
HPC Application
Performance Analysis and Prediction

(Mantevo Project: software.sandia.gov/mantevo)

NNSA/ASC @ Supercomputing’08

Michael A. Heroux (project lead),
H. Carter Edwards (presenter),

Paul S. Crozier, and Alan Williams

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2008-7395C

Pre-Mantevo

Identify Performance

Impacting elements of

Application n

Identify Performance

Impacting elements of

Application 2

Background

Identify Performance

Impacting elements of

Application 1

Improve Implementation

of Application n

Improve Implementation

of Application 2

Improve Implementation

of Application 1

Develop Computer

System

Computer System

Developer

• Develop scalable computing
capabilities via:
– Application analysis

– Application improvement

– Computer system design

• Schedule driven

• Countless design decisions

• Collaborative efforts

• Pre-Mantevo:

– Work with each, large
application

– Application developers have
competing needs:

• Features

• Performance

– Application performance
profiles have similarities

App Developers

Benchmark Analyst

• Develop micro apps and
micro drivers

• Aid system design decisions
– Proxies for real apps
– Easy to use, modify, or rewrite
– e.g., multicore studies

• Guide application and library
developers
– Early results in new situations:

apps/libs know what to expect
– Explore new programming

models and algorithms
– Predict performance of real

applications in new situations
– New collaborations

• Results:
– Better-informed design decisions
– Broad dissemination of

optimization techniques
– Incorporation of R&D results

Mantevo

Develop/Use Micro

Application/Driver

Modify/Rewrite Micro-

Application, Publish
Results

Develop Computer

SystemComputer System

Developer

External Collaborator

Mantevo DeveloperBenchmark Analyst

Mantevo* Project

* Greek: augur, guess, predict, presage

Key Focus Area:
Multicore Node Architectures

Intel Clovertown

AMD Barcelona

Sun Niagara2

• Multicore:

– New HPC systems axis

– First Mantevo analysis focus

• Quantitative results:

– Confirm, sharpen intuitive sense

– Sometime counter intuition

Mantevo Microapps / Microdrivers

• Three types of packages:

– Microapps: Small, self-contained programs
• HPCCG: Implicit solution of unstructured FEM/FVM

• pHPCCG: HPCCG with parameterized scalar/int, replaceable SpMV kernel

• miniMD: molecular dynamics parameterized from simple to bio molecules

• phdMesh: explicit FEM with contact detection

– Microdrivers: Wrappers around Trilinos packages
• Beam: Intrepid+FEI+Trilinos solvers

• Epetra Benchmark Tests: Core Epetra kernels

– Motif framework: Collection of “dwarves”
• Prolego: Parameterized, composable fragment collection to mimic real apps

• Developed by application and library developers

• Open Source: software.sandia.gov/mantevo

Microapp: HPCCG/pHPCCG

• HPCCG: “Closest thing to an implicit unstructured
FEM/FVM code in 500 semi-colons or less.”
– Simple application-like sparse matrix fill and solve

– Compact, highly portable, and scalable

– Baselined for MPI parallelism

– Available as Open Source (LGPL License)

• Used in many early scalability and performance studies
– ASC RedStorm, ASC Purple, SNL Thunderbird scalability

– MPI-on-multicore studies

– Several re-writes for parallelism comparisons:
• Q-threads (massively threaded)

• Bundle-Exchange-Compute (BEC)

– Planned advanced-node studies
• Cell Broadband Engine, Intel SSE, Woodcrest 128-bit architecture

• pHPCCG: parameterized scalar/int types and replaceable SpMV

Microapp: miniMD

• Extracted computational core of LAMMPS, a scalable
molecular dynamics simulation code

• Simulate O(10) to O(100) of atomic interactions

• Extreme scalability (10K atoms on 10K processors) is
especially interesting (important science problem)

• Single precision

• Investigate novel architectures of interest

– nVidia Tesla

Miniapp:
phdMesh

• Parallel Heterogeneous
Dynamic unstructured Mesh

• Explicit unstructured FEM/FVM
with dynamic load balancing
and parallel geometric search

• Parallel geometric proximity search: a performance constraining
algorithm for contact detection and multiphysics loose-coupling

• Dynamic mesh modification: a performance constraining capability
for adaptive applications (e.g., load balancing, mesh refinement)

• Representative mini-application: Multiple 3D counter rotating “gears”
with continually changing contact surfaces. Internal parallel
generation of and domain decomposition of the meshed gears.

• phdMesh library: provides parallel, heterogeneous, and dynamic
unstructured mesh and field data management

Microdriver: Beam

W

W

D

0

1

10

100

1 10 100 1000

Processors

measured

linear speedup

• Mimics important computational characteristics of implicit finite-
element applications

• Heavily exercises Trilinos’ (trilinos.sandia.gov) packages for filling
and solving sparse linear systems of equations

• Scaled to 2 billion equations and 10k processors on ASC Red Storm

• Portable, scalable, and open source

• Representative mini-application:
3D beam of hexahedron elements
with variable problem size/shape

Microdriver: Prolego

• Configure a collection of computational
kernels to model application performance

• Calibrate kernels to exhibit the performance
characteristics of “real” application kernels 0

5

10

15

20

25

30

35

40

45

50^3 80^3 100^3 130^3

problem size

HPCCG

Prolego
Fragments

• Current Prolego driver
– Run-time selection and calibration of kernels via XML input file
– Initial kernels:

• BLAS operations (vector axpy and dot, matrix-vector, matrix-matrix)
• Sparse matrix-vector multiply
• Binary-search operation, MPI operations (Allreduce, Barrier, Send/Irecv)

• Planned:
– Finite-element oriented kernels
– Input files calibrated to model Sandia applications
– Comparison of modeled vs. actual performance

Some Performance Studies
Using Mantevo Microapps

HPCCG Using MPI on
Multicore Systems

• Float useful:

– Mixed precision algorithms.

• Bandwidth even more important:

– Saturation means loss of cores.

• Memory placement a concern:

– Shared memory allows remote
placement.

• NiagaraT2 threads hide latency:

– Easiest node to program.

HPCCG Comparing
Parallel Programming Models

• HPCCG rewritten:

– Qthreads: Massively
threaded library.

– BEC: Bundle-Exchange-
Compute Model.

• MPI & MPI+threads.

– App: MPI-only

– Solver: MPI+threads

MPI vs. OpenMP

0

500

1000

1500

2000

2500

1 2 4 8 16 32 64

Cores

C3 MPI

C3 OpenMP

Barcelona MPI

Barcelona OpenMP

Hypnotoad MPI

Hypnotoad OpenMP

HPCCG Comparing Parallel Programming
Models: MPI vs. OpenMP

• C3 (Clovertown)
Barcelona (AMD)
Hypnotoad (Niagara2)

• MPI best overall

• MPI AllReduce Issues

• Niagara (not shown).

• Easily addressed.

miniMD Performance
(molecular dynamics microapp)

Unity: Sandia Lab System

Infiniband interconnect of

272 Nodes

x 4 sockets / node

x AMD Barcelona chips

= 4,352 cores

Pure-MPI parallel with one MPI process per core

phdMesh Gears Sample Problem
Distributed Parallel Geometric Proximity Search

Weak Scaling Study on Sandia’s Unity System

phdMesh Gears Test: Geometric Search Weak Scaling

11904 Elements and 2976 Facets / MPI-Process

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 100 200 300 400 500 600

MPI-Processes (on SNL Unity)

R
e
la

ti
v
e
 S

e
a
rc

h
 T

im
e

Geometric Proximity
Search algorithms:

• naively: O(N2)

• practice: O(N*log(N))

• optimally: O(N)

Predominant scenario:
each facet is in
proximity to relatively
few other facets

