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Outline

•Noncontact experimental techniques for 
measuring  and G in nanostructures –
PSTR and TTR

•Thermal models during laser heating

•Sensitivity of PSTR and TTR signals to 
and G



PSTR technique

Tong et al., IEEE Trans. Comp. & Pack. Tech, 30, 92 (2007) 



TTR technique

Hopkins et al., JHT, 130, 022401 (2008) 



Thermal diffusion due to modulated heat source
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Heat equation in cylindrical coordinates due to laser heating
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TTR technique – thermal assumptions

Thermal penetration depth

Over 8 ns pump-probe delay time (), at typical TTR modulation frequencies for film on 
substrate systems, assume back side of substrate is semi-infinite
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TTR technique – temperature change



TTR technique – lock in signal
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PSTR technique – thermal assumptions

Thermal penetration depth
At modulation frequencies typical in PSTR, thermal 

penetration depth is same order as material system thickness

  

















11

11

1

1

TT

TT

FF

FF
kF



 
  















 

















1

1

11

11

1

1

exp0

0exp

B

B

T

T

F

F

dq

dq

F

F

 fCD 
















































2

2

12

2

1

2

12

2

1

2

12

2

1

2

12

2

1

2

1

1

11

11

2

1

T

T

B

B

F

F

GG

GG

F

F










































1

1

3

3

T

T

F

F

Assume insulative boundary

 
  















 

















2

2

11

11

2

2

exp0

0exp

B

B

T

T

F

F

dq

dq

F

F


































3

3

2

2

10

01

T

T

B

B

F

F

F

F



PSTR technique – lock in signal
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Analysis sensitivities
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Analysis sensitivities – scaling 
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Conclusions

•Feldman algorithm for semi-infinite and insulative substrate 
system leads to lock-in response - -X/Y

•TTR and PSTR techniques both sensitive to G and  if all 
experimental parameters are known (spot sizes, absorbed power, 
electronic gain, etc.)

•If parameters are unknown and model must be scaled to data, 
TTR is far superior except for measuring conductivity of bulk, 
conductive systems
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