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Designing, developing for, and procuring large­
scale system is a multi­faceted problem
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Architecture simulation provides a way to explore this large problem space
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Institute for Advanced Architectures provides 
locus for community simulation efforts

SST Simulator Goals
•Become the standard architectural simulator for the HPC community
•Be able to evaluate future systems on DOE workloads
•Use supercomputers to design supercomputers and applications

Technical Approach
•Multiscale (Cycle-accurate to analytic)
•Parallel (design HPC with HPC)
•Whole system (integrated models)
•SST has core and rich component set

Consortium
•Utilize SST core to interoperate
•“Best of Breed” simulation suite
•Combine Lab, academic, & industry

Sun Microsystems



Project goals for Structural Simulation Toolkit 
macroscale (SST/macro) components

•Take into account the coupling of communication and computation in 
applications using
–Trace files that record an actual application run
–Skeleton applications that mimic application behaviour

•Run very large simulations (complex applications at large scales)
–1,000,000's of cores simulated on a single processor

• Parallelism used for parameter studies & multiscale

•Learn from currently available simulators such as BigSim and the Fujitsu 
simulator and provide new capabilities beyond that now available

•Allow investigation of effects of
–Topology, process placement, and interference between jobs
–Changes in the routing algorithm
–Changes in the network latency and bandwidth
–Having many cores share the same network interface
–Modifications to the MPI layer
–Modifications to the application
– Incorporation of more detailed models w/multiscale simulation



SST/macro design

Generic event interface: 
permits integration into the 
hybrid multi­scale SST simulator 
framework:

Extremely lightweight events: 
Measured real time to perform MPI 
ping pong round trips (simulator 
ran on a single processor):

Data no longer fits in 8 
MiB L3 cache (Core i7)



SST/macro has a flexible MPI model

•Traces & skeleton apps record MPI 
calls—but that can entail a lot
–MPI model can generate all of the 

messages that a real MPI library 
generates …

–… or a simplified model with less 
overhead can be used

•Allows details of the MPI 
implementation to be a part of the 
design space

•Not just restricted to MPI2
–Other programming models can be 

easily added
– Implemented immediate mode 

collectives (MPI3 proposal)



Examples of SST usage and impact

Obtain traces for applications 
and compact applications. Use 

SST for parameter studies.

Write skeleton applications for 
extreme scale studies.

Simulate new architectural 
feature such as extended 
memory semantics and 
transactional memory.

Develop acceptance tests and 
estimate performance before 

machine is built.

Understand performance and 
issues for machines several 

years from deployment.

Allow co­design of advance 
architectures and applications 

many years before deployment.
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SST/macro customers

SNL: studying Zia benchmarks suite and IAA­related mini applications.
ORNL: examining performance of MADNESS.
PNNL: understanding performance of one­sided programming models.
LLNL: mapping of applications into Sequoia network.



Methods for driving the SST/macro simulator

Trace Driven
•Open Trace Format

–Tools exist to generate trace
–Visualizers exist for trace
–Data not complete

•dumpi trace format
–Custom SST/macro format
–Records full MPI signature

• size vectors
• MPI_Request info

–Well behaved when 
application is not

• Skips irrelevant but resource 
intensive info (like 
MPI_Iprobe) 

Skeleton Application
•Programmer writes program that behaves 
like application
–Skip heavy computation

•Permits extreme­scale runs
void mpipingpong::run() {
  this­>mpi_­>init();
  mpicomm world = this­>mpi_­>comm_world();
  mpitype type = mpitype::mpi_double;
  int rank = world.rank().id;
  int size = world.size().id;
  if(! ((size % 2) && (rank+1 >= size))) {
    mpiid peer(rank ^ 1);
    mpiapi::const_mpistatus_t stat;
    for(int half_cycle = 0;
        half_cycle < 2*iterations_; ++half_cycle) {
      if((half_cycle + rank) & 1)
        mpi_­>send(count_, type, peer,
                   mpitag(0), world);
      else
        mpi_­>recv(count_, type, peer,
                   mpitag(0), world, stat);
    }
  }
  mpi_­>finalize();
}



A more sophisticated skeleton app: miniMD

• Simulator runs a skeletonized molecular dynamics application

• Computation time is derived from measurements with various input parameters
– The calls to estimate computation time is shown in blue type

• MiniMD control logic remains mostly intact

void minimd::integrate::run(shared_ptr<atom> atm, shared_ptr<force> frc,
                            shared_ptr<neighbor> nbr, shared_ptr<comm> cmm,
                            shared_ptr<thermo> thm, shared_ptr<timer> tmr)
{
  mpiid rank = mpi_­>comm_world().rank();
  for(int n = 0; n < this­>ntimes; ++n) {
    env_­>compute(this­>interpolator_­>get("integrate::run", 0));
    if((n+1) % nbr­>every) {
      cmm­>communicate(atm);
    }
    else {
      cmm­>exchange(atm);
      cmm­>borders(atm);
      nbr­>build(atm);
    }
    frc­>compute(atm, nbr);
    env_­>compute(this­>interpolator_­>get("integrate::run", 1));
    if(thm­>nstat)
      thm­>compute(n+1, atm, nbr, frc);
  }
}



Translating an application into discrete events

MPI_Recv
Yield until data available

MPI_Recv completes
MPI_Send 0 to 1

Schedule data sent
Schedule data recd
Yield until data sent

       MPI_Send completes
Continue processing

...

MPI_Send 1 to 0
Schedule data sent
Schedule data recd
Yield until data sent
MPI_Send completes

Begin computation
Schedule completion
Yield until complete

Computation completes
MPI_Recv

Yield until data available

MPI_Recv completes
Continue processing

...

D
iscrete event

tim
eline

THREAD 0 THREAD 1• MPI ping pong with 
computation: Simulation 
time increases going 
down, events are bars 
on the time axis, thread 
0 executes code on left 
and process 1 on right

• Each thread inserts events 
into the discrete event 
queue until it yields

• Events can cause a 
process to resume 
execution

• Single MPI calls can result 
in multiple events

• Scheduling of data 
sent/received events 
depends on network 
traffic



The circuit network component: a simple model 
that includes network congestion effects

Circuit model handles this case as follows:
• T = 0s: Traffic begins from node 1 to node 3; duration is 3s.
• T = 1s: Attempt to begin traffic from node 0 to 2; duration is 1s. Attempt fails 

so attempt is rescheduled at T = 3s.
• T = 3s: Traffic from node 1 to node 3 completes.
• T = 3s: Traffic from node 0 to 2 begins; duration is 1s.
• T = 4s: Traffic from node 0 to 2 completes.

0

1

2

3

Congestion

Example: Two pairs of nodes try to use the same network link simultaneously:



Validation of simulator

•Used AMG2006: part of NNSA ASC/Sequoia acceptance tests
•Collected traces on the Thunderbird machine and played back 
through simulator

“Narrow” decomposition “Fat” decomposition



Sensitivity of AMG2006
to architectural parameters

•Examined simulated time to 
solution as bandwidth, 
latency, and processors per 
node are varied for several 
topologies.



Current Work

• Extended validation studies
– Using Red Storm Qualification system

• Can control process placement
• Results are highly consistent from run to run

• Advanced routing
– Dispersive routing
– Adaptive routing

• Trace file format (dumpi)
– Finalizing full MPI support

• User interface and visualization
– Developing a GUI to simplify problem setup
– Working with others to visualize network congestion, etc.

• Processor models
– Developing more sophisticated but inexpensive processor models

• Integration into the SST/Core interface
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