}i SAND2008- 7523C
I

Graphs and HPC:
Lessons for Future Architectures

Bruce Hendrickson
Senior Manager for Computer Science & Mathematics
Sandia National Labs, Albuquerque

C Sandia
rl1 National
Laboratories



Outline

 An introduction to combinatorial scientific
computing

 Architectures and programming models for high
performance graph algorithms

 Lessons for multi-core machines
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?_ Outline
* Discrete math is key enabler for scientific computing

« CSC & CSCAPES

« Graph operations can severely challenge memory
subsystems - death by latency

» Architectural issues - advantages of latency hiding via
multithreading

Algorithms & comparisons
Broader lessons:

multicore nodes

» Unstructured apps -> micro load balancing, complex
memory access patterns

— Graphs algorithms are a “canary in a coal mine” for new
architectures

languages & programming environments
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-~ “omblnatorlal Algorithms Enable
* Computational Science
« “Computational Science & Engineering” brings to mind...

— Differential equations
— Numerical methods

 But combinatorial algorithms have long played a key
enabling role

— Sparse direct methods and preconditioning
— Load balancing and architecture exploitation
— Optimization and uncertainty quantification
— Mesh generation, etc.

* Graphs feature strongly in emerging application areas
— Biological networks
— Chemistry
— Advanced data analysis
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Sparse Matrix Methods

F

* Reorderings for sparse solvers
— Powerfully phrased as graph problems

— Fill reducing orderings
« Graph partitioning, graph traversals, graph eigenvectors
— Heavy diagonal to reduce pivoting (matching)

« Data structures for efficient exploitation of sparsity

» Derivative computations for optimization
— Matroids, graph colorings, spanning trees

* Preconditioning
— Incomplete Factorizations
— Partitioning for domain decomposition
— Graph techniques in algebraic multigrid
* Independent sets, matchings, etc.
— Support Theory
« Spanning trees & graph embedding techniques
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aphs and Sparse Gaussian Elimination

Fill: new nonzeros 1n factor

G*(A)
[chordal]

Cholesky factorization:

forj=1ton
add edges between j’s

higher-numbered neighbors
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Sparse Matrix Methods

F

* Reorderings for sparse solvers
— Powerfully phrased as graph problems

— Fill reducing orderings
« Graph partitioning, graph traversals, graph eigenvectors
— Heavy diagonal to reduce pivoting (matching)

« Data structures for efficient exploitation of sparsity

» Derivative computations for optimization
— Matroids, graph colorings, spanning trees

* Preconditioning
— Incomplete Factorizations
— Partitioning for domain decomposition
— Graph techniques in algebraic multigrid
* Independent sets, matchings, etc.
— Support Theory
« Spanning trees & graph embedding techniques
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}. arallelizing Scientific Computations

» Graph Algorithms
— Partitioning
— Coloring
— Independent sets, etc.

« Geometric algorithms
— Space-filling curves & octrees for particles
— Geometric partitioning

» Reordering for memory locality
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#.!ombinatorial Scientific Computing

* New scientific community formed around this
theme in in 2002

— Development, application and analysis of
combinatorial algorithms to enable scientific and
engineering computations

* Four international workshops (first one supported
by ASCR/AMR), special issues of journals, etc.

* SciDAC CSCAPES Institute

— Combinatorial Scientific Computing and Petascale
Simulations
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’11 ﬁg;]igir?al

Laboratories




'
# rchitectural Challenges for Graphs

 Runtime is dominated by latency
— Potentially random accesses to global address space
— Perhaps many at once, but parallelism is fine-grained

* Essentially no computation to hide memory costs

» Access pattern is data dependent
— Prefetching unlikely to help
— Usually only want small part of cache line

* Potentially abysmal locality at all levels of memory
hierarchy
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% Desirable Architectural Features

* Low latency / high bandwidth
— For small messages!
- Latency tolerant
 Light-weight synchronization mechanisms
* Global address space
— Obviate the need for partitioning
— Avoid memory-consuming profusion of ghost-nodes
— No local/global numbering conversions
— Support fine-grained parallelism

* One machine with these properties is the Cray MTA-2
— And successor XMT o
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}' How Does the MTA Work?
» Latency tolerance via massive multi-threading
— Each processor has hardware support for 128 threads
— Context switch in a single tick
— Global address space, hashed to reduce hot-spots
— No cache or local memory. Context switch on memory request.
— Multiple outstanding loads
* Remote memory request doesn’t stall processor
— Other streams work while your request gets fulfilled —
 Light-weight, word-level synchronization :
— Minimizes access conflicts
* Flexibly supports dynamic load balancing
* Notes:
— MTA-2 is old
— Clock rate is 220 MHz
— Largest machine is 40 processors
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},ﬁse Study: MTA-2 vs. BlueGenelL

 With LLNL, implemented S-T shortest paths in MPI
 Ran on IBM/LLNL BlueGene/L, world’s fastest computer
* Finalist for 2005 Gordon Bell Prize

— 4B vertex, 20B edge, Erdos-Renyi random graph

— Analysis: touches about 200K vertices

— Time: 1.5 seconds on 32K processors

* Ran similar problem on MTA-2
— 32 million vertices, 128 million edges
— Measured: touches about 23K vertices

— Time: .7 seconds on one processor, .09 seconds on 10
processors

« Conclusion: 4 MTA-2 processors = 32K BlueGene/L processors
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#‘ Broader HPC Relevance

- Existing HPC applications are getting more complex
— Unstructured and adaptive grids
— Multiscale and multiphysics
— Complex data structures and dependencies

 Emerging applications are even more demanding
— Data analysis, biological networks, decision support

* Architectural ramifications

— Very high demands on memory system
- Latency will be increasingly important

— Extremely difficult micro-load balancing problems
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#‘ Lessons for Multi-Core Machines

 MTA suggests an alternative model for multi-core node
programming
— Shared memory with simple programming model
— Latency tolerance
— Fine grained parallelism & dynamic load balancing

 Many open questions at interface of math and CS
— How best to build and program multiple cores?

— Is there a unified programming model that achieves high inter- and
inter-node performance?

— How do we get from here to there?

« Graph algorithms can serve as a “canary in a coal mine” for new
architectures, languages, & programming environments

— Stress systems in ways that anticipate the needs of future
applications
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