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In-cylinder processes for low-temperature 
combustion are not yet well explored

Low-Temperature Combustion (LTC):
• High EGR (10-15% O2 )
• Injection earlier (PPCI) or later (MK) 

than conventional diesel combustion
• Long ignition delay = positive ignition 

dwell (ignition after end of injection)
• OH, soot, φ, UHC, CO, NOx, etc. = ?

Conventional Diesel Combustion (CDC):
• No EGR, short ignition delay
• Diffusion flame (OH-PLIF) is in thin 

envelope surrounding jet
– OH near φ~1

• Soot (LII) fills jet cross-section, where 
φ~2-4 (planar Rayleigh scattering)

– Appearance of soot means φ > ~2

From SAE 970873, J. Dec, 
Conceptual Model of Diesel Combustion
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Compared to CDC, early-injection LTC has soot 
farther downstream and OH filling upstream jet

Early-Injection LTC (long ignition delay): 
- SAE 2006-01-0079 (Musculus)

• OH (green) throughout jet cross-section, 
with soot (red) only at head of jet

• OH appears where φ

 

~ 1, and soot 
appears where φ > 2, so upstream jet is 
relatively lean (even with EGR!), and 
downstream jet is rich

Green: OH PLIF
Red: Soot Luminosity

Near-TDC Inj. CDC (short ignition delay): 
- SAE 2001-01-1295 (Dec & Tree)

• View through cylinder head window 
• OH (φ ~ 1, green) appears in thin envelope 

surrounding jet
• Soot (φ > 2, red) fills the jet cross-section

Green: OH PLIF
Red: Soot LII
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Both liquid- and vapor-fuel measurements indicate 
lean mixtures near injector after EOI

Liquid Fuel Near EOI (non-combusting) 
- Unpublished, but 2008 COMODIA, Kook et al. 
& 2009 SAE, Kook et al.

• Intake = 100% N2 , fuel = n-heptane
• During/after EOI, liquid fuel retreats back 

to injector
• Indicative of rapid leaning near/after EOI

Vapor Fuel Near EOI (non-combusting) 
- SAE 2007-01-0907 Musculus et al.

• Intake = N2 , fuel = nC7 + isoC8 + C7 H8

• After end of injection, mixtures near 
injector rapidly become fuel lean

Equivalence Ratio Contours
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Formaldehyde indicates partially burned fuel; 
OH indicates complete combustion
Closed-reactor CHEMKIN simulation of n-heptane ignition using the Lawrence 

Livermore National Laboratories detailed mechanism of Curran, Pitz, and Westbrook

First-Stage (10 CAD):
• Much of parent fuel 

molecule (black) reacts, a 
“soup” of UHCs (blue) is 
formed

• Formaldehyde (H2 CO, 
red) can track the soup 
of UHC (blue)

Second-Stage (25 CAD):
• Nearly all UHC and H2 CO consumed

• Appearance of OH (green) marks hot ignition and consumption of 
UHC
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H2 CO and OH show late-cycle UHC remains near 
injector for conditions with long ignition delay

Red = Formaldehyde (H2 CO) fluorescence, Green = OH Fluorescence
For Shorter ID, OH appears as H2 CO & UHC near injector are consumed
For Longer ID, OH appears only downstream and H2 CO & UHC remain late in the 

cycle, especially near injector – (Western States Comb. Inst. Meeting, 2007, Musculus & 
Lachaux) 
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Simulations show that formaldehyde persists in 
lean regions, but not necessarily in cool regions

Closed-reactor CHEMKIN simulations 
of n-heptane ignition using the 
Lawrence Livermore National 
Laboratories detailed mechanism of 
Curran, Pitz, and Westbrook

• Q: Is late formaldehyde caused by  
(1) low temperatures or 
(2) lean mixtures?

• Therefore, regions that have 
long-lasting, late-cycle H2 CO 
fluorescence are likely lean 
(near injector, after injection).

O2 = 12.6%
Φ = 0.7

• (1): As temperature is decreased, 
H2 CO appearance is delayed, but 
residence time is constant.

O2 = 12.6%
T0 = 770 K

• (2): As equivalence ratio is 
decreased, H2 CO time of 
appearance is constant, but 
residence time is increased.
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Mixing after EOI is more rapid than in a steady jet

• At end of injection (0 AEI), mixtures are richer near 
injector (φ

 

~ 9) and leaner downstream
• In the quasi-steady jet, from a Lagrangian 

perspective (moving with jet fluid at penetration rate):
– After 2° crank angle, φ

 

= 5 to 7, and 
– After 5° crank angle, φ

 

= 3 to 5
• After end of injection, mixtures near injector are much 

leaner than expected for downstream transport in a 
steady jet
– At 2 AEI, within 25 mm penetration, φ

 

= 1 to 3
– At 5 AEI, within 45 mm penetration, φ

 

= 0.5 - 1.5
> Downstream mixtures agree with OH filling jet 

cross section (φ ~ 1 for OH) 
> Upstream mixtures near injector agree with 

late-cycle formaldehyde (φ ~ 0.5)

(SAE 2007-01-0907, Musculus et al.)
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Transient diesel-jet mixing may be analyzed 
using 1-dimensional control volume array

• Analytical control-volume solution for 
diesel jet penetration and mixing: 
Naber and Siebers, SAE 960034

• Predicts experimental penetration over 
wide range of conditions

• No similar analytical control-volume 
solution for non-steady injection rates

• However, non-steady jets can be solved 
numerically
– 1-dimensional control volume array
– Assume radial profiles for velocity and 

fuel concentration
– Solve transient mass and momentum 

transport between control volumes
– Similar approach as CMT article 

(Fuel 87, 2871-2885 (2008) “A 1D model 
for the description of mixing-controlled 
inert diesel sprays,” Pastor et al.)
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Model predicts that entrainment increases after the 
end of injection, in a wave that travels downstream

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

• Solves conservation of mass and 
momentum for 1-D control volume array
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The “entrainment wave” concept explains many 
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

• Solves conservation of mass and 
momentum for 1-D control volume array

• Prediction: An “entrainment wave” travels 
downstream after EOI, with higher mixing
– Entrainment wave is not an input, but an 

output of the model (cons. of mass)
– 1. Explains rapid leaning of mixtures near 

injector that contribute to exhaust UHC
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Kink

The “entrainment wave” concept explains many 
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

• Solves conservation of mass and 
momentum for 1-D control volume array

• Prediction: An “entrainment wave” travels 
downstream after EOI, with higher mixing
– Entrainment wave is not an input, but an 

output of the model (cons. of mass)
– 1. Explains rapid leaning of mixtures near 

injector that contribute to exhaust UHC
– 2. Explains penetration “kink” at t=2xDOI 

(wave propagates at 2x jet penetration)
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The “entrainment wave” concept explains many 
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

• Solves conservation of mass and 
momentum for 1-D control volume array

• Prediction: An “entrainment wave” travels 
downstream after EOI, with higher mixing
– Entrainment wave is not an input, but an 

output of the model (cons. of mass)
– 1. Explains rapid leaning of mixtures near 

injector that contribute to exhaust UHC
– 2. Explains penetration “kink” at t=2xDOI 

(wave propagates at 2x jet penetration)
– 3. Explains liquid-fuel vaporization 

behavior after EOI (retreat, detach, split)
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The “entrainment wave” concept explains many 
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

• Solves conservation of mass and 
momentum for 1-D control volume array

• Prediction: An “entrainment wave” travels 
downstream after EOI, with higher mixing
– Entrainment wave is not an input, but an 

output of the model (cons. of mass)
– 1. Explains rapid leaning of mixtures near 

injector that contribute to exhaust UHC
– 2. Explains penetration “kink” at t=2xDOI 

(wave propagates at 2x jet penetration)
– 3. Explains liquid-fuel vaporization 

behavior after EOI (retreat, detach, split)
– 4. Explains rapid oxidation of soot in the 

upstream jet after the end of injection

SAE 2009, 
Bobba & Musculus
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The “entrainment wave” concept explains many 
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

• Solves conservation of mass and 
momentum for 1-D control volume array

• Prediction: An “entrainment wave” travels 
downstream after EOI, with higher mixing
– Entrainment wave is not an input, but an 

output of the model (cons. of mass)
– 1. Explains rapid leaning of mixtures near 

injector that contribute to exhaust UHC
– 2. Explains penetration “kink” at t=2xDOI 

(wave propagates at 2x jet penetration)
– 3. Explains liquid-fuel vaporization 

behavior after EOI (retreat, detach, split)
– 4. Explains rapid oxidation of soot in the 

upstream jet after the end of injection
– 5. Explains lack of soot formation in 

upstream jet with long ignition dwell

SAE 2009, 
Bobba & Musculus

SAE 2009, 
Bobba & Musculus
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The “entrainment wave” concept explains many 
observed phenomena in ending diesel jets

1-D Diesel Jet Model (SAE 2009, Musculus et al.)

• Solves conservation of mass and 
momentum for 1-D control volume array

• Prediction: An “entrainment wave” travels 
downstream after EOI, with higher mixing
– Entrainment wave is not an input, but an 

output of the model (cons. of mass)
– 1. Explains rapid leaning of mixtures near 

injector that contribute to exhaust UHC
– 2. Explains penetration “kink” at t=2xDOI 

(wave propagates at 2x jet penetration)
– 3. Explains liquid-fuel vaporization 

behavior after EOI (retreat, detach, split)
– 4. Explains rapid oxidation of soot in the 

upstream jet after the end of injection
– 5. Explains lack of soot formation in 

upstream jet with long ignition dwell
– 6. Explains stagnant region near injector 

after end of injection 10        20        30        40        50
Distance from Injector [mm]

8.6 AEI

Φ

 

Contours (0.1-1.0)

v

(SAE 2007-01-0907, 
Pickett & Idicheria)
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To fully realize the potential of LTC, we need better 
understanding of diesel-jet mixing during/after EOI

• The end-of-injection transient diesel spray can be 
very different from the quasi-steady spray

• During and after the end of injection,
– How/why does the spray angle change?
– How/why does entrainment increase?
– How/why do the velocity and flow area change?
– How/why does the shape of the end-of-injection 

ramp-down affect mixing?
– How/why do in-cylinder turbulence and bulk flow 

structures affect mixing?
– How/why do all of these phenomena vary for 

different injectors and facilities? From SAE 2000-01-1256, Han et al. 
(Wayne State University, USA)

• Mixing after the end of injection is critical for preparing mixtures prior to ignition
– Increased mixing of fuel with ambient gas is 

essential to reduce soot formation, but …
– Too much mixing can lead to over-lean mixtures, 

incomplete combustion, and UHC + CO emissions
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Simultaneous 
Diagnostics

Use two laser-sheets and two 
cameras for simultaneous imaging
Can use either a cut-out or a 
window in the piston bowl-wall to 
allow laser access within piston 
bowl of combustion chamber
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Project Overview: 
Sandia/Cummins Heavy-Duty Optical Engine

Background: Since late 1980’s, in-cylinder 
diesel spray, combustion, and pollutant 
formation has been studied at Sandia with 
multiple laser/optical diagnostics.  Data is 
basis of conceptual model of conventional 
diesel combustion.

From SAE 970873, J. Dec, 
Conceptual Model of Diesel Combustion

Current Status: New high- 
pressure common-rail fuel- 
injection system, enabling study 
of advanced, low-temperature, 
multi-mode combustion schemes.
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