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ABSTRACT

The well-known “sweep” algorithm for inverting the streaming-plus-collision term in first-order 
deterministic radiation transport calculations has some desirable numerical properties.  However, it 
suffers from parallel scaling issues caused by a lack of concurrency.  The maximum degree of 
concurrency, and thus the maximum parallelism, grows more slowly than the problem size for 
sweeps-based solvers.

We investigate a new class of parallel algorithms that involves recasting the streaming-plus-
collision problem in prefix form and solving via cyclic reduction.  This method, although 
computationally more expensive at low levels of parallelism than the sweep algorithm, offers 
better theoretical scalability properties.  Previous work has demonstrated this approach for one-
dimensional calculations; we show how to extend it to multidimensional calculations.  Notably, for 
multiple dimensions it appears that this approach is limited to long-characteristics discretizations; 
other discretizations cannot be cast in prefix form.

We implement two variants of the algorithm within the radlib/SCEPTRE transport code library at 
Sandia National Laboratories and show results on two different massively parallel systems.  Both 
the “forward” and “symmetric” solvers behave similarly, scaling well to larger degrees of 
parallelism then sweeps-based solvers.  We do observe some issues at the highest levels of 
parallelism (relative to the system size) and discuss possible causes.  We conclude that this 
approach shows good potential for future parallel systems, but the parallel scalability will depend 
heavily on the architecture of the communication networks of these systems.
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1. INTRODUCTION

Numerical solutions to discrete ordinates discretizations of the first-order form of the Boltzmann 
transport equation are commonly obtained by means of the method of “sweeps”.  In the sweep 
process the streaming-plus-collision term is numerically inverted for successive elements along 
the direction of particle travel; the algorithm “sweeps” across the spatial mesh from the incoming 
boundary to the outgoing boundary.  By respecting the numerical dependencies among tasks 
induced by the physics of particle streaming this method obtains some desirable iterative 
properties.  For example, in a pure absorber a single set of sweeps will immediately converge to 
the discrete solution.

Unfortunately the same conditions that make the sweep process effective also limit its parallel 
scalability.  Dependencies among tasks imply a lack of concurrency; the maximum parallelism is 
determined by the maximum degree of concurrency of the sweep tasks.  For example, in one-
dimensional slab geometry a spatial mesh with N elements will have N sweep tasks per angle, 
but a maximum concurrency of only one; it will require a minimum of N computational steps to 
sweep each angle regardless of the number of available processors.  Similar concurrency limits 
occur in multidimensional geometries [1,2].

In this paper we investigate an alternative to parallel sweeps, the method of cyclic reduction.  
This method has been successfully applied elsewhere for “prefix” problems; in some cases first-
order transport discretizations may be recast as prefix problems.  Although the method of cyclic 
reduction requires more computational operations than the method of sweeps, it has better 
theoretical parallel scaling properties.

The rest of this paper is organized as follows.  A discussion of parallel scaling in general and the 
scaling of sweeps in particular is given in Section 2.  A presentation of prefix problems, the 
method of cyclic reduction, and their application to one-dimensional transport problems is found 
in Section 3.  In Section 4 we extend and analyze this approach for multidimensional problems, 
and in Section 5 we present computational results.  We give some final discussion and 
conclusions in Section 6.

2. PARALLEL SCALING AND TRANSPORT SWEEPS

There are several factors that may affect the scalability of a parallel algorithm.  Load imbalance, 
a difference in the total amount of work assigned to each processor, will degrade the parallel 
efficiency of an algorithm, since some processors will take longer than the ideal time to complete 
their tasks.  Communication costs reduce the parallel efficiency, since they are a form of 
overhead not found in a serial calculation.  In addition, dependencies among tasks may force 
some processors to remain idle due to a lack of concurrency, which reduces efficiency.  The 
design of effective parallel algorithms involves tradeoffs among these and possibly other factors.

A lack of concurrency is the primary factor affecting the scalability of parallel sweep algorithms.  
To illustrate this we depict the sweep process in one-dimensional Cartesian (slab) geometry for 
one angle in Figure 1.  Here n is the unknown flux exiting element n, with 0 the known 

incident boundary flux. In the first step the known incident boundary flux ( 0 ) is combined with 
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data for element 1 (attenuation coefficients and sources) to produce the flux exiting the element 
( 1 ).  In the second step the flux entering element 2 ( 1 ) is used to compute the exiting flux 

( 2 ).  This process continues until the solutions for all elements have been determined.  The 

curved arrows in each step indicate dataflow, which may involve communication for a parallel 
application.
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Figure 1: Sweep solver.

We note that the sweep algorithm proceeds in the above sequential manner not merely out of 
simplicity but out of necessity.  At any given step there is only one task with sufficient data to 
compute the associated outgoing flux.  An equivalent statement is that the maximum number of 
concurrent tasks for one angle in slab geometry is one.  This is true regardless of the number of 
processors available or how the work is divided.  Thus no amount of parallelization will result in 
computational speedup for this example.

The situation is similar in multidimensional geometries, but with additional complexities.  In slab 
geometry each element depends on no more than one other element for a given angle; in 
multidimensional problems each element may depend on more than one other element.  In slab 
geometry there are no concurrent tasks for the same angle; in multidimensional geometry there 
usually is some limited concurrency.  In either case the potential parallel speedup is limited by 
the depth of the sweep task graph; no parallel sweep algorithm can complete the process in fewer 
steps than that depth.
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3. PREFIX-BASED SOLVERS FOR SLAB GEOMETRY TRANSPORT

In the previous section we noted that sweep-based approaches to transport are subject to 
concurrency limits that in turn place upper bounds on the amount of effective parallelism that 
can be achieved.  In this section we turn our attention to a class of problems called prefix 
problems, for which effective parallelization techniques exist.  We then show how slab geometry 
transport problems can be (and have been) recast as prefix problems, thereby overcoming the 
concurrency issues of sweep-based solvers. We define two different cyclic reduction solvers for 
slab geometry transport that will later be extended to multidimensional transport problems.

3.1.  Prefix Problems

First we define a prefix problem.  A prefix computation (or prefix sum) is defined [3] in terms of 

a binary, associative operator  .  The computation takes as input a sequence nxxx ,,, 10  and 

produces as output a sequence nyyy ,,, 10  such that

A prefix problem may be solved sequentially, with each operation yielding one of the ky , as 

indicated by the parentheses below:

The innermost operation above yields 1y , the next operation yields 2y , etc.  After n operations 

we obtain the entire sequence nyyy ,,, 10  .

The key to producing efficient parallel solvers is to exploit the property of associativity.  This 
property allows us to regroup the operations in various ways; one possible grouping is

Note that at each level of nested parentheses there are numerous independent operations that may 
be computed concurrently.  By exploiting the property of associativity numerous parallel prefix 
algorithms have been created by computer scientists.  Although the details vary, they typically 
yield solutions after   nO log parallel steps, which is asymptotically less than the  nO steps 

required by the sequential approach.

kkkk xxxxyy

xy





 101

00
. ( 2 )

    kxxxx  210 , ( 3 )

          nxxxxxxxxx  76543210 . ( 4 )
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3.2  Slab Geometry Transport as a Prefix Problem

In our earlier description of slab geometry transport we showed that the solution to the 
streaming-plus-collision operator within some element depends on the solution to at most one 
other element as well as known information such as fixed sources.  We now recognize that this is 
a particular example of a prefix problem (assuming that the transport operator is associative, 
which is true for linear discretizations).  For some element k the incoming angular flux maps to 

1ky , the outgoing flux maps to ky , the fixed sources map to kx , and the discretized streaming-

plus-collision operator maps to k .  Thus in principle we should be able to apply one of the 

existing parallel prefix algorithms to create an efficient parallel transport algorithm for slab 
geometry.

As examples of the application of prefix solvers to slab-geometry transport problems we define 
two different cyclic reduction algorithms. The first, which we denote as the “forward” method, is 
depicted in Figure 2.  In step 0 we express each exiting flux i algebraically in terms of known 

sources and the (generally unknown) local incident flux (i.e. iiii Q 1 ).  We then 

recursively communicate this functional dependence to progressively more distant processors, 
allowing i to be expressed in terms of 12  ji

 at step j.  The dataflow at each step consists of 

two quantities: the accumulated attenuation coefficients for a portion of the mesh (e.g. 21 ) and 

the accumulated sources over the same region (e.g. 212 QQ  ).  After a logarithmic number of 

steps the solution throughout the entire mesh has been obtained.  This process may be applied 
simultaneously for every angle in the problem.

In Figure 3 we depict a variant algorithm we denote as “symmetric”.  Whereas in the forward 
algorithm every element propagated its functional dependence to its downstream neighbor during 
the first step, in the symmetric algorithm only the odd-numbered ones do.  In the second step we 
implicitly renumber the elements that received data in the first step, and again only the odd-
numbered ones propagate data.  This continues for   NO log steps, and then we reverse the 

process, switching the roles of even and odd elements.  This algorithm takes twice as many steps 
as the forward algorithm, but the volume of dataflow is substantially reduced.

3.3 Parallelization of Prefix Solvers for Slab Geometry Transport

In the above description of cyclic reduction we have not discussed actual parallelism, only an 
alternative set of operations which yield the same solution as sweeps.  The total number of 
operations is greater than that of sweeps, but all of the operations in a given cycle (step) are 
completely concurrent.  It is this concurrency that we can use to construct a parallel algorithm.  
As an extreme limit of parallelism we can map n processors to each of n elements and complete 

the algorithm in   nO log steps.  This is in fact what is depicted in Figures 2-3, provided that we 

interpret each element as the sole member of a processor domain and each of the dataflow arrows 
as messages between processors.  Assuming that the underlying communication network is 
sufficiently fast this algorithm will be asymptotically faster than a sweep-based algorithm.
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Figure 2: “Forward” cyclic reduction solver.
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Figure 3: “Symmetric” cyclic reduction solver.
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In general we will not have the same number of processors as mesh elements.  Certainly we 
could emulate such a situation with a smaller number of processors, which would require all of 
the concurrent operations that are mapped to the same physical processor to be executed 
sequentially.  In this situation the extra operations of the cyclic reduction algorithm will have 
purchased more concurrency than we can effectively use.  Here we note however that the cyclic 
reduction algorithm may be modified to create only as much concurrency as needed, resulting in 
fewer total operations than the extreme case of complete parallelization but more operations than 
a fully serial (sweep-based) algorithm.  The modified algorithm proceeds as follows:

1. Perform a local (concurrent) set of sweeps on each processor domain to determine 
attenuation coefficients and source contributions across the entire domain (e.g. 

3210  p ).  This is equivalent to performing two separate block-Jacobi sweep 

iterations, one with a unit incident boundary flux in the absence of internal sources in 
order to obtain the domain attenuation coefficients, and then another with no incident 
fluxes but with the internal sources in order to determine the source contribution from the 
whole domain.

2. Perform the usual cyclic reduction algorithm using the above domain data rather than 
individual element data in order to solve for the fluxes exiting each domain (and thus 
entering the domain immediately downstream).

3. Perform a final set of block-Jacobi sweeps with the known fluxes incident on each 
domain in order to solve for each individual element.

Since each local sweep takes  p
nO time, and the cyclic reduction step takes   pO log time, the 

overall parallel algorithm will complete in     pOO p
n log3  time.  For small p this is larger 

than the  nO time of sweeps, but for large p it is asymptotically smaller.

Our description of a parallel prefix method for slab geometry transport is not unique or original.  
At least two other researchers independently constructed similar algorithms based on equivalent 
reasoning over a decade ago [4-5].  However, it was not obvious whether these approaches could 
be extended to multidimensional calculations, for reasons discussed in the next section.

4.  PREFIX-BASED SOLVERS FOR MULTIDIMENSIONAL TRANSPORT

4.1  Extension of Prefix Solvers to Multidimensional Transport Problems

The results for slab geometry transport are not easily extended to multidimensions.  Most 
discretizations (including the familiar class of finite element methods) yield a set of discrete 
equations that do not define a prefix problem.  Prefix problems require that each angular flux 
variable depend on at most one other variable, whereas in many transport discretizations these 
variables have as many upstream dependencies as there are incoming element faces.  We have 
recently recognized that there is one notable exception to this trend: the class of long 
characteristics (LC) discretizations.  The flux exiting an element along one of these 
characteristics depends only on known source terms and on the (generally unknown) flux 
entering the element on the same characteristic.  Thus LC discretizations define a set of prefix 
problems, which we postulate may be solved more efficiently by a parallel prefix solver than by 
a parallel sweeps approach.
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The extension of the cyclic reduction solvers to LC discretizations is conceptually 
straightforward.  Each characteristic defines an effectively one-dimensional streaming-plus-
collision problem; multidimensional effects are restricted to the calculation of source terms.  A 
depiction of one step of the forward algorithm is shown in Figure 4, where the dataflow for just 
one characteristic is illustrated.  This process may be conducted concurrently with other 
characteristics and other angles.  Parallelization is also implemented in a manner analogous to 
the slab geometry case.



Figure 4: Cycle 2 of “forward” cyclic reduction solver applied to LC problem.

4.2  Efficiency Analysis of Multidimensional Parallel Cyclic Reduction Solvers

We have analyzed the theoretical costs of the proposed parallel cyclic reduction algorithms for 
two-dimensional LC discretizations.  We are particularly interested in their asymptotic behavior 
as the problem size and processor count increase, which we wish to compare with the 
corresponding expressions for the cost of parallel sweep-based solvers.

For the purpose of this analysis we restrict our attention to a mesh of quadrilateral elements laid 
out in a structured IxJ grid.  We examine two different situations.  In the general/worst case we 
make no assumptions about the mesh partitioning other than load balance, we assume that the 

communication network of the host computer system is mesh-based with a diameter of P , and 
we assume that messages are sent with store-and-forward routing.  In the more restricted case we 
assume that the domains form a PxxPy grid (i.e. rectangular domains), the communication 
network is tree-based with a diameter of  2/log2 2 P , and that cut-through routing is used.  In 
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both cases we assume that there is no network contention; the time to send and receive a message 
is independent of the existence of other message traffic.  We also make the following definitions:

R:  average number of rays intersecting an element in each angle
M:  number of angles per quadrant
db:  number of bytes per double-precision variable
ω:  time to invert the streaming-plus-collision operator per ray segment per element
Ts:  message startup time
Tw:  communication bandwidth
Thop:  time to forward message at each node of the network

For the sake of space we simply report the final results in the extreme limit in which P=IJ.  The 
efficiencies of the forward solver in the general case, the forward solver in the restricted case, 
and the method of sweeps [1] are:

Here we see clearly the asymptotic drop-off in efficiency of parallel sweeps, which decays as 
2

1P regardless of communication speed.  We also see poor asymptotic efficiency for a parallel 
cyclic reduction algorithm when executed on a mesh-based architecture; in this case a 
communication sweep through a network has replaced a computational sweep through the finite 
element mesh.  The efficiency in the restricted case, however, displays only logarithmic decay.  
We note that this improvement comes strictly as a result of the network architecture and does not 
depend on the partitioning, since there is only one possible partitioning when P=IJ.

5. RESULTS

To test our analysis we implemented a simple LC discretization within Sandia’s radlib/SCEPTRE 
code base[6].  We also implemented the forward and symmetric cyclic reduction algorithms as
alternatives to SCEPTRE’s existing sweeps solver.  Various scaling studies were performed on 
Red Storm (12,960 dual-core AMD Opteron processors) and on Thunderbird (4480 dual core 
Intel EM64T processors).  Timings on Red Storm and Thunderbird for S8 quadrature for several 
quadrilateral meshes are shown in Figures 5-8.  In these studies we show sweeps results for 
different quadrature “mappings” that improve cache reuse at the expense of iterative 
effectiveness, so sweeps results for S2 and S4 mappings will generally be worse than implied
when the overall time to solution is compared.  These and other results generally confirm our 
theoretical analysis: sweeps-based approaches are faster than cyclic reduction for low processor 
counts, but the reverse is true for sufficiently high parallelism.
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Figure 5: Red Storm scaling, 512x512 quad4 mesh.

Figure 6: Red Storm scaling, 1024x1024 quad4 mesh.



Scalable Parallel Prefix Solvers

2009 International Conference on Mathematics, Computational 
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

11/12

Figure 7: Red Storm scaling, 2048x2048 quad4 mesh.

Figure 8: Thunderbird scaling, 1024x1024 quad4 mesh.
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6. CONCLUSIONS 

The parallel performance of sweep-based transport solvers is inherently limited by available 
concurrency.  It was the purpose of this study to examine the potential of alternative solution 
strategies based on prefix approaches that have greater concurrency.  One prefix strategy, that of 
cyclic reduction, was developed and analyzed in this study; its theoretical scaling performance 
compares favorably with the sweeps-based approach.  Actual computer scaling studies generally 
validate our theoretical predictions.  Therefore we conclude that massively parallel transport 
methods based on these approaches demonstrate great potential for favorable performance on 
future systems in comparison to current sweeps-based approaches.

The above conclusion is contingent on several factors, however.  Our performance models 
indicate that favorable scaling requires that future parallel systems have a small diameter, e.g. 

 Plog rather than 2
1

P .  Mesh-based architectures are predicted to display the same asymptotic 

scaling degradation with cyclic reduction solvers as all systems do with sweeps-based solvers.  
Even if future systems have a small diameter it is not clear whether network contention will be 
problematic; our models ignore this effect.  In some of our timing studies we did observe 
degradation in the performance of the cyclic reduction solver at very large processor counts; it is 
unclear whether this is an intrinsic effect at this level of parallelism or whether future systems 
will delay this degradation to much larger levels of parallelism.
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