
Instruction-Level Simulation of a Cluster at Scale

Abstract

Accurate simulation is necessary to evaluate new architectural features. However, single-node, instruction-

level simulation cannot predict the performance or behavior of a parallel application on a cluster or a

supercomputer.

We present a scalable cluster simulator that couples a cycle-accurate node simulator with a supercomputer

network model. Our simulator leverages the computational resources of a cluster by executing individual

instances of IBM’s Mambo PowerPC simulator on hundreds of nodes.

We integrated a network and NIC model into Mambo and transferapplication data between simulated

machines using the transport layer of the cluster we run on. We model the network instead of fully simulating

it, which decouples the individual node simulators enough to make our design scalable.

Our simulator is able to run unmodified parallel message passing applications on hundreds of simulated

nodes. We can change network parameters, inject network traffic directly into caches and use different

policies to decide when that is an advantage over depositingthe data in main memory. Mambo itself can

simulate various numbers of CPUs, different cache and memory sizes, and has a multitude of parameters

that allow us to simulate a wide variety of different parallel systems.

The main purpose of this paper is to describe our simulator indetail, evaluate it, and demonstrate its

scalability. We also demonstrate the suitability of our cluster simulator for architecture research by showing

the impact of cache injection on parallel application performance.

1. Introduction

The study and implementation of novel architectures play animportant role in the development and

advancement of applications on future-generation, high-end computing systems. Researchers are exploring

potential architectural changes for clusters, including awide range of techniques such as hardware matching

support for scalable communication libraries (Brightwellet al. 2006), various techniques for injecting

incoming communication messages into processor caches (Bohrer et al. 2004a; Huggahalli et al. 2005;

León et al. 2007), and radical architectural changes like processor-in-memory (Rodrigues et al. 2005).

Unfortunately, the impact of such changes is difficult to predict analytically due to the complex interactions

between the architecture, operating system, system libraries, and applications.
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Architectural simulators that examine the impact of systemchanges on application performance have

not historically scaled well. For example, coarse-grainedsimulators skew dramatically when these changes

are scaled up over tens or hundreds of systems. Similarly, cycle-accurate simulators which can accurately

model every event to nanosecond accuracy in a single system,scale up poorly. Their running time increases

dramatically even for a small number of processors. This limits designers in their ability to study how

architectural changes affect scientific application performance as a cluster grows in scale.

To address this problem, we present an MPI-based cluster simulator designed to enable studies of

architecture/operating system/application interactions on current and future architectures. Unlike previous

work, our cluster simulator architecture uses existing clusters to simulate future clusters by coupling a

cycle-accurate full-system node simulator1 with an MPI-based high-performance network model.

The contribution of this paper is the design and implementation of a scalable cluster simulator that can

be used to analyze the impact of novel architectures on parallel application performance. We describe the

design of our network and NIC model that couples the individual node simulators in Section 2 and evaluate

the resulting cluster simulator in Sections 3 and 4. We analyze three cache injection policies to demonstrate

the capabilities of our simulator (Section 5).

2. Cluster simulator

To study the impact of future architectures on scientific applications at scale, we built a flexible apparatus

to simulate a cluster of machines based on a cycle-accurate simulator. This cluster simulation infrastructure

allows us to leverage the parallel computation capabilities of current clusters to simulate future parallel

architectures or current ones with different performance characteristics.

Our cluster simulation infrastructure consists of the following components: a multiprocessor full-system

simulator on each each node of the physical cluster, an OS andcommunication libraries for the simulator, a

shim layer, a modeled NIC, a modeled network, and a runtime environment to launch the simulated cluster.

Since we will be referring to two clusters – the simulated cluster and the physical cluster where the simulated

cluster runs – we will use the following terms for the rest of this paper. Anoderefers to a physical host

within the real cluster; amachinerefers to a full-system simulator running on a node; and aNIC refers to a

modeled NIC that connects machines within the simulated cluster.

1 A full systemin this context means all the components that make up a processing element (PE) of a cluster node: CPU(s), caches,
main memory, and the components that connect these parts.

2



Our simulated cluster is launched on a physical cluster by executing one instance of a machine per

node. The machines communicate with each other over a modeled network through a modeled NIC. The

NIC serves as a bridge between a (simulated) machine and a (physical) node. The NIC uses the existing

messaging system on the physical cluster to communicate with NICs running on other nodes.
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Figure 1. Two simulated machines communicating with each other through the physical cluster’s network.

Figure 1 illustrates the architecture of our apparatus. On each physical node of a cluster we launch an

instance of IBM’s Mambo full-system simulator (see Section2.1 below). Each Mambo instance runs the

K42 operating system. The application under test uses the MPICH (Gropp et al. 1996) implementation of

MPI to communicate with the system. This version of MPICH uses a device layer we call MIAMI to interact

with its peers on other nodes. It does that by interacting with the local NIC model which, in turn, uses the

physical system’s MPI layer to exchange messages with othernodes on behalf of the simulated application.

The physical transport in our case is the OpenMPI (Graham et al. 2005) version of MPI running over

Myrinet, Infiniband, and Ethernet, depending on which cluster we run our tests on.

The full-system simulator provides a cycle-accurate simulation of a single-node, multiprocessor system.

This machine provides a platform to study architectural features and configurations not yet available in

current hardware. Our goal in developing a cluster simulation infrastructure is to leverage existing single-

node simulators in a cluster setting.

2.1 Mambo

The full-system simulator we use in our infrastructure is anaugmented version of IBM’s Mambo full-system

simulator (Bohrer et al. 2004b) that provides cache injection of incoming network messages (Bohrer et al.

2004a). A simulated machine is a multi-core, cache-coherent, distributed shared memory system (Sinharoy

et al. 2005). We run the K42 research operating system (Appavoo et al. 2005) on Mambo.
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Table 1 shows the configuration of Mambo we have chosen for theexperiments presented in this paper.

One of the key features of a cycle-accurate simulator is thatmany of its configuration parameters can be

changed. Mambo is no exception and we plan to use additional cores and different cache organizations to

simulate different machines in the future.

Table 1. Simulated system configuration.

Feature Configuration

Simulator Mambo PowerPC full-system simulator
Architecture Power5 with cache injection to L2/L3
Processor 1.65 GHzfrequency
L1 I/D cache 64KB/32KB, 2-way/4-way
L2 cache 1.875MB, 3-slice, 10-way, 10 cycle latency
L3 cache 36MB, 3-slice, 12-way, 80 cycle latency
Cache line 128B
Main memory 1024MB, 230 cycle latency
OS K42
Comm. Lib. MPICH-MIAMI w/OS-bypass & 0-copy
Network Cray XT-3 Red Storm

2.1.1 Fast-forward mode

Cycle-accurate simulation is expensive in terms of time. Slowdown factors of several orders of magnitudes

are common. Mambo spends a large portion of its time simulating the operation of caches. Cache simulation

can be turned off in Mambo to make it run faster. The simulatedmachine then behaves as if no caches were

present and that it can access main memory at L1 cache speeds.

For many experiments that is a useful feature that does not impact the end result. For example, in studies

that focus on network characteristics, it may not be all thatimportant how fast the application itself executes.

For accurate machine simulations however, cache simulation needs to be on. We have added the ability

to fast-forward in our cluster simulation infrastructure.During application startup, for example, we would

like the simulation to proceed as quickly as possible. When execution reaches the inner kernel, we activate

the cache simulation. In Section 4.3 we will demonstrate this feature. We run through the application setup

phase with cache simulation disabled, and then turn it on before we reach the computational kernel we are

interested in evaluating.

Fast-forward can also be used to let an application restart from an earlier checkpoint. While reading the

restart data and initializing, cache simulation can be turned off. Once the calculation resumes, we enable

cache simulation. This feature enables us to simulate longer application runs in less time.
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For many of the experiments in Section 4 we ran with cache simulation turned off, since for most of

those experiments we were not interested in the actual simulation results from Mambo. The experiments

in Section 5 were done with cache simulation turned on. We have implemented fast-forward mode for the

AMG application and use it for all experiments with AMG, unless we specifically say otherwise.

2.1.2 Interfacing Mambo with the NIC

A machine and its associated NIC interact through ashim layer. This layer provides a bidirectional path

between the simulated machine and the NIC (see Figure 2). On one side, a machine communicates with its

NIC through memory mapped registers. Using this mechanism,a user process can interact with the NIC

directly, bypassing the OS and/or hypervisor if needed. Access to these registers is controlled by the OS

and/or hypervisor. On the other side, a NIC communicates with its machine through a well-defined interface

called theshim interface. The table in Figure 2 shows the operations provided by the shim interface. The

implementation of this interface is simulator dependent. In addition to the operations listed in the table, the

shim layer provides functions to load and unload network controllers and other devices at run time.

System Simulator
Shim
Layer

NIC 
A

NIC B

Shim Interface

Function Description

memoryread/write read/write to main memory
cachewrite write to L2/L3 cache
schedulejob launch job on host
delay cycles time delay on host
raiseinterrupt I/O interrupt
memorymappedI/O functions to trigger on regs

Figure 2. The shim layer provides the glue between the system simulator and the NIC.

2.2 The network and NIC model

A NIC connects its local machine with the rest of the machinesrunning on the cluster. It acts as a bridge

between its machine and the physical node it is running on. The NIC uses the host node’s transport layer

(MPI) to communicate with NICs running on other nodes of the system.

Each message sent between simulated machines is augmented by the NIC with a timestamp and delay

information about the modeled network. The NIC then sends that information together with the actual data

using the transport layer provided by the host cluster. The receiving NIC waits to deliver the message to the

simulated machine until its clock reaches the message’s timestamp plus the modeled network delay.
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This is possible because the network of the physical clusterlooks lighting fast in comparison to the very

slow running simulated machines. The NICs can deliver messages at practically any latency and bandwidth

in simulated time. This allows us to present the simulated machines with any type of network (physically

possible or not) of our choice.

2.2.1 Synchronization

The clocks on the nodes of a typical cluster are not synchronized and drift over time. Furthermore, the

performance of nodes in a cluster is not the same and impacts the performance of the simulated machines.

Therefore we need to synchronize the simulated machines once in a while so that none of them get too far

ahead of the others in the system.

We accomplish this synchronization by executing a barrier operation at specific intervals of the simulation

clock. For example, if the synchronization interval is set at 50,000, then the simulated machines will execute

the barrier when they reach 50,000, 100,000, 150,000, and soon, cycles. While the machines wait for each

other in the barrier, the local simulation clocks are stopped.

The delay caused by the barrier is not visible to the simulated application. However, the barrier has

externally visible effects. If one of the machine simulators is slow in reaching the barrier, because it writes

lengthy debug information to an external disk for example, all the simulated machines are delayed by that.

In other words, the overall execution time of our cluster simulator represents the slowest path through all

instances of the individual machine simulators. We will evaluate the impact of synchronization in Section 4.

2.2.2 Network model

To decide when to deliver messages, we use the network model that is part of Seshat (Riesen 2006) and has

the characteristics of a Cray XT-3 Red Storm network. Seshatis an execution driven discrete event simulator

to study application behavior under varying network characteristics.

The current network model does not take network topology into considerations. Therefore it is not

capable to emulate congestion. Two configuration parameters allow us to vary the bandwidth and latency of

the model. This enables us to simulate faster or slower networks.
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2.2.3 NIC model

To run parallel applications on our simulated cluster, we developed a minimal API needed to support MPI:

MIAMI – Minimal Interface for An MPI Implementation. The asynchronous MIAMI API is shown in

Table 2. It supports OS-bypass and allows for zero-copy MPI transfers.

Table 2. MIAMI API

Function Description

int init (void); initialize
int finalize(void); clean up
int size(void); number of processes in job
int rank (void); my rank in job
doubleclock(void); time in seconds
int tx start(void *buf, int len, int cntxt, int tag, int dst, int lsrc); start a send
int stx start(void *buf, int len, int cntxt, int tag, int dst, int lsrc); synchronous send
int tx done(int handle); check send completion
int rx start(void *buf, int len, int cntxt, int tag, int src); post a receive
int rx done(int handle, int * len, int *tag, int *src); check receive completion
int rx probe(int *flag, int * len, int cntxt, int *tag, int *src); probe for message arrival

We implemented a driver on our simulated NIC for the eleven-function MIAMI API, and also created

a corresponding device layer for MIAMI in the MPICH implementation of MPI that runs as part of the

simulation. Figure 3 shows how a simulated application interacts with the local NIC. The application makes

calls into the MPICH library which in turn uses the MIAMI API to interact with the NIC model.

Mambo Simulator

Shim
Layer

MIAMI

NIC

Shim Interface

K42

Application

MPI-MIAMI

Figure 3. An application on a simulated machine interacting with the local NIC.

Most MIAMI functions in the NIC are implemented straightforward as calls into the physical system’s

transport layer. In our case that layer is OpenMPI running over Myrinet, OpenIB, or Ethernet depending on

the cluster we are using for our experiments.
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Several factors complicate the implementation of MIAMI in our NIC. Our simulation infrastructure is

in itself a complete parallel application, and it must not use the underlying MPI in an illegal manner. For

example, the infrastructure might be in the middle of a point-to-point transfer on behalf of the simulated

application when Mambo’s clock reaches a synchronization interval and forces a barrier. Other nodes may

still be sending or waiting for messages before they reach their barrier points. It is important not to cause

deadlock or violate the rules of the MPI standard in such situations.

Another complicating factor is that we have to send envelopeinformation along with each message the

simulated application sends. We use information inside that envelope to decide when to deliver a particular

message. In order to see the envelope information we have to receive the message into a buffer so we can

examine it. This is made difficult when messages arrive unexpectedly and the simulated application does not

post a receive until much later. The NIC has to perform careful buffer management and message matching

while maintaining good performance and scalability.

3. Experimental setup

We ran our experiments on two large clusters at(removed for blind review). In this section, we briefly

describe the characteristics of these machines, and list the benchmarks and applications we used to evaluate

our infrastructure.

3.1 Test platforms

ClusterΘ is comprised of(removed for blind review)compute nodes. They are dual 3.6GHz Intel EM64T

processors with 6GB of RAM. ClusterΘ’s network is an Infiniband fabric with a two level Clos topology.

The nodes run Red Hat Enterprise Linux with a 2.6.9 kernel anduse Lustre as the parallel file system. We

use the version 1.2.7 OpenMPI library and the version 1.3.1 OFED library to connect to the Infiniband

fabric.

ClusterΣ has(removed for blind review)nodes and each has dual 3.4GHzIntel EM64T processors with

2 GB of RAM. It uses a Myrinet for its interconnect. It also runs Red Hat Enterprise Linux with a 2.6.9

kernel and runs OpenMPI version 1.2.2 which uses version 1.2.7 of the MX library to interact with the

Myrinet.

Both of these systems have dual CPU nodes. Due to the way K42 interacts with Mambo, we are limited

to run a single simulator on each node. That means we currently need 256 cluster nodes to simulate 256

nodes.
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3.2 Benchmarks and applications

We chose five different benchmarks and applications to test and evaluate our simulator.

3.2.1 IS from the NAS parallel benchmark suite

IS is the well-known integer sort benchmark from the NAS parallel benchmark suite (Bailey et al. 1995; der

Wijngaart 2002). We used version 2.4 for our experiments andchose IS because it has a very short runtime.

This makes IS very suitable for cycle-accurate simulationswhich take many hundred to thousand times

longer to finish than the native execution time of the tested benchmark.

The second reason we chose IS is that it is a C code. We currently do not have a Fortran cross compiler

available for our test environment. This prevents us from running the remaining NAS parallel benchmarks

which are written in Fortran.

3.2.2 AMG from the Sequoia acceptance suite

AMG is an “algebraic multigrid solver for linear systems arising from problems on unstructured grids” (Lawrence

Livermore National Laboratory 2008). It is one of several benchmarks used by Lawrence Livermore Na-

tional Laboratory (LLNL) in its request for proposals and acceptance of the Sequoia supercomputer. Sequoia

will be LLNL’s next Advanced Simulation and Computing (ASC)machine.

We chose AMG because it is a communication intensive application which can, for large problem sizes,

spend 90% of its execution time using the MPI library to transfer messages. Doing this, AMG uses mostly

MPI collective operations. A small percentage of communications are point-to-point messages of relatively

small size (2 – 10 KB) (Lawrence Livermore National Laboratory 2008).

AMG contains several different solvers which can be selected from the command line. The data presented

in this paper is from solver 0 (the default) and solver 1 runs.We chose those two solvers because they seem

to place more demand on the memory subsystem than the other solvers. Cache injection (discussed in

Section 5) should benefit these solvers more than the others available in AMG.

AMG has three distinct phases of operation. The solver runs in the third phase, while the first two

phases are used for problem setup. We augmented AMG so it can run in fast forward mode (discussed in

Section 4.3). We let AMG run without cache simulation duringmost of its setup phases and turn on cache

simulation a little before we enter the solve phase. Turing cache simulation on a little early is necessary to

let the caches warm up before we enter the solve phase.
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3.2.3 LAMMPS from the Sequoia acceptance suite

LAMMPS (Plimpton 1995) is a classical molecular dynamics code developed at Sandia National Laborato-

ries. For our experiments we use the embedded atom method (EAM) metallic solid input script used by the

Sequoia benchmark suite and provided on the LAMMPS web site (Sandia National Laboratory 2008a).

3.2.4 FFTW

FFTW (Fastest Fourier Transform in the West) is a C library for computing the discrete Fourier transform

(DFT) in one or more dimensions (Frigo and Johnson 2005; Frigo 1999). We use the MPI parallel FFTW

version 2.1.5 (MPI transforms are available only in this version). FFTW allows the computation of different

types of transforms, including normal and transpose order,and with and without work space. The output

data computed by these transforms maintain the same ordering as the input data for normal, and transpose

order for the transpose transform. The work parameter usesMPI Alltoall communication at the expense

of extra storage space, while no work uses point-to-point communication. We use the speed test provided by

the parallel FFTW to benchmark complex multi-dimensional transforms on several processors. The results

reported in this paper use normal order without work space.

3.2.5 HPCCG

HPCCG is one of the micro-applications of the Mantevo project (Sandia National Laboratory 2008b).

Micro-applications are “small, self-contained programs that embody essential performance characteristics

of key applications.” HPCCG is intended to be the “best approximation to an unstructured implicit finite

element or finite volume application in 800 lines or fewer.” These characteristics make HPCCG ideal for

our purposes.

4. Cluster simulator evaluation

In this section, we evaluate several characteristics of ourcluster simulation infrastructure. Our goal is to

build a flexible apparatus that is scalable, performs well and reliably, and produces valid results. We present

some initial experiments we have conducted using our cluster simulation infrastructure in the next section.

Here we evaluate the simulator itself.
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4.1 Repeatability

Since cycle accurate simulation is time consuming it is not always possible to repeat a single experiment

very many times to avoid measurement errors. It is thereforeimportant to know how repeatable individual

results are and how often outliers occur.

Table 3 shows the application reported run times for severalof our applications. Since we are running

on production clusters, an important consideration is whether running on the same set of nodes produces

different results, than running on whatever nodes the batchsystem allocates to us.

Table 3. Variations in reported simulation time.

Program Minimum Mean Average Maximum SD Runs

AMG, 8 nodes, same nodes -0.92% 33.2ms 35.2ms +18.17% 3.4ms 7
AMG, 8 nodes, batch -7.70% 36.0ms 36.5ms +14.24% 2.9ms 19
HPCCG, 64 nodes, same nodes -0.66% 80.6ms 81.2ms +4.06% 1.3ms 2 × 7

HPCCG, 64 nodes, batch -1.34% 80.9ms 81.2ms +3.72% 1.1ms 58
LAMMPS, 16 nodes, same nodes -0.78% 480.2ms 480.1ms +0.63% 2.7ms 7
LAMMPS, 16 nodes, batch -0.85% 480.4ms 480.2ms +0.75% 2.4ms 24
IS, 64 nodes, 7 same nodes -0.00% 750.0ms 750.0ms +0.00% 0.0ms 6 × 7

IS, 64 nodes, batch -0.00% 750.0ms 750.0ms +0.00% 0.0ms 9

We therefore ran several times in two different modes. In “batch” mode we repeatedly submit the job

and let the system determine which nodes are available for each subsequent run. In “same nodes” mode we

submit a single batch script and run the same benchmark seventimes. Each of the seven runs is then using

the same set of nodes allocated for the duration of the run.

For each application and mode we calculate the minimum, mean, average, maximum, and standard

deviation of the running time each benchmark reports. The minimum and maximum are expressed as a

percentage of the mean.

There is no significant difference whether we run on the same set of nodes, or let the batch system allocate

nodes for us. However, there is a difference in the behavior of the benchmarks. While IS and LAMMPS

show almost no variation from one run to the next, HPCCG and AMG fluctuate more. Figure 4 shows the

difference between running AMG several times and running LAMMPS several times in a row.

AMG is much less deterministic. Indeed, in many of our experiments we noticed AMG producing

outliers, requiring more runs to observe trends in a given experiment.
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Figure 4. Examples of reported simulation times over several runs.
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Figure 5. Frequency of synchronization impacts reported simulationtime and measures wall-clock time.

4.2 Impact of synchronization interval

In Section 2.2.1 we discussed how our simulation infrastructure keeps the individual machines synchro-

nized. The choice of synchronization interval has an impacton how long a simulation takes and the accuracy

of the simulation.

For the results shown in Figures 5 and 6 we ran LAMMPS, simulating 4,000 atoms, on 8 and 64 nodes,

HPCCG on 8 nodes with a problem size of 10×10×10, and AMG with solver 0 and problem size 1. Since

we are only interested in the synchronization impact, we turned cache simulation off for LAMMPS and

HPCCG. We ran AMG in fast-forward mode with cache simulationoff until just before the solver phase

which AMG measures.

12



D
rif

t b
et

w
ee

n 
sy

ns

Synchronization interval in simulated clock ticks

AMG on 16 nodes
LAMMPS on 8 nodes

LAMMPS on 64 nodes
HPCCG on 8 nodes

0.0 s

2.0 s

4.0 s

6.0 s

8.0 s

10.0 s

12.0 s

14.0 s

101 102 103 104 105 106 107 108 109 1010

Figure 6. Impact of synchronization interval on drift.

In Figure 5(a) we increase the synchronization interval along thex-axis and plot the reported simulation

time. The graph shows that if we increase the interval beyondabout106 clock cycles, the simulation results

start to deviate from the results obtained when the nodes aremore tightly synchronized.

We calculate slowdown by dividing the simulation time betweenMPI Init andMPI Finalize into the

wall-clock time between the calls to those two functions. Figure 5(b) shows that increasing the interval

between node synchronizations lowers the slowdown factor because the wall-clock time required to run

the simulation goes down. Our simulation infrastructure isin itself a parallel application. By increasing

the synchronization interval we reduce the amount of message passing and synchronization and, therefore,

increase performance.

Since we should not increase the synchronization interval beyond106 clock cycles, but want to keep it as

high as possible for performance reasons, a range of105 to 106 clock cycles seems appropriate. We chose

50,000 for all the results reported in this paper.

Before each synchronization we read the local wall-clocks.During the synchronization we find the lowest

time value and subtract it from the highest time value. This measures how much these two extreme nodes

have drifted from each other during the previous interval. We keep a running total and report the average

drift at the end of the simulation.

Figure 6 shows the impact the synchronization interval has on drift. Some applications are more prone to

drift than others, with drift becoming a problem at an interval of about106 clock cycles.

Synchronizations occur at specific simulation time intervals. If the nodes drift too much from each other,

fast nodes will have to wait longer for others to reach their synchronization points. The simulation clock is

stopped during these waits.
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Drift is caused by the environment outside our simulation framework. Different nodes run at slightly

different speeds, but a bigger factor is OS noise and I/O, to write logging information for example. While

a node is busy writing to an external file system, or doing OS housekeeping tasks, the simulation clock is

not advancing. When that node joins the others in the next synchronization it will show up late and we can

measure that delay.

If the synchronization intervals are high (greater than106 clock cycles), faster nodes can get too far

ahead. That means our network model may deliver some messages late in simulation time. This in turn

leads to delays in simulation time at the receiving node. That is why drift in wall-clock time has an impact

on simulation time. By choosing a good synchronization interval we can keep drift to a minimum and

prevent artificial delays in simulation time.

Another way to look at this is that our simulation framework gang schedules the simulated nodes. It can

only do that, if we keep the synchronization interval sufficiently small; i.e., below106 clock cycles.

4.3 Fast-forward evaluation

In Section 4.3 we described the ability of our infrastructure to disable cache simulation and let the simulation

progress faster. At a strategic point in the application, weturn cache simulation back on to properly evaluate

an inner kernel or restart a calculation after we have reinitialized from a checkpoint for example.

When turning cache simulation on, the caches will be empty and need some time to warm up. To avoid

inaccurate results, it is necessary to turn cache simulation on a little before the program section of interest.

A statement inserted into the source code of the program under test accomplishes that.

We ran AMG on 8 nodes with solver 0 and different workloads with cache simulation turned off, always

on, and only on during the calculation phase. We obtained theresults shown in Table 4. For fast-forward

mode we turned cache simulation on during the setup phase to allow the caches to warm up before entering

the calculation phase.

Both wall-clock and simulation time are measured betweenMPI Init() and MPI Finalize(). The

slowdown factor is the wall-clock time divided by the simulation time. The results in Table 4 are the average

of three runs each (problem size 3 is six runs for each simulation).

The “Solver only” column is the time AMG reports being in the solve phase. During that phase cache

simulation is turned on in the “always on” and the fast-forward mode. Therefore, the solver times reported
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Table 4. Cost of cache simulation for 8-node AMG

Problem size Cache simula-
tion

Wall-clock Simulation Solver only Slowdown
factor

1 1 1
Always off 0:00:19 123.465ms 29.209ms 158
On during solve 0:10:13 137.880ms 33.626ms 4,447
Always on 0:14:32 137.560ms 33.258ms 6,340

3 3 3
Always off 0:02:48 535.781ms 233.962ms 313
On during solve 1:25:43 753.849ms 264.116ms 6,822
Always on 1:40:32 786.404ms 264.944ms 7,671

4 4 4
Always off 0:06:15 1.118s 522.955ms 336
On during solve 3:31:09 1.780s 610.965ms 7,118
Always on 3:58:37 1.854s 614.203ms 7,721

in those two modes should be the same. The difference for eachproblem size in Table 4 is less than 1%,

which is well within the running time variations of AMG.

Using fast-forward mode to advance a simulation to the pointof interest should help us get the same

simulation results as if we had run the entire simulation with cache simulation turned on. Fast-forward

mode for AMG for the cases we measured saves up to 27 minutes orup to 30% for the small problem size.

4.4 Scaling

We have mentioned before that our infrastructure is itself aparallel application. Due to the tight synchro-

nization of the simulated nodes the parallel performance ofthe infrastructure is directly tied to the speedup

and parallel efficiency of the simulated application.

LAMMPS scales very well as can be seen in Figure 7(a). The graph plots the reported LAMMPS time

against the number of nodes we ran on. In weak scaling mode we increase the overall problem size with

the number of nodes available for the computation. This keeps the problem size on each node constant. The

flatness of the curve attests to the fact that LAMMPS has very little (communication) overhead as more

nodes are added.

We ran with cache simulation turned off and show one run per problem and node size. The exception is

the large problem size for which we ran three times for each node size. The minimum, maximum, and mean

are plotted using error bars. However, the differences are so small that the error bars are not visible behind

the plot points.

In Figure 7(b) we show the wall-clock time of our simulation infrastructure for the LAMMPS runs in

Figure 7(a) (fromMPI Init to MPI Finalize). Our simulator has some overhead due to the frequent
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Figure 7. Simulation and wall-clock time of simulator running LAMMPS.
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Figure 8. Simulation and wall-clock time of simulator running HPCCG.

synchronizations which require all-reduce communications every 50,000 simulation clock cycles. Never-

theless, it scales very well and is suitable for simulating well-scaling applications, such as LAMMPS, to

several hundreds and thousands of nodes.

Figure 8 shows the running time of the simulated HPCCG micro-application and the behavior of our

simulation infrastructure in wall-clock time. Each plot point represents a single run of HPCCG with cache

simulation turned off. The simulated HPCCG does not scale quite as well as LAMMPS. Comparing

Figure 8(a) and (b), we can see that the inefficiencies of our simulation infrastructure are masked by

HPCCG’s parallel performance characteristics. Despite this, our infrastructure scales well enough to run

HPCCG on several hundred nodes.

16



5. Cache injection

The purpose of creating the simulation infrastructure described in this paper is to conduct experiments

where cycle-accurate node simulation is important when evaluating message-passing parallel applications.

In this section, we look at cache injection and its impact on parallel applications.

Our version of Mambo has the capability of letting the NIC inject data directly into the L2 or L3

caches. Writing to memory is performed by issuing write-invalidate bus transactions. Writing to a cache is

performed in chunks of one cache block and the state of the resulting block is set to clean exclusive (Tendler

et al. 2002). Writes of less than one block are handled by a write with flush operation (flush the cache line

first and then write the data into memory). Writes to a cache require the physical address of the destination

to be block-aligned. Thus, writing incoming network data toa cache may involve writing the first few words

using write with flush until the destination address is cachealigned, then writing full blocks to the cache.

Currently, all writes to a cache also update main memory.

When to inject data into the cache is a current topic of research. Injecting network data before it is

needed will displace current data forcing a reload of that data plus a reload of the network data later on.

Which network data to inject is also a question of interest.

We can inject entire messages with the risk of displacing toomuch data of the current working set. We can

inject only MPI envelope information from the message header, such as source, tag, and length information

about the message, or we can inject both the payload and the header.

We will look at four different injection policies. “None” isno cache injection at all, which is the base

case to which we will make comparisons. “Hl2” injects the message headers into the L2 cache. “Payload”

injects the body of the message into the L3 cache as long as thepayload is at least 128 bytes (a cache line),

but not more than half the L3 cache size. The fourth policy, “Hl2p”, combines header injection into the L2

cache with payload injection into the L3 cache.

The version of the NIC we used for these experiments injects data at the time of a successful return

from a user-level call torx done (see Section 2.2.3). That is, the data has arrived at the destination and the

network model has determined that the (simulated) time for delivery has arrived. The next time after that,

when the application asks whether a particular message has arrived (usingrx done), the NIC injects the

data and returns success to the application query. This approach should increase the likelihood that injected

data will be used right away, since the application has just asked whether it was available.

17



R
ea

ds
 is

su
ed

 to
 m

em
or

y 
un

it

Node count

Cache injection policy

none trend
hl2 trend

0 

100 k

200 k

300 k

400 k

500 k

600 k

8 16 32 64

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

(a) AMG, solver 0, -r 1 1 1

R
ea

ds
 is

su
ed

 to
 m

em
or

y 
un

it

Node count

Cache injection policy

0 

10 k

20 k

30 k

40 k

50 k

60 k

8 16 32 64

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

no
ne

hl
2

pa
yl

oa
d

hl
2p

(b) FFTW

Figure 9. Memory pressure is influenced by cache injection policy.

5.1 Memory pressure

One of the goals for cache injection is to reduce the number oftimes data has to travel across the memory

bus between arrival at the NIC and consumption by the CPU. In other words, we hope that cache injection

relieves pressure on memory by serving more of the data directly from cache.

We can evaluate this by counting the number of read requests to the memory unit. Only reads that cannot

be satisfied from one of the cache levels result in a countableevent. In Figure 9 we show the number of

reads issued for the four cache injection policies on increasing number of nodes.

Both AMG and FFTW were run in weak scaling mode where the problem size per node is kept constant.

The number of reads we report are for the entire run of FFTW andthe solve phase for AMG. Each bar in

Figure 9 is the result of three runs. We show the median as a colored bar, and the minimum and maximum

as error bars.

Studying Figure 9(a) we see that without cache injection, the number of reads to main memory increases

exponentially as the node count goes up. The upper trend lineplots a smooth curve among the no-cache

injection data points. The lower trend line follows the hl2 data points.

It is clear that injecting header information into the L2 cache greatly reduces memory pressure as the

node count goes up, when compared to no cache injection. The reason the payload only injection policy

shows no benefit is because for the small problem size we use here, most of the messages are smaller than

128 bytes and will not be injected. The hl2p policy shows the same benefit as hl2 because the headers are

injected as in hl2, but the payload is not, since it is too small. The FFTW data in Figure 9(b) shows a similar

benefit.
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Figure 10. Performance of AMG and FFTW using different cache injectionpolicies.

5.2 Performance

Reduced memory pressure should lead to better application performance. As Figure 10 shows, this is not

the case for our experimental runs. The reason is again the small problem size. The memory subsystem

has plenty of capacity to support the additional reads that become necessary as we increase the node count

because of the small problem size.

6. Related work

The cluster simulator we describe in this paper combines a discrete event multiprocessor full-system

simulator with a NIC and a network model implementation. Discrete event simulation has been a topic

of study for many years. We refer the reader to a textbook (Banks et al. 2000) which devotes a chapter to

systems simulation.

Parallel discrete event simulation has also been explored extensively and many techniques are in use

to limit interactions between distant parts of a system. These interactions are necessary to synchronize

clocks. The event queues need to be distributed for a simulator to scale. This, however, increases the need

for additional synchronization. Fujimoto (Fujimoto 1990)provides a very nice description of the problems

involved in parallel discrete event simulation.

Asynchronous distributed simulation (Chandy and Misra 1981) is one way to address the problem of

synchronizing distributed parts of the same simulator. Improvements upon this work include (Greenberg

et al. 1996), and simulating large-scale systems is summarized in (Fujimoto et al. 2003).
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However, the problem of scalability remains. The larger andthe more accurate the simulation, the longer

it takes. Some researchers turn to modeling instead (Hoisieet al. 2000, 2006; Kerbyson et al. 2001). While

this is more efficient, it is also less accurate and less likely to predict future systems’ performance precisely

when compared to detailed discrete event simulation.

We believe that a hybrid approach of simulation and modelingcan yield accurate results within reason-

able time frames using compute resources such as a cluster ora small supercomputer. As we have explored

in Section 4.2 we still need to synchronize. However, it is much less frequent than what would be necessary,

if we had distributed, but coupled, event queues.

7. Summary and future work

In this paper we describe an infrastructure that allows systems researchers to study the impact of architec-

tural changes on scientific, parallel, application performance. This infrastructure is designed to:

• leverage current single-node simulators into a cluster infrastructure;

• enable simulation of recent and future cluster architectures, including techniques to improve applica-

tion performance and scalability;

• allow system designers to better understand the interactions between the OS, parallel applications and

the NIC, as well as between nodes; and, finally,

• accurately simulate a cluster at scale.

The results presented in this paper indicate that our infrastructure can indeed meet these goals. We will

continue making improvements to the simulation infrastructure itself. For example, we would like to replace

K42 with Linux and make launching a simulation more straightforward. We also need to enable more than

a single node simulator instance per multicore node.

Many opportunities exist for future work with the simulatordescribed in this paper. We have only

scratched the surface of exploring the potential benefits ofcache injection, and plan to explore cache

injection policies for multicore architectures. We also intend to assess the impact of different network

characteristics, such as different latencies and bandwidths, on applications and their interactions with the

memory system.

Mambo is able to simulate a multi-processor multicore machine. This kind of architecture will become

prevalent in the next-generation supercomputers and will significantly change the flops to network band-

width ratio. We want to evaluate the impact of such an architecture on parallel application performance.
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