachjaire the physical address of the destination
to be block-aligned. Thus, writing incoming network datatwache may involve writing the first few words
using write with flush until the destination address is caaligned, then writing full blocks to the cache.
Currently, all writes to a cache also update main memory.

When to inject data into the cache is a current topic of resednjecting network data before it is
needed will displace current data forcing a reload of th& @éus a reload of the network data later on.
Which network data to inject is also a question of interest.

We can inject entire messages with the risk of displacingriaoh data of the current working set. We can
inject only MPI envelope information from the message heaieh as source, tag, and length information
about the message, or we can inject both the payload and #ldehe

We will look at four different injection policies. “None” ino cache injection at all, which is the base
case to which we will make comparisons. “HI2” injects the sage headers into the L2 cache. “Payload”
injects the body of the message into the L3 cache as long gmthead is at least 128 bytes (a cache line),
but not more than half the L3 cache size. The fourth policy2{, combines header injection into the L2
cache with payload injection into the L3 cache.

The version of the NIC we used for these experiments injeata dt the time of a successful return
from a user-level call tex_done (see Section 2.2.3). That is, the data has arrived at thsdtsh and the
network model has determined that the (simulated) time &ivery has arrived. The next time after that,
when the application asks whether a particular messagerhasda(usingrx_done), the NIC injects the
data and returns success to the application query. Thi®agipishould increase the likelihood that injected

data will be used right away, since the application has jsist@ whether it was available.

17

Cache injection policy Cache injection policy

=] he] e ° =] ° ° e
v S v 3 v 8 v 3 v 8 v S v 8 v 8
SazS Sazd SaES SaEd SazS SaEN SaEE SaEw
cc cc cCc cc cc cc cc cc
= 600 k ‘n(‘Jn‘e‘trend‘ - = m = 60 k m T T N
s __hl2 trend S _
3. 500k : ; 2 50k ‘ ! ! ‘
g g T
400 k 40 k |
2 2 1. Ll
2 300k 7 -HT 2 30k T T
? 200k R 2 20k |
- il T |5 -
® 100k : = T 10k 1
g — il g
o | Aml& [0 il
8 16 32 64 8 16 32 64
Node count Node count
(&) AMG, solver0,-r111 (b) FFTW

Figure 9. Memory pressure is influenced by cache injection policy.

5.1 Memory pressure

One of the goals for cache injection is to reduce the numbémafs data has to travel across the memory
bus between arrival at the NIC and consumption by the CPUtHeravords, we hope that cache injection
relieves pressure on memory by serving more of the datatljifieom cache.

We can evaluate this by counting the number of read reque#ite imemory unit. Only reads that cannot
be satisfied from one of the cache levels result in a coune@et. In Figure 9 we show the number of
reads issued for the four cache injection policies on irginggnumber of nodes.

Both AMG and FFTW were run in weak scaling mode where the gmldize per node is kept constant.
The number of reads we report are for the entire run of FFTWthadolve phase for AMG. Each bar in
Figure 9 is the result of three runs. We show the median asosezbbar, and the minimum and maximum
as error bars.

Studying Figure 9(a) we see that without cache injectioanilimber of reads to main memory increases
exponentially as the node count goes up. The upper trenglaote a smooth curve among the no-cache
injection data points. The lower trend line follows the higalpoints.

It is clear that injecting header information into the L2 lva@reatly reduces memory pressure as the
node count goes up, when compared to no cache injection. asam the payload only injection policy
shows no benefit is because for the small problem size we usgrest of the messages are smaller than
128 bytes and will not be injected. The hi2p policy shows tme benefit as hl2 because the headers are
injected as in hl2, but the payload is not, since it is too ritdle FFTW data in Figure 9(b) shows a similar

benefit.

18

Cache injection policy Cache injection policy

load
load
load
load
load

el he]
© ©
o 2o O o O @ () [} 5} 5}
Suzs Sazd Sagd ST S - S S
cc cCc cc cCcoc cCcoc cCcoc ccoc cCcoc
180.0 ms 7t _ BOms
160.0 ms g
o) 5 50ms
€ 140.0 ms 2
>) | e
g 120.0 ms I £ 4.0 ms }{
¥ 100.0 ms || =
o § 3.0ms
O 80.0 ms T g
& 60.0ms N o 2 20ms i
S I = _ e
. . . -
=z 40.0 ms 2 1 0ms e ot
20.0 ms 1 . — i
w
0.0s 0.0s
8 16 32 8 16 32 64 128
Node count Node count
(a) AMG, solver0,-r111 (b) FFTW

Figure 10. Performance of AMG and FFTW using different cache injecpolicies.

5.2 Performance

Reduced memory pressure should lead to better applicaidormance. As Figure 10 shows, this is not
the case for our experimental runs. The reason is again tha# problem size. The memory subsystem
has plenty of capacity to support the additional reads thabime necessary as we increase the node count

because of the small problem size.

6. Related work

The cluster simulator we describe in this paper combinesserete event multiprocessor full-system
simulator with a NIC and a network model implementation. dbése event simulation has been a topic
of study for many years. We refer the reader to a textbook KBa al. 2000) which devotes a chapter to
systems simulation.

Parallel discrete event simulation has also been explaxezhsively and many techniques are in use
to limit interactions between distant parts of a system.s€hiateractions are necessary to synchronize
clocks. The event queues need to be distributed for a sioruiaiscale. This, however, increases the need
for additional synchronization. Fujimoto (Fujimoto 1998pvides a very nice description of the problems
involved in parallel discrete event simulation.

Asynchronous distributed simulation (Chandy and Misral)98 one way to address the problem of
synchronizing distributed parts of the same simulator.rbwements upon this work include (Greenberg

et al. 1996), and simulating large-scale systems is suraetaim (Fujimoto et al. 2003).

19

However, the problem of scalability remains. The larger tugdmore accurate the simulation, the longer
it takes. Some researchers turn to modeling instead (Heisie 2000, 2006; Kerbyson et al. 2001). While
this is more efficient, it is also less accurate and lessylitepredict future systems’ performance precisely
when compared to detailed discrete event simulation.

We believe that a hybrid approach of simulation and modeding yield accurate results within reason-
able time frames using compute resources such as a clusieamoall supercomputer. As we have explored
in Section 4.2 we still need to synchronize. However, it isless frequent than what would be necessary,

if we had distributed, but coupled, event queues.

7. Summary and future work

In this paper we describe an infrastructure that allowsesgstresearchers to study the impact of architec-
tural changes on scientific, parallel, application perfance. This infrastructure is designed to:

e leverage current single-node simulators into a clusteastfucture;

e enable simulation of recent and future cluster architestuincluding techniques to improve applica-

tion performance and scalability;

e allow system designers to better understand the interechetween the OS, parallel applications and

the NIC, as well as between nodes; and, finally,

e accurately simulate a cluster at scale.

The results presented in this paper indicate that our iméretsire can indeed meet these goals. We will
continue making improvements to the simulation infragtrcesitself. For example, we would like to replace
K42 with Linux and make launching a simulation more straigintvard. We also need to enable more than
a single node simulator instance per multicore node.

Many opportunities exist for future work with the simulatdescribed in this paper. We have only
scratched the surface of exploring the potential benefitsagshe injection, and plan to explore cache
injection policies for multicore architectures. We als¢emmd to assess the impact of different network
characteristics, such as different latencies and bantsjidin applications and their interactions with the
memory system.

Mambo is able to simulate a multi-processor multicore maehi his kind of architecture will become
prevalent in the next-generation supercomputers and igiiificantly change the flops to network band-

width ratio. We want to evaluate the impact of such an archite on parallel application performance.

20

References

J. Appavoo, M. Auslander, M. Burtico, D. D. Silva, O. Kriegéf. Mergen, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, and J. Xenidis. K42: an open-source Linux-catiipe scalable operating system keriBM Systems
Journal 44(2):427-440, 2005.

D. Bailey, T. Harris, W. Saphir, R. v. d Wijngaart, A. Woo, aMl Yarrow. The NAS parallel benchmarks 2.0.
Technical Report NAS-95-020, NASA Ames Research Centefféitd-ield, CA, 1995.

J. Banks, J. S. C. II, B. L. Nelson, and D. Nic@iscrete-Event System Simulatidrentice-Hall, Inc., 3rd edition,
2000. ISBN 0-13-088702-1.

P. Bohrer, R. Rajamony, and H. Shafi. Method and apparatuscfmglerating Input/Output processing using cache
injections, March 2004a. US Patent No. US 6,711,650 B1.

P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T. Nakra, JdPgson, R. Rajamony, R. Rockhold, H. Shafi, R. Simpson,
E. Speight, K. Sudeep, E. V. Hensbergen, and L. Zhang. Mamadull system simulator for the PowerPC
architecture ACM SIGMETRICS Performance Evaluation Revig®(4):8-12, March 2004b. ISSN 0163-5999.

R. Brightwell, T. Hudson, K. Pedretti, and K. Underwood. Acctalerated implementation of portals on the cray
seastar. IfProceedings of the Cray Users’ Group Annual Technical Ceamfeg Lugano, Switzerland, May 2006.

K. M. Chandy and J. Misra. Asynchronous distributed simatatia a sequence of parallel computatio@®mmun.

ACM, 24(4):198-206, 1981. ISSN 0001-0782.

R. F. V. d Wijngaart. Nas parallel benchmarks version 2.4.SNRechnical Report NAS-02-007, Computer Science
Corporation, NASA Advanced Supercomputing(NAS) DivisibBiASA Ames Research Center, 2002.

M. Frigo. A fast Fourier transform compiler. Proc. 1999 ACM SIGPLAN Conf. on Programming Language Design
and Implementatiorpages 169-180. ACM, May 1999.

M. Frigo and S. G. Johnson. The design and implementatiorr-®i¥3. Proceedings of the IEED3(2):216-231,

2005. special issue on "Program Generation, Optimizatiad,Platform Adaptation”.
R. M. Fujimoto. Parallel discrete event simulatid®@ommun. ACM33(10):30-53, 1990. ISSN 0001-0782.

R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, andfs Riley. Large-scale network simulation: How
big? how fast? Irillth IEEE/ACM International Symposium on Modeling, Analgsid Simulation of Computer
Telecommunications Systems (MASCOp&jes 116—123, October 2003.

R. L. Graham, T. S. Woodall, and J. M. Squyres. Open MPI: A filexhigh performance MPI. IRroceedings, 6th

Annual International Conference on Parallel Processingl &pplied MathematicsSeptember 2005.

A. G. Greenberg, B. D. Lubachevsky, and I. Mitrani. Supénfasallel discrete event simulatiorSCM Trans. Model.
Comput. Simuj.6(2):107-136, 1996. ISSN 1049-3301.

21

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-perforrnenportable implementation of the MPI message
passing interface standaréarallel Computing22(6):789-828, September 1996.

A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H. Aimegeheral predictive performance model for wavefront
algorithms on clusters of SMPs. I8PP '00: Proceedings of the Proceedings of the 2000 Intéomal Conference
on Parallel Processingpages 219-228, Washington, DC, USA, 2000. IEEE Computeie§o

A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and S. PakiRefformance Compariosn through Benchmarking
and Modeling of Three Leading Supercomputers: Blue Gerledd Storm, and Purple. lin Proc. IEEE/ACM
SuperComputingrampa, FL, November 2006.

R. Huggahalli, R. lyer, and S. Tetrick. Direct cache accesshigh bandwidth network I/O. 1182nd Annual
International Symposium on Computer Architecture (ISGA’Pages 50-59, Madison, WI, June 2005.

D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wassan, and M. Gittings. Predictive performance
and scalability modeling of a large-scale application. Pimceedings of the 2001 ACM/IEEE conference on

Supercomputingpages 37-48, Denver, CO, 2001. ACM Press.

Lawrence Livermore National Laboratory. ASC Sequoia bematk codes.https://asc.11lnl.gov/sequoia/

benchmarks/, Apr. 22 2008.

E. A. Lebn, K. B. Ferreira, and A. B. Maccabe. Reducing thpart of the memory wall for I/O using cache injection.

In 15th IEEE Symposium on High-Performance InterconnectsTH@), Palo Alto, CA, August 2007.
S. J. Plimpton. Fast parallel algorithms for short-rangéemdar dynamicsJ Comp Phys117(1):1-19, 1995.
R. Riesen. A hybrid MPI simulator. IlEEE International Conference on Cluster Computing (CLE&T06), 2006.

A. Rodrigues, R. Murphy, R. Brightwell, and K. D. UnderwoodEnhancing NIC performance for MPI using

processing-in-memory. IWorkshop on Communication Architectures for Clust®msnver, CO, April 2005.

Sandia National Laboratory. LAMMPS molecular dynamicsditor. http://lammps.sandia.gov, Nov. 6
2008a.

Sandia National Laboratory. Mantevo project home payetps://software.sandia.gov/mantevo/, Nov. 6

2008b.

B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, anl. Joyner. POWERS5 system microarchitectliBiv
Journal of Research and Developmetf(4/5), 2005.

J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. SinharoyWIEB4 system microarchitecturéBM Journal of
Research and Developmen6(1):5-26, January 2002.

22

