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In-cylinder processes for low-temperature
combustion are not yet well explored @

Conventional Diesel Combustion (CDC): Low-Temperature Combustion (LTC):

* No EGR, short ignition delay e High EGR (10-15% O,)
* Diffusion flame (OH-PLIF) is in thin e Injection earlier (PPCI) or later (MK)
envelope surrounding jet than conventional diesel combustion
— OH near ¢~1

] _ * Long ignition delay = positive ignition
e Soot (LI fills jet cross-section, where dwell (ignition after end of injection)
¢~2-4 (planar Rayleigh scattering)
* OH, soot, ¢, UHC, CO, NOx, etc. = ?
— Appearance of soot means ¢ > ~2
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From SAE 970873, J. Dec,
Conceptual Model of Diesel Combustion o113



Compared to CDC, early-injection LTC has soot
farther downstream and OH filling upstream jet @

Near-TDC Inj. CDC (short ignition delay):  Early-Injection LTC (long ignition delay):

- SAE 2001-01-1295 (Dec & Tree) - SAE 2006-01-0079 (Musculus)
* View through cylinder head window * OH (green) throughout jet cross-section,
* OH (¢ ~ 1, green) appears in thin envelope ~ With soot (red) only at head of jet
surrounding jet e OH appears where ¢ ~ 1, and soot
e Soot (¢ > 2, red) fills the jet cross-section appears where ¢ > 2, so upstream jet is

relatively lean (even with EGR!), and
downstream jet is rich

Green: OH PLIF Green: OH PLIF
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Both liquid- and vapor-fuel measurements indicate @
lean mixtures near injector after EOI

Liquid Fuel Near EOI (non-combusting) Vapor Fuel Near EOI (non-combusting)

- Unpublished, but 2008 COMODIA, Kook et al. - SAE 2007-01-0907 Musculus et al.

& 2009 SAE, Kook et al. * Intake = N,, fuel = nC, + isoCq + C,Hg
o o 0 - -

Inta.ke 100% NZ’_ fu§l n-heptane * After end of injection, mixtures near
* During/after EOI, liquid fuel retreats back injector rapidly become fuel lean

to injector
* Indicative of rapid leaning near/after EOI Equivalence Ratlo Contours
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Formaldehyde indicates partially burned fuel,
OH indicates complete combustion @

Closed-reactor CHEMKIN simulation of n-heptane ignition using the Lawrence
Livermore National Laboratories detailed mechanism of Curran, Pitz, and Westbrook

Senkin closed-reactor n-heptane simulation

First-Stage (10 CAD): Initial conditions: ®=0.7, T=770 K, 02=12.7%
e Much of parent fuel 30 rerasrsrasararanaeaes 1800
molecule (black) reacts, a 25} 3 'EQ”:P- 1600 &
“soup” of UHCs (blue) is 2 — ULe °
2 20t 11400 5

formed E — H2CO x6 5
5 _OH*10 S
O "

» Formaldehyde (H,CO, 3% 15 1200 3
red) can track the soup = 1of | . 1000
of UHC (blue E N

( ) - - — 1800
% 10 20 30 20 500
Second-Stage (25 CAD): Grank Angle [degrees]

e Nearly all UHC and H,CO consumed

« Appearance of OH (green) marks hot ignition and consumption of
UHC
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H,CO and OH show late-cycle UHC remains near @
Injector for conditions with long ignition delay

Red = Formaldehyde (H,CO) fluorescence, Green = OH Fluorescence

For Shorter ID, OH appears as H,CO & UHC near injector are consumed
For Longer ID, OH appears only downstream and H,CO & UHC remain late in the

cycle, especially near injector — (Western States Comb. Inst. Meeting, 2007, Musculus &
Lachaux)

First Stage Second Stage Late-Cycle

T T T T R T T T 1 T T 1
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Distance from Injector [mm] Distance from Injector [mm] Distance from Injector [mm] 6/13

Shorter ID

Longer ID




Simulations show that formaldehyde persists in @
lean regions, but not necessarily in cool regions

Mass Fraction HoCO [mg/g]

Mass Fraction HoCO [mg/g]
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* Q: Is late formaldehyde caused by

(1) low temperatures or
(2) lean mixtures?

(1): As temperature is decreased,
H,CO appearance is delayed, but
residence time is constant.

(2): As equivalence ratio is
decreased, H,CO time of
appearance is constant, but
residence time is increased.

Therefore, regions that have
long-lasting, late-cycle H,CO
fluorescence are likely lean
(near injector, after injection).

Closed-reactor CHEMKIN simulations
of n-heptane ignition using the
Lawrence Livermore National
Laboratories detailed mechanism of
Curran, Pitz, and Westbrook
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Mixing after EOIl is more rapid than in a steady jet @

* At end of injection (O AEI), mixtures are richer near
injector (¢ ~ 9) and leaner downstream

* In the quasi-steady jet, from a Lagrangian
perspective (moving with jet fluid at penetration rate):

=~ -— After 2° crank angle, ¢ =5 to 7, and

— = — After 5° crank angle, $ =3t0 5

* After end of injection, mixtures near injector are much

leaner than expected for downstream transport in a
steady jet

= = — At 2 AEI, within 25 mm penetration, ¢ = 1 to 3

, — At 5 AEI, within 45 mm penetration, ¢ =0.5- 1.5
/

’ > Downstream mixtures agree with OH filling jet
cross section (¢ ~ 1 for OH)

> Upstream mixtures near injector agree with
= late-cycle formaldehyde (¢ ~ 0.5)
15~

4705575 =
L
1.0
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Transient diesel-jet mixing may be analyzed
using 1-dimensional control volume array @

* Analytical control-volume solution for

diesel jet penetration and mixing:
Naber and Siebers, SAE 960034

* Predicts experimental penetration over
wide range of conditions

* No similar analytical control-volume
solution for non-steady injection rates

* However, non-steady jets can be solved
numerically

— 1-dimensional control volume array

— Assume radial profiles for velocity and
fuel concentration

— Solve transient mass and momentum
transport between control volumes

— Similar approach as CMT article

(Fuel 87, 2871-2885 (2008) “A 1D model
for the description of mixing-controlled
inert diesel sprays,” Pastor et al.)
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Model predicts that entrainment increases after the
end of injection, in a wave that travels downstream

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

e Solves conservation of mass and
momentum for 1-D control volume array

— Relative Entrainment Rate

200 === Rel. Entra|r?. Rate / Fuel
=100

O Rl
E o
o 20}

Q PO [\
V| N T S St e —
5

Lﬁ. bl T Y~
c o3ff]
= 0.8-

Axial Distance [mm]

e 0
0 20 40 60 80 100

10 . . r .
g " Equivalence Ratio Contours
4
a1
0.8
0.6
' 0 20 40 60 80 100

Axial Distance [mm]

10/13






The “entrainment wave” concept explains many @
observed phenomena in ending diesel jets

— Relative Entrainment Rate
200 ‘---- Rel. Entralq. Rate / Fuel 4
L

100
20

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

* Solves conservation of mass and
momentum for 1-D control volume array

e Prediction: An “entrainment wave” travels
downstream after EOI, with higher mixing™~ =~

— Entrainment wave is not an input, but an
output of the model (cons. of mass)

— 1. Explains rapid leaning of mixtures near 03F
injector that contribute to exhaust UHCY = —g—n |
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The “entrainment wave” concept explains many @
observed phenomena in ending diesel jets

— Relative Entrainment Rate

1-D Diesel Jet Model (SAE 2009, Musculus et al.)
--= Rel. Entrain. Rate / Fuel

* Solves conservation of mass and :fgg T 4
momentum for 1-D control volume array Qg goll b
_ : T |
* Prediction: An “entrainment wave” travels % 20l
downstream after EOI, with higher mixing™ = & JQf
@ T T

— Entrainment wave is not an input, but an E ?
output of the model (cons. of mass) g_ %_' """"""""""""""

— 1. Explains rapid leaning of mixtures near o 03f =<
injector that contribute to exhaust UHCs = -‘é';-oﬂ

\
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The “entrainment wave” concept explains many @
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.) a Ee:agvi E_ntragn?we/nlt: Rellte
=== x| =Nntrain. rate e
e Solves conservation of mass and :fgg T : 4
momentum for 1-D control volume array e |
. : © |
* Prediction: An “entrainment wave” travels % 20l
downstream after EOI, with higher mixing™ ~ & JOf 1
— Entrainment wave is not an input, but an % ] R ol
output of the model (cons. of mass) 3 %_- ---------------------------
— 1. Explains rapid leaning of mixtures near "'é 0.;? """"""""
injector that contribute to exhaust UHCs = -‘é';-oﬂ
. : : \
— 2. Explains penetration “kink” at t=2xDOI QO~ 2-6 4'0 6-0 8-0 108
(wave propagates at 2x jet penetration) \\ Axiell Distance [iim]
— 3. Explains liquid-fuel vaporization \
behavior after EOI (retreat, detach, split) 19 = — -
g " Equivalence Ratio Contours
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The “entrainment wave” concept explains many @
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.) p— Ee:ag\/(?[ E-ntraén?e/nél?ﬁte
=== Xe|. ENtrain. ~ate ue
* Solves conservation of mass and :fgg ' 4
momentum for 1-D control volume array 2 5
- : T |
* Prediction: An “entrainment wave” travels % 20t
downstream after EOI, with higher mixing™ = 8 J0f
. . . b -
— Entrainment wave is not an input, but an c:u ?
output of the model (cons. of mass) E %
— 1. Explains rapid leaning of mixtures near ”é 0.3l
injector that contribute to exhaust UHC g 0.1k
0

_ . : ], n - = - ~ = 0

2. Explains penetration “kink” at t=2xDOI 0 0 40 60 80 100
(wave propagates at 2x jet penetration) Axial Distance [mm]
— 3. Explains liquid-fuel vaporization

behavior after EOI (retreat, detach, split)

B 4.4 CAD EOI

SAE 20009,
Bobba & Musculus

'100 | ’ (
100 -

Crank Angle [degrees]

— 4. Explains rapid oxidation of soot in the
upstream jet after the end of injection

, AHRR [J

Equivalence Ratio Contours.
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The “entrainment wave” concept explains many @
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.) — Relative Entrainment Rate
_ --=-- Rel. Entrain. Rate / Fuel
* Solves conservation of mass and :fgg T ' 4
momentum for 1-D control volume array 2 5
- : T |
* Prediction: An “entrainment wave” travels % 20t
downstream after EOI, with higher mixing™ = & J0f
QO i
— Entrainment wave is not an input, but an © ?
output of the model (cons. of mass) E %
— 1. Explains rapid leaning of mixtures near ”é 0.3l
injector that contribute to exhaust UHC g 0.1k
— 2. Explains penetration “kink” at t=2xDOl 00 2'0 4'0 6-0 8-0 1 08

(wave propagates at 2x jet penetration) Axial Distance [mm]

— 3. Explains liquid-fuel vaporization
behavior after EOI (retreat, detach, split)

Bl 4.4 CAD EQI

SAE 20009,
Bobba & Musculus

|
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— 4. Explains rapid oxidation of soot in the
upstream jet after the end of injection

AHRR

— 5. Explains lack of soot formation in
upstream jet with long ignition dwell

Equivalence Ratio Contours
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The “entrainment wave” concept explains many @
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.) — Relative Entrainment Rate
_ --=-- Rel. Entrain. Rate / Fuel
* Solves conservation of mass and :fgg T ' 4
momentum for 1-D control volume array 2 5
- : T |
* Prediction: An “entrainment wave” travels % 20t
downstream after EOI, with higher mixing™ = & J0f
. . . b -
— Entrainment wave is not an input, but an c:u ?
output of the model (cons. of mass) E %
— 1. Explains rapid leaning of mixtures near ”é 0.3l
injector that contribute to exhaust UHC g 0.1k
0

B . N — 0
2. Explains penetration “kink” at t=2xDOlI 0 20 40 60 80 100

(wave propagates at 2x jet penetration) Axial Distance [mm]
— 3. Explains liquid-fuel vaporization (SAE 2007-01-0907,
behavior after EOI (retreat, detach, split) 56 AE Pickett & Idicheria)

— 4. Explains rapid oxidation of soot in the
upstream jet after the end of injection

— 5. Explains lack of soot formation in
upstream jet with long ignition dwell

® Contours (0.1-1.0)

— 6. Explains stagnant region near injector

after end of injection 10 20 30 40 50
Distance from Injector [mm]
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To fully realize the potential of LTC, we need better
understanding of diesel-jet mixing during/after EOI

* Mixing after the end of injection is critical for preparing mixtures prior to ignition

— Increased mixing of fuel with ambient gas is
essential to reduce soot formation, but ...

— Too much mixing can lead to over-lean mixtures,
incomplete combustion, and UHC + CO emissions

* The end-of-injection transient diesel spray can be
very different from the quasi-steady spray

* During and after the end of injection,
— How/why does the spray angle change?
— How/why does entrainment increase?
— How/why do the velocity and flow area change?

— How/why does the shape of the end-of-injection
ramp-down affect mixing?

— How/why do in-cylinder turbulence and bulk flow
structures affect mixing?

77T 11AMAAAMAL L}

— How/why do all of these phenomena vary for

different injectors and facilities? From SAE 2000-01-1256, Han et al.
(Wayne State University, USA) 17/13
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Simultaneous @
Diagnostics

Use two laser-sheets and two
cameras for simultaneous imaging

Can use either a cut-out or a
window in the piston bowl-wall to
allow laser access within piston
bowl of combustion chamber

Bowl-Wall Window
Maintains Combustion
Chamber Geometry

Camera
Field of View

Laser Sheets
on Axis of
Diesel Jet

Window

Piston Bowl-Wall Combustion Bowl

Top View of Piston
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Project Overview:
Sandia/Cummins Heavy-Duty Optical Engine @

Background: Since late 1980’s, in-cylinder
diesel spray, combustion, and pollutant
formation has been studied at Sandia with
multiple laser/optical diagnostics. Data is
basis of conceptual model of conventional
diesel combustion.

Low N | High
Soot Concentration

*—‘ Flame Liftoff | ’* . (Soot for

Air Entrainment

I Liquid Fuel
0 10 20 [1 Vapor-Fuel/Air Mixture

_—‘ | Fuel-Rich Premixed Flame

Scale (mm) I Initial Soot Formation Current Status: New high_
— Pimsion Hame pressure common-rail fuel-
From SAE 970873, J. Dec, injection system, enabling study
Conceptual Model of Diesel Combustion of advanced, low-temperature,

multi-mode combustion schemes.
19/13
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