
Graphs and HPC:
Lessons for Future Architectures

Bruce Hendrickson

Senior Manager for Computer Science & Mathematics

Sandia National Labs, Albuquerque

SAND2008-7523C

Outline

• An introduction to combinatorial scientific
computing

• Architectures and programming models for high
performance graph algorithms

• Lessons for multi-core machines

Outline

• Discrete math is key enabler for scientific computing

• CSC & CSCAPES

• Graph operations can severely challenge memory
subsystems - death by latency

• Architectural issues - advantages of latency hiding via
multithreading

• Algorithms & comparisons

• Broader lessons:

• multicore nodes

• Unstructured apps -> micro load balancing, complex
memory access patterns

– Graphs algorithms are a “canary in a coal mine” for new
architectures

• languages & programming environments

Combinatorial Algorithms Enable
Computational Science

• “Computational Science & Engineering” brings to mind…

– Differential equations

– Numerical methods

• But combinatorial algorithms have long played a key
enabling role

– Sparse direct methods and preconditioning

– Load balancing and architecture exploitation

– Optimization and uncertainty quantification

– Mesh generation, etc.

• Graphs feature strongly in emerging application areas

– Biological networks

– Chemistry

– Advanced data analysis

Sparse Matrix Methods

• Reorderings for sparse solvers
– Powerfully phrased as graph problems
– Fill reducing orderings

• Graph partitioning, graph traversals, graph eigenvectors

– Heavy diagonal to reduce pivoting (matching)

• Data structures for efficient exploitation of sparsity

• Derivative computations for optimization
– Matroids, graph colorings, spanning trees

• Preconditioning
– Incomplete Factorizations
– Partitioning for domain decomposition
– Graph techniques in algebraic multigrid

• Independent sets, matchings, etc.

– Support Theory
• Spanning trees & graph embedding techniques

Graphs and Sparse Gaussian Elimination

10

1
3

2

4

5

6

7

8

9

10

1
3

2

4

5

6

7

8

9

G(A) G+(A)
[chordal]

Cholesky factorization:

for j = 1 to n

add edges between j’s

higher-numbered neighbors

Fill: new nonzeros in factor

Matrix Reordering: Strongly Connected Components

Before After

Sparse Matrix Methods

• Reorderings for sparse solvers
– Powerfully phrased as graph problems
– Fill reducing orderings

• Graph partitioning, graph traversals, graph eigenvectors

– Heavy diagonal to reduce pivoting (matching)

• Data structures for efficient exploitation of sparsity

• Derivative computations for optimization
– Matroids, graph colorings, spanning trees

• Preconditioning
– Incomplete Factorizations
– Partitioning for domain decomposition
– Graph techniques in algebraic multigrid

• Independent sets, matchings, etc.

– Support Theory
• Spanning trees & graph embedding techniques

Parallelizing Scientific Computations

• Graph Algorithms

– Partitioning

– Coloring

– Independent sets, etc.

• Geometric algorithms

– Space-filling curves & octrees for particles

– Geometric partitioning

• Reordering for memory locality

Combinatorial Scientific Computing

• New scientific community formed around this
theme in in 2002

– Development, application and analysis of
combinatorial algorithms to enable scientific and
engineering computations

• Four international workshops (first one supported
by ASCR/AMR), special issues of journals, etc.

• SciDAC CSCAPES Institute

– Combinatorial Scientific Computing and Petascale
Simulations

Architectural Challenges for Graphs

• Runtime is dominated by latency
– Potentially random accesses to global address space

– Perhaps many at once, but parallelism is fine-grained

• Essentially no computation to hide memory costs

• Access pattern is data dependent
– Prefetching unlikely to help

– Usually only want small part of cache line

• Potentially abysmal locality at all levels of memory
hierarchy

Desirable Architectural Features

• Low latency / high bandwidth

– For small messages!

• Latency tolerant

• Light-weight synchronization mechanisms

• Global address space

– Obviate the need for partitioning

– Avoid memory-consuming profusion of ghost-nodes

– No local/global numbering conversions

– Support fine-grained parallelism

• One machine with these properties is the Cray MTA-2

– And successor XMT

How Does the MTA Work?

• Latency tolerance via massive multi-threading

– Each processor has hardware support for 128 threads

– Context switch in a single tick

– Global address space, hashed to reduce hot-spots

– No cache or local memory. Context switch on memory request.

– Multiple outstanding loads

• Remote memory request doesn’t stall processor

– Other streams work while your request gets fulfilled

• Light-weight, word-level synchronization

– Minimizes access conflicts

• Flexibly supports dynamic load balancing

• Notes:

– MTA-2 is old

– Clock rate is 220 MHz

– Largest machine is 40 processors

Case Study: MTA-2 vs. BlueGene/L

• With LLNL, implemented S-T shortest paths in MPI

• Ran on IBM/LLNL BlueGene/L, world’s fastest computer

• Finalist for 2005 Gordon Bell Prize

– 4B vertex, 20B edge, Erdös-Renyi random graph

– Analysis: touches about 200K vertices

– Time: 1.5 seconds on 32K processors

• Ran similar problem on MTA-2

– 32 million vertices, 128 million edges

– Measured: touches about 23K vertices

– Time: .7 seconds on one processor, .09 seconds on 10
processors

• Conclusion: 4 MTA-2 processors = 32K BlueGene/L processors

Broader HPC Relevance

• Existing HPC applications are getting more complex

– Unstructured and adaptive grids

– Multiscale and multiphysics

– Complex data structures and dependencies

• Emerging applications are even more demanding

– Data analysis, biological networks, decision support

• Architectural ramifications

– Very high demands on memory system

• Latency will be increasingly important

– Extremely difficult micro-load balancing problems

Lessons for Multi-Core Machines

• MTA suggests an alternative model for multi-core node
programming

– Shared memory with simple programming model

– Latency tolerance

– Fine grained parallelism & dynamic load balancing

• Many open questions at interface of math and CS

– How best to build and program multiple cores?

– Is there a unified programming model that achieves high inter- and
inter-node performance?

– How do we get from here to there?

• Graph algorithms can serve as a “canary in a coal mine” for new
architectures, languages, & programming environments

– Stress systems in ways that anticipate the needs of future
applications

Acknowledgements

• Collaborators

– Jon Berry, Rich Murphy, Keith Underwood

– Alex Pothen, Erik Boman, Karen Devine

• Support from

– ASCR Applied Math Research Program

– Sandia LDRD program

• Contact

– bah@sandia.gov

– www.sandia.gov/~bahendr

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed-Martin Company, for the US DOE

under contract DE-AC-94AL85000

http://www.sandia.gov/~bahendr
mailto:bah@sandia.gov

