
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Macroscale simulation of million core systems
with the Structural Simulation Toolkit

JOWOG­34
2009­07­22

Curtis Janssen
Sandia National Laboratories

Livermore, CA

SAND2009-4561C

Designing, developing for, and procuring large­
scale system is a multi­faceted problem

Scale..... Many
Cores

+
Memory

Many
Many
Nodes

Many
Many
Many

Threads

Multi-Physics Apps
Informatics Apps

Complexity.....
Communication Libraries

Run-Times
OS Effects

Existing Languages
New Languages

Constraints.....

Performance Reliability Usability Size

Architecture simulation provides a way to explore this large problem space

X X

X X

Cost Power Cooling Risk

Institute for Advanced Architectures provides
locus for community simulation efforts

SST Simulator Goals
•Become the standard architectural simulator for the HPC community
•Be able to evaluate future systems on DOE workloads
•Use supercomputers to design supercomputers and applications

Technical Approach
•Multiscale (Cycle-accurate to analytic)
•Parallel (design HPC with HPC)
•Whole system (integrated models)
•SST has core and rich component set

Consortium
•Utilize SST core to interoperate
•“Best of Breed” simulation suite
•Combine Lab, academic, & industry

Sun Microsystems

Project goals for Structural Simulation Toolkit
macroscale (SST/macro) components

•Take into account the coupling of communication and computation in
applications using
–Trace files that record an actual application run
–Skeleton applications that mimic application behaviour

•Run very large simulations (complex applications at large scales)
–1,000,000's of cores simulated on a single processor

• Parallelism used for parameter studies & multiscale

•Learn from currently available simulators such as BigSim and the Fujitsu
simulator and provide new capabilities beyond that now available

•Allow investigation of effects of
–Topology, process placement, and interference between jobs
–Changes in the routing algorithm
–Changes in the network latency and bandwidth
–Having many cores share the same network interface
–Modifications to the MPI layer
–Modifications to the application
– Incorporation of more detailed models w/multiscale simulation

SST/macro design

Generic event interface:
permits integration into the
hybrid multi­scale SST simulator
framework:

Extremely lightweight events:
Measured real time to perform MPI
ping pong round trips (simulator
ran on a single processor):

Data no longer fits in 8
MiB L3 cache (Core i7)

SST/macro has a flexible MPI model

•Traces & skeleton apps record MPI
calls—but that can entail a lot
–MPI model can generate all of the

messages that a real MPI library
generates …

–… or a simplified model with less
overhead can be used

•Allows details of the MPI
implementation to be a part of the
design space

•Not just restricted to MPI2
–Other programming models can be

easily added
– Implemented immediate mode

collectives (MPI3 proposal)

Examples of SST usage and impact

Obtain traces for applications
and compact applications. Use

SST for parameter studies.

Write skeleton applications for
extreme scale studies.

Simulate new architectural
feature such as extended
memory semantics and
transactional memory.

Develop acceptance tests and
estimate performance before

machine is built.

Understand performance and
issues for machines several

years from deployment.

Allow co­design of advance
architectures and applications

many years before deployment.

C
O
M
P
L
E
X
IT
Y

SST/macro customers

SNL: studying Zia benchmarks suite and IAA­related mini applications.
ORNL: examining performance of MADNESS.
PNNL: understanding performance of one­sided programming models.
LLNL: mapping of applications into Sequoia network.

Methods for driving the SST/macro simulator

Trace Driven
•Open Trace Format

–Tools exist to generate trace
–Visualizers exist for trace
–Data not complete

•dumpi trace format
–Custom SST/macro format
–Records full MPI signature

• size vectors
• MPI_Request info

–Well behaved when
application is not

• Skips irrelevant but resource
intensive info (like
MPI_Iprobe)

Skeleton Application
•Programmer writes program that behaves
like application
–Skip heavy computation

•Permits extreme­scale runs
void mpipingpong::run() {
 this­>mpi_­>init();
 mpicomm world = this­>mpi_­>comm_world();
 mpitype type = mpitype::mpi_double;
 int rank = world.rank().id;
 int size = world.size().id;
 if(! ((size % 2) && (rank+1 >= size))) {
 mpiid peer(rank ^ 1);
 mpiapi::const_mpistatus_t stat;
 for(int half_cycle = 0;
 half_cycle < 2*iterations_; ++half_cycle) {
 if((half_cycle + rank) & 1)
 mpi_­>send(count_, type, peer,
 mpitag(0), world);
 else
 mpi_­>recv(count_, type, peer,
 mpitag(0), world, stat);
 }
 }
 mpi_­>finalize();
}

A more sophisticated skeleton app: miniMD

• Simulator runs a skeletonized molecular dynamics application

• Computation time is derived from measurements with various input parameters
– The calls to estimate computation time is shown in blue type

• MiniMD control logic remains mostly intact

void minimd::integrate::run(shared_ptr<atom> atm, shared_ptr<force> frc,
 shared_ptr<neighbor> nbr, shared_ptr<comm> cmm,
 shared_ptr<thermo> thm, shared_ptr<timer> tmr)
{
 mpiid rank = mpi_­>comm_world().rank();
 for(int n = 0; n < this­>ntimes; ++n) {
 env_­>compute(this­>interpolator_­>get("integrate::run", 0));
 if((n+1) % nbr­>every) {
 cmm­>communicate(atm);
 }
 else {
 cmm­>exchange(atm);
 cmm­>borders(atm);
 nbr­>build(atm);
 }
 frc­>compute(atm, nbr);
 env_­>compute(this­>interpolator_­>get("integrate::run", 1));
 if(thm­>nstat)
 thm­>compute(n+1, atm, nbr, frc);
 }
}

Translating an application into discrete events

MPI_Recv
Yield until data available

MPI_Recv completes
MPI_Send 0 to 1

Schedule data sent
Schedule data recd
Yield until data sent

 MPI_Send completes
Continue processing

...

MPI_Send 1 to 0
Schedule data sent
Schedule data recd
Yield until data sent
MPI_Send completes

Begin computation
Schedule completion
Yield until complete

Computation completes
MPI_Recv

Yield until data available

MPI_Recv completes
Continue processing

...

D
iscrete event

tim
eline

THREAD 0 THREAD 1• MPI ping pong with
computation: Simulation
time increases going
down, events are bars
on the time axis, thread
0 executes code on left
and process 1 on right

• Each thread inserts events
into the discrete event
queue until it yields

• Events can cause a
process to resume
execution

• Single MPI calls can result
in multiple events

• Scheduling of data
sent/received events
depends on network
traffic

The circuit network component: a simple model
that includes network congestion effects

Circuit model handles this case as follows:
• T = 0s: Traffic begins from node 1 to node 3; duration is 3s.
• T = 1s: Attempt to begin traffic from node 0 to 2; duration is 1s. Attempt fails

so attempt is rescheduled at T = 3s.
• T = 3s: Traffic from node 1 to node 3 completes.
• T = 3s: Traffic from node 0 to 2 begins; duration is 1s.
• T = 4s: Traffic from node 0 to 2 completes.

0

1

2

3

Congestion

Example: Two pairs of nodes try to use the same network link simultaneously:

Validation of simulator

•Used AMG2006: part of NNSA ASC/Sequoia acceptance tests
•Collected traces on the Thunderbird machine and played back
through simulator

“Narrow” decomposition “Fat” decomposition

Sensitivity of AMG2006
to architectural parameters

•Examined simulated time to
solution as bandwidth,
latency, and processors per
node are varied for several
topologies.

Current Work

• Extended validation studies
– Using Red Storm Qualification system

• Can control process placement
• Results are highly consistent from run to run

• Advanced routing
– Dispersive routing
– Adaptive routing

• Trace file format (dumpi)
– Finalizing full MPI support

• User interface and visualization
– Developing a GUI to simplify problem setup
– Working with others to visualize network congestion, etc.

• Processor models
– Developing more sophisticated but inexpensive processor models

• Integration into the SST/Core interface

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

