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• Develop scalable computing 
capabilities via:
– Application analysis

– Application improvement

– Computer system design

• Schedule driven

• Countless design decisions

• Collaborative efforts

• Pre-Mantevo:

– Work with each, large 
application

– Application developers have 
competing needs: 

• Features 

• Performance

– Application performance 
profiles have similarities

App Developers

Benchmark Analyst



• Develop micro apps and 
micro drivers

• Aid system design decisions
– Proxies for real apps
– Easy to use, modify, or rewrite
– e.g., multicore studies

• Guide application and library 
developers
– Early results in new situations: 

apps/libs know what to expect
– Explore new programming 

models and algorithms
– Predict performance of real 

applications in new situations
– New collaborations

• Results:
– Better-informed design decisions
– Broad dissemination of 

optimization techniques
– Incorporation of R&D results
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Mantevo* Project

* Greek: augur, guess, predict, presage



Key Focus Area: 
Multicore Node Architectures

Intel Clovertown

AMD Barcelona

Sun Niagara2

• Multicore: 

– New HPC systems axis

– First Mantevo analysis focus

• Quantitative results:

– Confirm, sharpen intuitive sense

– Sometime counter intuition



Mantevo Microapps / Microdrivers

• Three types of packages:

– Microapps: Small, self-contained programs
• HPCCG: Implicit solution of unstructured FEM/FVM

• pHPCCG: HPCCG with parameterized scalar/int, replaceable SpMV kernel

• miniMD: molecular dynamics parameterized from simple to bio molecules

• phdMesh: explicit FEM with contact detection

– Microdrivers: Wrappers around Trilinos packages
• Beam: Intrepid+FEI+Trilinos solvers

• Epetra Benchmark Tests: Core Epetra kernels

– Motif framework: Collection of “dwarves”
• Prolego: Parameterized, composable fragment collection to mimic real apps

• Developed by application and library developers

• Open Source: software.sandia.gov/mantevo 



Microapp: HPCCG/pHPCCG

• HPCCG: “Closest thing to an implicit unstructured 
FEM/FVM code in 500 semi-colons or less.”
– Simple application-like sparse matrix fill and solve

– Compact, highly portable, and scalable

– Baselined for MPI parallelism

– Available as Open Source (LGPL License)

• Used in many early scalability and performance studies
– ASC RedStorm, ASC Purple, SNL Thunderbird scalability

– MPI-on-multicore studies

– Several re-writes for parallelism comparisons: 
• Q-threads (massively threaded) 

• Bundle-Exchange-Compute (BEC)

– Planned advanced-node studies
• Cell Broadband Engine, Intel SSE, Woodcrest 128-bit architecture

• pHPCCG: parameterized scalar/int types and replaceable SpMV



Microapp: miniMD

• Extracted computational core of LAMMPS, a scalable 
molecular dynamics simulation code

• Simulate O(10) to O(100) of atomic interactions

• Extreme scalability (10K atoms on 10K processors) is 
especially interesting (important science problem)

• Single precision

• Investigate novel architectures of interest

– nVidia Tesla 



Miniapp:
phdMesh

• Parallel Heterogeneous 
Dynamic unstructured Mesh

• Explicit unstructured FEM/FVM 
with dynamic load balancing 
and parallel geometric search

• Parallel geometric proximity search: a performance constraining 
algorithm for contact detection and multiphysics loose-coupling

• Dynamic mesh modification: a performance constraining capability 
for adaptive applications (e.g., load balancing, mesh refinement)

• Representative mini-application: Multiple 3D counter rotating “gears” 
with continually changing contact surfaces.  Internal parallel 
generation of and domain decomposition of the meshed gears.

• phdMesh library: provides parallel, heterogeneous, and dynamic 
unstructured mesh and field data management



Microdriver: Beam
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• Mimics important computational characteristics of implicit finite-
element applications

• Heavily exercises Trilinos’ (trilinos.sandia.gov) packages for filling 
and solving sparse linear systems of equations

• Scaled to 2 billion equations and 10k processors on ASC Red Storm

• Portable, scalable, and open source

• Representative mini-application: 
3D beam of hexahedron elements 
with variable problem size/shape 



Microdriver: Prolego

• Configure a collection of computational 
kernels to model application performance

• Calibrate kernels to exhibit the performance 
characteristics of “real” application kernels 0

5

10

15

20

25

30

35

40

45

50^3 80^3 100^3 130^3

problem size

HPCCG

Prolego
Fragments

• Current Prolego driver
– Run-time selection and calibration of kernels via XML input file
– Initial kernels:

• BLAS operations (vector axpy and dot, matrix-vector, matrix-matrix)
• Sparse matrix-vector multiply
• Binary-search operation, MPI operations (Allreduce, Barrier, Send/Irecv)

• Planned:
– Finite-element oriented kernels
– Input files calibrated to model Sandia applications
– Comparison of modeled vs. actual performance



Some Performance Studies
Using Mantevo Microapps



HPCCG Using MPI on 
Multicore Systems

• Float useful: 

– Mixed precision algorithms.

• Bandwidth even more important:

– Saturation means loss of cores.

• Memory placement a concern:

– Shared memory allows remote 
placement.

• NiagaraT2 threads hide latency:

– Easiest node to program.



HPCCG Comparing
Parallel Programming Models

• HPCCG rewritten:

– Qthreads: Massively 
threaded library.

– BEC: Bundle-Exchange-
Compute Model.

• MPI & MPI+threads.

– App: MPI-only

– Solver: MPI+threads



MPI vs. OpenMP
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HPCCG Comparing Parallel Programming 
Models: MPI vs. OpenMP

• C3 (Clovertown)
Barcelona (AMD)
Hypnotoad (Niagara2)

• MPI best overall

• MPI AllReduce Issues

• Niagara (not shown).

• Easily addressed.



miniMD Performance
(molecular dynamics microapp)

Unity: Sandia Lab System

Infiniband interconnect of

272 Nodes

x 4 sockets / node

x AMD Barcelona chips

= 4,352 cores

Pure-MPI parallel with one MPI process per core



phdMesh Gears Sample Problem
Distributed Parallel Geometric Proximity Search 

Weak Scaling Study on Sandia’s Unity System

phdMesh Gears Test: Geometric Search Weak Scaling

11904 Elements and 2976 Facets / MPI-Process
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Geometric Proximity 
Search algorithms:

• naively: O( N2 )

• practice: O( N*log(N) )

• optimally: O( N )

Predominant scenario: 
each facet is in 
proximity to relatively 
few other facets


