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ABSTRACT 
Extensive experimentation over the past decade has shown that fabricated physical systems that are intended to 
be identical, and are nominally identical, in fact, differ from one another, and sometimes substantially. This fact 
makes it difficult to validate a mathematical model for any system and results in the requirement to characterize 
physical system behavior using the tools of uncertainty quantification. Further, because of the existence of 
system, component, and material uncertainty, the mathematical models of these elements sometimes seek to 
reflect the uncertainty. This presentation introduces some of the methods of probability and statistics, and shows 
how they can be applied in engineering modeling and data analysis. The ideas of randomness and some basic 
means for measuring and modeling it are presented. The ideas of random experiment, random variable, mean, 
variance and standard deviation, and probability distribution are introduced. The ideas are introduced in the 
framework of a practical, yet simple, example; measured data are included. This presentation is the third in a 
sequence of tutorial discussions on mathematical model validation. The example introduced here is also used in 
later presentations. 
 
Nomenclature 
 
E Modulus of elasticity 
G Shear mouslus of elasticity 
L, U Interval limits 
X Random variable 
s Sample standard deviation 
w Measure of structural dynamic response 
x, y  Arbitrary data 

2s  Sample variance 
x  Sample mean 
 
 
Introduction 
 
The use of probability theory to characterize structural dynamics was effectively introduced in the United States in 
1958 (Crandall, 1958, Paez, 2006). The application was random vibrations. (However, the ideas used in random 
vibrations were put into use in the field of communications as early as 1925. See Carson, 1925.) The ideas of 
random vibration were generalized into the field of random shock and vibration, and the field is known as 
probabilistic structural dynamics. The theory of probabilistic structural dynamics seeks to characterize structural 
dynamic response probabilistically, by considering excitations applied to structures as random, but considering 
the structures themselves as deterministic.  
 
Over the past decade, or so, the field of probabilistic structural dynamics has been extended to consider the 
potential for randomness in structures as well as their excitations. When used in connection with the finite element 
method, the theory is known as stochastic finite elements (Ghanem and Spanos, 1991). The technique has been 
applied to structural dynamic systems (Ghanem, Doostan, Red-Horse, 2008), and other systems. But the 
recognition that structural systems vary randomly is not recent. In 1969 Collins (1969) considered the eigenvalue 
problem for structures with randomly varying parameters. Experimentation over several decades (and, particularly 
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over the past decade) has shown that physical systems that are intended to be identical, and are, in fact, 
nominally identical, differ from one another, sometimes substantially (Smallwood, Gregory, Coleman, 2000). 
 
The study of the validation of mathematical models was introduced into engineering about ten years ago. It is 
defined as the “process of determining the degree to which a computer model is an accurate representation of the 
real world from the perspective of the intended model applications.” (ASME, 2006, U.S. DOE, 2000, AIAA, 1998) 
The objective of validation is to compare the responses predicted with a mathematical model to the responses 
realized by a physical system during an experiment, and, perhaps, judge the adequacy of the model. The 
strictness of the criterion used to judge model adequacy depends on the intended application of the model. The 
goal of model validation is to assure that the mathematical models of physical systems and phenomena are 
adequate for use in a pre-established application. In structural dynamics, validation has focused on attempts to 
assure the adequacy of finite element models. (Though it is equally important, practically no emphasis has been 
placed on validation of mathematical models of random structural dynamic excitations. See Field, Paez, 
Smallwood, 2008). 
 
If both mechanical structures and their excitations could be accurately treated as deterministic, then their 
behaviors would reflect no uncertainty, and model validation would involve deterministic comparisons of model-
predicted behavior to physical system behavior measured during experiments. However, as mentioned above, 
experiments have shown that structures – even those fabricated to the highest standards of quality control – 
reflect uncertain behavior. In view of this, the uncertainty in structural system characteristics must be considered 
in validation analyses. 
 
This paper presents some of the most fundamental ideas from the theory of probability, including the modeling of 
individual random sources, the modeling of pairs of correlated random sources, the propagation of randomness 
through a deterministic model, and the comparison of random model outputs to random experimental outputs. 
 
Fundamental Tools of Probabilistic Uncertainty Quantification, Example 
 
The literature on probability and statistics – under development for more than three centuries – is filled with tools 
and techniques that are useful for pursuing analyses critical to model validation. Some of these tools permit (1) 
characterization of the randomness in experimental data, (2) creation of models to simulate random phenomena, 
and (3) comparison of model predictions to experimental data to judge whether the model used to make the 
predictions should be rejected as representative of the experiments. Some of the tools and techniques are 
relatively straightforward and easy to understand, and others are more esoteric. We summarize, here, some of 
the former tools. 
 
We consider, first, elements (1) and (2), listed above, and we do so in the context of a specific example. We start 
by describing a technique for modeling a single, or univariate, random source, and follow that by describing a 
technique for modeling two or more random sources, simultaneously. (A random source that has two quantities of 
interest is called bivariate.) We then show how the uncertainty associated with an element or system 
subcomponent can be propagated through another model – usually a finite element model. Finally, we consider 
element (3), listed above, namely, the comparison of probability predictions from a model to the probabilistic 
character of experimental response. 
 
 Modeling and Simulation of a Univariate Random Source 
 
We are interested in characterizing the properties of a bonding material, i.e., a material used to adhesively bond 
two shells together. To accomplish this goal, we might construct multiple, nominally identical replicates of an 
experimental system that can be used to infer the desired material properties. (For the details of such an 
experiment carried out at Sandia National Laboratories, see Appendix A.) 
 
In this example, one of the material properties of interest is shear modulus of elasticity, G. During experiments 
performed on five separate structures, realizations of the shear modulus of elasticity were inferred, and they are 
listed in Figure 1a. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1a. Bond material shear modulus of 
elasticity values inferred from experiments 
on five nominally identical test structures.
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Denote the sample values of the shear modulus of elasticity, n,...,i,xi 1= , where, here, . The sample mean 
of the experimental data is denoted 

5=n
x , and is defined as 
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This quantity is the average of the data and an estimate of the mean or expected value of the random source of 
the experimental data. The mean is a “central value” of all values that might be drawn at random. The source of 
random data is called a random variable. (It is assumed that the random variable, X, has a specific mean, Xμ , 
that can never be known except through measurement of infinite samples.) The sample mean, x , is a statistic of 
the data. That is, it is a quantity dependent on the measurements, only. It has the same units as the data. The 
sample mean of the data in Figure 1a is provided in Figure 1b. 
 
Another statistic that characterizes a collection of measured data and, it is hoped, the random source, X, of the 
data is the sample variance. It is denoted  and is defined as 2

Xs
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It is the average of the squares of the deviations of the data from the sample mean, and it is an estimator of the 
variance, , of the random variable, X. The sample variance has units that equal the square of the units of the 
data. The sample variance of the data in Figure 1a is listed in Figure 1b. 

2
Xσ

 
An alternate measure of the spread in data that has units of the data, themselves, is the sample standard 
deviation. It is denoted  and defined Xs
 

 2
XX ss =  (3) 

 
That is, it is simply the square root of the sample variance. It is the estimator of the standard deviation, Xσ , of the 
random variable, X. The sample standard deviation of the data in Figure 1a is listed in Figure 1b. 
 
The sample mean and variance are called moments because they satisfy the mathematical definition of a 
moment. The sample mean is the first normalized moment of the data about the origin; the sample variance is the 
second normalized moment about the sample mean. (Montgomery et al., 2006) 
 
Figure 1b shows a number line with the data (o), the sample mean (x), and the sample mean minus/plus one and 
two sample standard deviations (+). Clearly, the sample mean lies at the centroid of the measured data, and the 
sample standard deviation is a measure of the spread of the data. 
 
A statistical tool for characterizing the distribution of values in the measured data (and, again, it is hoped, the 
random source of the data) is the histogram. A histogram is a bar chart indicating the frequency of occurrence of 
data values within specific, quantitative intervals. The histogram of the data in Figure 1a is shown by the stair-step 
function in Figure 1c. Five data are rather minimal for learning much about data distribution and the distribution of 
their source. More data might indicate a particular probability distribution. However, when data are minimal, but it 
is known that the source is random, a convenient form for the distribution might be specified. The smooth curve 
superposed over the histogram in Figure 1c has the shape of the probability density function (PDF) of a random 
variable that is normally distributed. It points to one of the goals of modeling, and that is to generalize the 
information in the data into a probability model that can be used to characterize the distribution of the source of 
the data. 
 
A normal PDF is shown in Figure 1d. It is the familiar “bell-shaped” curve. The PDF of random variable X is 
denoted , and a normal PDF has the form ( ) ∞<<∞− x,xfX
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where xX =μ  and . It can be shown (Ang and Tang, 1975) that the mean of the random variable X is 
the centroid of the PDF curve, and its variance is the second moment of PDF curve about the mean. In order to 
be a valid PDF a function must satisfy the requirements 
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The normal PDF of Eq. (4) clearly satisfies the first requirement, and it can be shown, directly, that it satisfies the 
second requirement. 
 
Further, the PDF of a random variable is related to the probability that the sample of a random variable obtained 
during a random experiment falls within an interval. Specifically 
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The quantity , is the probability that when a single random experiment is performed 
(i.e., the random source associated with X is sampled) the result will lie in the interval . Probability is the 
relative chance of occurrence of an event. 
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Once the probability distribution of a random variable is known samples from the random source can be 
generated. There is a general means for obtaining samples from an arbitrarily distributed source, but for the 
present, we simply point out that when the source is normally distributed the means for obtaining one or more 
random samples is very direct. Many software packages like MATLAB, EXCEL, and others can be used to 
generate random samples from a normally distributed source with zero-mean and unit-variance. (These are 
samples from the so-called standard normal random variable.) Let r denote such a sample. Then a sample from a 
normal random source with mean Xμ  and variance  is given by 2

Xσ
 
 rx XX σμ +=  (7) 
 
Any number of random samples can be generated. 
 
Consider the five values of inferred bond material shear modulus, listed in Figure 1a. If we assume they come 
from a normal random source with mean and variance equal to the sample mean and variance in Figure 1b, then 
we can generate more samples as described above. Fifty samples were generated, and the histogram of the 
generated data is shown in Figure 2. The original data values are shown by dots along the abscissa. 
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Figure 2. Histogram of generated data, and the original data (dots). 

 
The approach to modeling and simulation of a random source described in Figures 1a through 1d and Eqs. (1) 
through (7) can be very simply modified to develop an alternate (and, perhaps, more suitable) model. When it is 
required that a collection of data have a distribution of values where all members are non-negative or positive, it 
may be preferable to analyze and model the logarithm of the data. For example, here, instead of computing the 
sample mean and variance of the data n,...,i,xi 1= , we might compute those moments for ( ) n,...,i,xlog i 1= , 
instead. We might use those sample moments to create a model for the random variable log , instead of X. 
We might generate samples from the random source 

( )X
( )Xlog , and once done, we might invert the generated 

samples to obtain . The effort associated with this approach is essentially the same as expended on 
the approach previously described. 

( )xlogx 10=

 
 Modeling and Simulation of a Bivariate Random Source 
 
The tools developed to this point show how to model univariate data and generate samples from the model. But it 
is sometimes also necessary to model and generate multivariate data.  
 



Consider, again, the data provided in Figure 1a – the inferred shear modulus of elasticity of the bond material – 
and, in addition, the inferred modulus of elasticity. Both sets of experimental data are listed in Figure 3a. The 
figure on the top of Figure 3b plots the shear modulus data versus the modulus of elasticity data. This is known as 
a scatter-plot. The line included with the data shows that the data fall almost on a straight line, and that fact 
simplifies representation of the data. Before considering the simplification, though, consider the general case. 
 
 

Figure 3a. Bond material shear modulus of 
elasticity and modulus of elasticity values 
inferred from experiments on five nominally 
identical test structures.
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There are two fundamental measures of the degree of linear relation between a pair of random sources where 
realizations (samples) of the random sources are simultaneously, or jointly, realized. The first is the sample 
covariance. Let two sets of data, simultaneously realized, be denoted ( ) n,...,i,y,x ii 1= . Their sample covariance 

is denoted ( )( )yYxX −− , and is defined as 
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The sample covariance is the degree of linear relation between a pair of data sets; it is the average of the product 
of the mean-normalized data. The magnitude of the sample covariance is not normalized, but it can be shown that 
the magnitude can never surpass the product of the sample standard deviation of the x-data times the sample 
standard deviation of the y-data. The normalized form of the sample covariance is the sample correlation 
coefficient. It is denoted XYρ̂ , and it is defined 
 

 ( )( )
YX

XY ss
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The sample correlation coefficient is in the interval [-1,1], and its magnitude indicates the normalized degree of 
linear correlation between a pair of data sets. The sample covariance and sample correlation coefficient between 
the shear modulus and modulus of elasticity data are listed in Figure 3b with the scatter-plot. The latter quantity 
makes it clear that the correlation is very high. When this is so, the two variables are said to be nearly linearly 
correlated or almost perfectly correlated, and one variable is approximately a linear function of the other. 
 
We now establish the parameters of that linear function using an approach called linear regression (Ang and 
Tang, 1975). Consider, again, the two sets of data denoted ( ) n,...,i,y,x ii 1= . We wish to identify a linear model 
with the form 
 



 n,...,ixˆy iii 1=+= εα  (10) 
 
where α̂  is a constant, and n,...,i,i 1=ε , is a sequence of realizations from a mean-zero random variable with 

sample variance, . The constant 2s α̂  is identified by (1) solving Eq. (10) for iε , (2) squaring both sides of the 
resulting expression, (3) summing both sides of the equation, and minimizing the sum with respect to α̂  by taking 
the partial derivative on both sides with respect to α̂ , equating the resulting expression to zero, and solving the 
resulting equation. The result is 
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The straight line in Figure 3b is the one with slope 34150.ˆ =α , obtained by using the modulus of elasticity data in 
place of the , and the shear modulus data in place of the n,...,i,xi 1= n,...,i,yi 1= .  
 
The sample variance  can be obtained by evaluating the model predictions 2s
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then using the results to evaluate 
 

 ( )(∑
=

−
−

=
n

i

mod
ii yy

n
s

1

22
1

1 )  (13) 

 
In general, to simulate joint realizations of the x- and y-data modeled, we assume or develop a distribution for the 
x-data as in the previous section. We generate a realization from the random source of x-data; that operation 
yields the first generated variable. Next, we generate a sample from a normal random variable with zero-mean 
and variance  (from Eq. (13)). We use that generated datum along with the generated x-value in Eq. (10), to 
obtain the generated y-value. Finally, repeat this operation until the desired amount of data is obtained. 

2s

 
In general, the relation of Eq. (10) may contain a constant, and that constant can be evaluated using the same 
general approach and formulas described here. (See Ang and Tang, 1975). 
 
The situation is somewhat simplified in the case where the sample correlation coefficient is near plus or minus 
one, as it is in Figure 3b. In that case we go through all the operations listed above, but will find that the sample 
variance, , of Eq. (13) will be approximately zero. In that case, to generate x- and y-data, we start by 
generating an x-datum, then use it in Eq. (12) to generate the y-datum. Repeat the operations until the desired 
number of data pairs is obtained. 

2s

 
We followed the steps listed above to generate samples of the modulus of elasticity and the shear modulus from 
the random source that was modeled. The results are shown in Figure 4. The red points represent the generated 
data, and the blue circles represent the original data listed in Figure 3a. The regression line shown in Figure 3b is 
repeated, here. The fit of the model to the data is not perfect, and more sophisticated methods could be used to 
make the model match the experimental data a little more closely, but that hardly seems worthwhile in this 
application. 
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Figure 4. Experimental realizations of shear modulus versus modulus of elasticity (blue circles), versus modulus 
of elasticity (red dots) over regression line (blue line). 
 

Propagation of Randomness through a Model 
 
The previous two sub-sections show how to compute the statistics of data and how to model univariate and 
bivariate data. In the example started earlier, the objective is to characterize the probability model of a bonding 
material. The reason for creating the model of the bonding material is to establish the effect of its randomness on 
the behavior of a structural dynamic system. We will not go into details about how to obtain the model of the 
structural dynamic system, except to say that it would be obtained in a finite element framework. Specifically, a 
deterministic finite element model (FEM) would be constructed – one that can be used to compute one or more 
critical measures of response of the system under consideration. A deterministic finite element model is one 
whose input data – geometry, material parameters, boundary conditions, initial conditions, etc. – are all non-
random quantities. The critical measure of response may be anything computable with an FEM, for example, 
peak motion at one or more locations, peak stress or strain at one or more points, etc. We can express the FEM 
computation in functional form. 
 
  (14) ( )G,E,pgw FE=
 
where w is the response measure of interest, ( )⋅FEg  embodies the FEM operations, p is the input data for the 
model (except for E and G), and E and G are the bond material modulus of elasticity and shear modulus. The 
latter two quantities are random variables, but when they take on specific values – like their generated values – 
they can be used in the FEM to compute specific results. We take the response measure of interest, w, to be a 
scalar, here. 
 
The Monte Carlo method (see Ang and Tang, Volume II, 1984) uses a deterministic model, like the one in Eq. 
(14), to develop probabilistic results. The approach is straightforward. The analyst uses generated values of E 
and G, like those shown in Figure 4, one pair at a time, to compute the response measure of interest. Denote the 
generated pairs of E and G as . When the individual pairs of input parameters are used in Eq. 

(14) to compute the response, the model yields the set of outputs 

( ) genii n,...,i,G,E 1=

geni n,...,i,w 1= . The outputs can be analyzed 
and modeled as described in the previous section, entitled “Modeling and Simulation of a Univariate Random 
Source,” to obtain a probability model. 
 
For example, suppose that the response measure of interest, w, denotes peak displacement response at a point 
on a structure, in a particular direction, and is modeled in an FEM. Also suppose that the FEM is exercised over a 
bivariate range of values of the values ( . Let the shaded surface in Figure 5 represent the response values, 
w, excited by the input values, . The shaded surface is a response surface. (The  plane in Figure 5 
above which the response surface is defined includes other values in addition to the points included in 
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Figure 5. Peak displacement response of the structure for E in [8000,11,000] psi and G in [3000,3500] psi 
(shaded surface). Realized values of response measure,  (black dots). geni n,...,i,w 1=
 
The Monte Carlo-computed response values, , are also shown on the response surface in Figure 

5. These are the realizations of random output corresponding to the random input pairs . The 
sample mean, sample variance, and sample standard deviation of the output values – the black dots in Figure 5 – 
can be computed using Eqs. (1), (2), and (3). They are 

geni n,...,i,w 1=

( ) genii n,...,i,G,E 1=

 
 in.sin.sin.w WW 01200104513146210 242 =×== −  (15) 
 
The histogram of the output data is shown in Figure 6. 
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Figure 6. Histogram of the Monte Carlo-computed response. 

 
Based on the appearance of the histogram of the outputs, Figure 6, we might model the response as a normal 
random variable with the moments in Eq. (15). 
 

Comparison of Model Predictions to Experimental Response 
 
The preceding sections described methods to (1) use univariate experimental data to develop a probability model 
and obtain samples from the model, (2) use bivariate experimental data to develop a probability model and obtain 
samples from the model, and (3) propagate data from a random source through an FEM. As noted in the first 
paper in this tutorial sequence (Paez, 2009), the objective of model validation is to compare predictions from a 
model – usually an FEM – to experimental results. We have emphasized in this paper that experimental 
structures and phenomena are random, and that randomness should be reflected in their models. Four 
comparison situations can occur. 
 

• Though the experimental system is random, only one realization of the system may be available, and only 
one experiment might be performed on the system. (The reason may relate to expense, availability, time 
constraints, etc.) Further, the model of the system may be deterministic. That is, all the input data for the 
model may be non-random quantities. (The reasons for developing a deterministic model usually relate to 



expense, time constraints, in-house expertise, etc.) Validation comparisons for this case involve 
requirements of arbitrary agreement between model predictions and experimental results and will not be 
considered here. 

• As above, only one realization (or, a small number of realizations) of the system may be available, and 
only one experiment might be performed on the system. However, through experiments separate from the 
validation experiments, a probability model for the parameters of the structural model may be built. The 
validation comparisons, in this case, involve comparison of the single experimental output to the 
distribution of random outputs from the system model. 

• The third comparison reverses the situation of the second. Here, multiple experimental results are 
available, but the model is deterministic. The validation comparisons, in this case, involve comparison of 
the single output from the system model to the distribution of experimental outputs. 

• Finally, multiple experimental outputs may be available (from multiple experimental systems and/or 
multiple experiments on each system) and a probabilistic model may be available. In this case, the 
validation comparisons try to establish how well the model-predicted moments of response or probability 
distribution of response predict the corresponding quantities from the experiment. 

 
We consider, briefly, the latter three types of comparisons. The comparisons in bullets 2 and 3, are similar, in the 
sense that one part (experiment or model prediction) is deterministic and the other can be modeled as random. 
Two relatively straightforward means for comparison will be outlined. 
 
First, consider the case where the models developed in the previous subsections characterize the FEM-based 
predictions, and there is one structure-level experimental result, only. That is, the moments listed in Eq. (15) and 
the histogram shown in Figure 6, characterize the model prediction of peak response at a point. (Those results 
were propagated from a probability model involving material modulus of elasticity, E, and shear modulus, G. The 
probability model for E and G was obtained from experiments separate from the validation experiment.) Further, 
one structure has been fabricated, and that structure has been tested one time, to obtain the single measurement 
of peak response at the point of interest, and that measured response is ( ) in.w exp 42100= .  
 
A simple validation criterion requires that the experimental result, ( )expw , lie within the interval associated with 
model-predicted results and defined as 
 
 [ ww s.w,s.w 961961 +− ]  (16) 
 
where the quantities defining the limits are from Eq. (15). The rationale behind this criterion is that if the peak 
response random source has a normal distribution, then about ninety-five percent of the model-predicted results 
will fall within the interval. In specifying this criterion, we assume that the experimental result is not an outlier, and 
we accept a five percent probability that our conclusion regarding validity of the model will be incorrect, i.e., that 
we will reject a model when, in fact, we should not. In this case, the quantitative interval is [0.4385,0.4857] in, so 
we reject the model, though it is close to the experimental result, and it is conservative, i.e., it tends to over-
predict the structural peak response.  
 
The validation criterion might be modified to  
 
 ( ) ([ ww s.w,s.w 961961 +− )]βα  (16a) 
 
where α  and β  are multiplicative factors chosen prior to the comparison. Normally, α  would be a positive 
constant chosen equal to or smaller than one, and β  would be a positive constant chosen equal to or greater 
than one. In the comparison considered, here, a value of α  smaller than one permits the validation of models that 
produce conservative results, i.e., results that are greater than the experimental results. A value of β  greater 
than one permits the validation of models that produce under-conservative results. In this example, if α  had been 
chosen to equal a value of 0.96 or less, and β  had been chosen as one, the model would have been judged 
valid. 
 
It must be mentioned that there is nothing magical about the factor of 1.96 used in expressions (16) and (16a). It 
is obtained from a table of the standard normal distribution (Ang and Tang, 1975) and reflects a particular level of 



probability, 0.95, in this case. Another factor could be used to develop a “looser” or “tighter” criterion. But 
validation of model predictions using a “loose” criterion says much less about model accuracy than validation of 
model predictions using a “tight” criterion. 
 
A similar approach to validation comparisons defines an interval, not on the basis of moments, but on the basis of 
the data. The empirical cumulative distribution function (CDF) of a collection of data is defined as a stair-step 
function with increments of genn1  plotted as a function of the sorted version of the data, . The 

function is denoted , and the height of the function at any abscissa value, w, is interpreted as 
an estimate of the probability  

geni n,...,i,w 1=

( ) ∞<<∞− w,wFW

 
 ( ) ( ) ∞<<∞−≤= wwWPwFW  (17) 
 
The probability on the right-hand side is the relative chance that when a random experiment is performed, the 
random variable W will assume a value (realization) equal to or lower than w. The empirical CDF of the model-
predicted peak structural responses, , is plotted in Figure 7. geni n,...,i,w 1=
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Figure 7. Empirical CDF of the model-predicted peak responses (blue). Estimated ninety-five percent probability 
interval on peak responses. 
 
The empirical CDF can be used to obtain a probability interval of the random variable, W. A p-valued probability 
interval is the interval within which there is a probability, p, that a model-prediction lies. The quantity p must lie 
within the interval (0,1). The interval is obtained by inverting the empirical CDF. The limits are defined 
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and the interval is [ ] .  U,L
 
A validation criterion might require that the experimental result, ( )expw , lie within the interval [ . The rationale 
behind this criterion is that the interval provides a good estimate of the range within which ninety-five percent of 
the results will lie, without regard to whether or not the random variable, W, is normally distributed. In specifying 
this criterion, as before, we assume that the experimental result is not an outlier, and we accept a (1-p)x100 
percent probability that our conclusion regarding validity of the model will be incorrect.  

]U,L

 
We choose to use a ninety-five percent probability interval, here. In this case, the quantitative interval is 
[0.4387,0.4829] in, and it is shown by the red lines in Figure 7. The interval does not contain the experimental 
result, so we reject the model, though it is close to the experimental result, and it is conservative. Using the same 
rationale as in expression (16a) we can also define the validation criterion as the requirement that ( )expw  lie 
within the interval [ ]U,L βα  where the constants α  and β  are chosen as above. 
 



When the situation is the opposite of that analyzed here, i.e., a probability model for the experimental results is 
available, and a deterministic model-prediction, only, is available, validation comparisons are completely 
analogous to the ones described above. 
 
The fourth bullet listed above describes a situation in which sufficient data are available to create probability 
models for both the experimental outcomes and the model predictions. We already have model-predicted peak 
responses summarized in the moments of Eq. (15), the histogram of Figure 6, and the empirical CDF of Figure 8. 
Suppose that, in addition, we have multiple replicates of the experimental data. Let the experimentally measured 
peak responses be denoted , and let their empirical CDF be that shown in Figure 8a (blue). 

(The plot reflects experiments.) In addition, the empirical CDF of the model-predicted peak responses is 
repeated in the figure (red). It should be clear that if the two empirical CDFs are “close enough” the model is a 
valid representation of the physical system. The question is: How close do the curves need to be? The answer 
can be found in many ways, but a classical approach is embodied in the two-sample Kolmogorov-Smirnov test. 
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Figure 8a. Empirical CDF of the 
experimentally measured peak responses 
(blue). Empirical CDF of the model-
predicted responses (red). 
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The two-sample Kolmogorov-Smirnov test requires that the greatest vertical distance between the empirical CDFs 
be equal to or less than a critical statistic, Δ, in order for the model to be considered “equivalent” to the physical 
system in a statistical sense. Some values of the critical statistic are listed in Figure 8b. To use the two-sample 
Kolmogorov-Smirnov test, we need to compute an effective sample size from the actual sample sizes of the 
experimental data and the model-predicted data. The former quantity is , and the latter quantity is . The 
effective sample size is defined 

expn genn
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nn
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Because  and , the effective sample size is 12=expn 50=genn 689.neff = . The effective sample size is 

approximately equal to 10, therefore, the critical statistic, 410.=Δ  is used. The greatest vertical distance between 
the two empirical CDFs in Figure 8a is 0.32, therefore, the hypothesis that the model predictions form a 
satisfactory representation of the actual system cannot be rejected. 
 
It must be noted that the critical statistics listed in Figure 8b are for the case in which the significance of the test is 
five percent. That is, when this criterion is applied, there is a five percent chance that the conclusion drawn from 
the comparison is incorrect. If it is desired to develop a comparison based on another level of significance, the 
critical values must be obtained from a suitable table. Benjamin and Cornell (1970) contains such a table and an 
explanation of how to use it. 



 
The validation comparison developed, here, shows why, if at all possible, a comparison of probability models 
should be pursued. Note from Figure 8a that the smallest value of the experimentally measured peak response is 
0.4210 in. That was the value used in the previous two validation comparisons, described earlier. Though the 
quantity is not an outlier, it falls at the lower extreme of the measured data. Whenever a deterministic quantity – 
whether from a single experimental result or as a parameter in a model – is used as the basis for a comparison 
we run the risk that the quantity will represent an extreme value. This can lead to rejection of a model that should, 
in fact, be accepted, though it does not necessarily occur in all cases. 
 
Conclusions 
 
This paper provides an elementary introduction to some of the tools useful for probabilistic uncertainty 
quantification, and, in particular, probabilistic tools useful for operations required in model validation. An example 
– based on real laboratory experiments – was used to show how to  
 

• Develop models for random, univariate data 
• Generate samples from the univariate model 
• Develop models for random bivariate data 
• Generate samples from the bivariate model 
• Propagate randomness through a deterministic finite element model (FEM) 
• Compare predictions from an FEM to experimental results in three cases 

o One experimental result is available and a probability model is available for the FEM outputs 
o Multiple experimental results are available and one FEM output is available 
o Probability models are available for both the experimental results and the FEM 

 
Though many techniques are available for probabilistic data modeling, development of random FEM, and 
comparison of model predictions to experimental results, the tools and approaches presented here provide a 
fundamental basis for performing these operations. 
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Appendix A – Experiments that Characterize the Parameters of a Bonding Material 
 
Experiments were performed at Sandia National Laboratories to establish the parameters of some samples of a 
bonding material. Specifically, models for the modulus of elasticity, E, and the shear modulus, G, were sought. 
The bonding material was, eventually, to be used to bond together some shells of an aerospace structure. In 
order to obtain data for use in specification of a probability model, five nominally identical structures were built to 
infer the bonding material parameters. A schematic of the structure is shown in Figure a.  
 

 
Figure a. Schematic of the structure used to infer bonding material parameters. 

 
The structure consists of two steel masses, shown in black in Figure a, bonded together by a layer of the bonding 
material, shown in gray in Figure a. The diameter of all the disks in Figure a is 1.125 in. The thickness of both 
steel disks is 0.375 in. Five structures were fabricated and the average thicknesses of the bonding disks in the 
five structures are [0.506,0.507,0.507,0.505,0.506] in.  
 
Each of the five structures was instrumented with tri-axial accelerometers on both steel disks. Dynamic 
experiments were performed on all five structures in which one of the steel disks was impacted with a modal 
hammer, and responses were measured. A modal analysis was performed on each structure, and the modal 
frequencies were identified. Observation of the mode shapes made is clear that, among many other modes, there 
existed modes that are primarily shear modes, and modes that are primarily axial modes. For all five experimental 
structures the identified modal frequencies are listed in Table A.1. Denote the experimentally obtained shear 
modes , and the axial modes ( ) 51,...,i,f sh

i = ( ) 51,...,i,f ax
i = . 

 
Table A.1. Experimentally identified modal frequencies of the five structures. 

 
Structure index Shear mode frequency 

(Hz) 
Axial mode frequency 

(Hz) 
1 1750 2210 
2 1800 2275 
3 1787 2240 
4 1762 2215 
5 1750 2230 

 
A finite element model (FEM) of the nominal structure was constructed. The model has known geometry, and 
known properties for the steel disks. The modulus of elasticity, E, and shear modulus, G, of the bonding material 
are unknown, but nominal values  and  can be used in their places. The nominal model can be used to 0E 0G



perform a modal analysis, and the shear mode and axial mode frequencies can be obtained. Denote these modal 
frequencies . ( ) ( )ax

FE
sh

FE f,f
 
In addition, the FEM can be used to evaluate the shear and axial modal frequencies at other values of the 
parameters E and G. The results of those analyses can be used to obtain an approximation to the sensitivity 
matrix of modal frequencies to material parameters. The sensitivity matrix is defined 
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Given the sensitivity matrix, we can write a first order Taylor’s series approximation to the experimental shear and 
axial modal frequencies in terms of the modal frequencies of the FEM. 
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where , are the bonding material modulus of elasticity and shear modulus for the bonding 
material in the five structures. All the elements in Eq. (A.2) are known except for  and , therefore, they can 
be identified. This relation was used to compute the sample E and G values provided in Figure 3a. 
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