SAND2009- 4561C

Macroscale simulation of million core systems
with the Structural Simulation Toolkit

JOWOG-34
2009-07-22

Curtis Janssen
Sandia National Laboratories
Livermore, CA

for the United States Department of Energy’s National Nuclear Security Administration National

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, i Sandia
under contract DE-AC04-94AL85000. 3 Laboratories

" Designing, developing for, and procuring large-
scale system is a multi-faceted problem

Scale..... Many - Many
Cores Man
. X Many X Manz
Memory Nodes Threads
Complexity.....

Communication Libraries

Multi-Physics Apps Existing Languages

Informatics Apps Run-Times New Languages
OS Effects
Constraints.....
Performance Reliability Usability Size
Cost Power Cooling Risk

Architecture simulation provides a way to explore this large problem space

=) Sandia
“1 1| National
2 laboratories

w5 |nstitute for Advanced Architectures provides
locus for community simulation efforts

SST Simulator Goals
Become the standard architectural simulator for the HPC community
Be able to evaluate future systems on DOE workloads
*Use supercomputers to design supercomputers and applications

Technical Approach
Multiscale (Cycle-accurate to analytic)
Parallel (design HPC with HPC)
‘Whole system (integrated models)
*SST has core and rich component set

Instruction
Trace

4= Core Intefaces Router

Instruct.ion High-leve tats. I/F Memory
Execution Interface” | wpyocessor™@Power VF Component
Component
Message 'I'Ot‘”:fe"e P Cost I:;FF NIC
nterface Tech.
Trace =c Component
Component Specific

Synthetic
Parallel
Interfaces

Component

Component

Messages
Stats. I/F
Generic Power I/F

Component | Cost I/F
Tech. VF

Component

Consortium

*Utilize SST core to interoperate
“Best of Breed” simulation suite
Combine Lab, academic, & industry

Sandia @

National

Laboratories TRyLN
ornl V]

DAK RIDGE NATIONAL LABORATORY

UNIVERSITY

Mcron' Sun Microsystems

BIE=ECE
=)

. Project goals for Structural Simulation Toolkit

macroscale (SST/macro) components

e Take into account the coupling of communication and computation in
applications using

—Trace files that record an actual application run
—Skeleton applications that mimic application behaviour

* Run very large simulations (complex applications at large scales)
—1,000,000's of cores simulated on a single processor
e Parallelism used for parameter studies & multiscale

|_earn from currently available simulators such as BigSim and the Fujitsu
simulator and provide new capabilities beyond that now available

 Allow investigation of effects of
—Topology, process placement, and interference between jobs
—Changes in the routing algorithm
—Changes in the network latency and bandwidth
—Having many cores share the same network interface
—Modifications to the MPI layer
—Modifications to the application
—Incorporation of more detailed models w/multiscale simulation

() Senda
1 1| National
S Laboratories

SST/macro design

Generic event interface:
permits integration into the

hybrid multi-scale SST simulator

framework:

Application (Lightweight Threads)

Process

Requests

Interface

Kernels || Servers
u

Discrete Event

939|dwo)
JUSAT
-

amdwig

JUSAJ

Simulator

Walltime for each send/recv pair (us)

Extremely lightweight events:

Measured real time to perform MPI
ping pong round trips (simulator
ran on a single processor):

11

10

Data no longer fits in 8
MiB L3 cache (Core i7)

10> 10° 10* 10
Number of Processors

SST/macro has a flexible MPI model

* Traces & skeleton apps record MPI
calls—but that can entail a lot

—MPI model can generate all of the mpicorebarrier mpicoresend
messages that a real MPI library T T
generates mpibarrierstrategy mpisendstrategy

—... or a simplified model with less Ao e
overhead can be used L=

» Allows details of the MP! ”"”‘“TE‘-‘W thread
implementation to be a part of the ! T
design space - |
. . mpiapi mplapp
* Not just restricted to MPI2 A « & _ \
. I -~ = -

—Other programming models can be , ~ = -

easily added mpipingpong minimd mpitrace

—Implemented immediate mode
collectives (MPI3 proposal)

Sandia
Fﬁ National
Laboratories

Examples of SST usage and impact

Obtain traces for applications Develop acceptance tests and
and compact applications. Use estimate performance before
SST for parameter studies. 8 machine is built.
Write skeleton applications for E Understand performance and
extreme scale studies. g Issues for machines several
= years from deployment.
Simulate new architectural "
feature such as extended Allow co-design of advance
memory semantics and architectures and applications
transactional memory. many years before deployment.

SST/macro customers

SNL: studying Zia benchmarks suite and IAA-related mini applications.
ORNL: examining performance of MADNESS.

PNNL: understanding performance of one-sided programming models.
LLNL: mapping of applications into Sequoia network.

() Senda
1 1| National
S Laboratories

Trace Driven

* Open Trace Format
—Tools exist to generate trace
—Visualizers exist for trace
—Data not complete

e dumpi trace format
—Custom SST/macro format
—Records full MPI signature

* Size vectors
 MPI_Request info

—Well behaved when
application is not

 Skips irrelevant but resource
intensive info (like
MPI_Iprobe)

Methods for driving the SST/macro simulator

Skeleton Application

* Programmer writes program that behaves
like application

—Skip heavy computation
 Permits extreme-scale runs

void mpipingpong::run() {
this->mpi ->init();
mpicomm world = this->mpi ->comm world();
mpitype type = mpitype::mpi double;
int rank = world.rank().id;
int size = world.size().id;
if(! ((size % 2) && (rank+l >= size))) {
mpiid peer(rank ~ 1);
mpiapi::const mpistatus t stat;
for(int half cycle = 0;
half cycle < 2*iterations ; ++half cycle) {
if((half cycle + rank) & 1)
mpi ->send(count , type, peer,
mpitag(0), world);
else
mpi ->recv(count , type, peer,
mpitag(0), world, stat);
}
}
mpi ->finalize();

}

() Sandia
|11 | National
St Laboratories

A more sophisticated skeleton app: miniMD

« Simulator runs a skeletonized molecular dynamics application
« Computation time is derived from measurements with various input parameters
— The calls to estimate computation time is shown in blue type

« MiniMD control logic remains mostly intact

void minimd::integrate::run(shared ptr<atom> atm, shared ptr<force> frc,
shared ptr<neighbor> nbr, shared ptr<comm> cmm,
shared ptr<thermo> thm, shared ptr<timer> tmr)

{

mpiid rank = mpi ->comm world().rank();
for(int n = 0; n < this->ntimes; ++n) {
env_->compute(this->interpolator_->get("integrate::run", 0));
if((ntl) % nbr->every) {
cmm->communicate(atm);
}
else {
cmm->exchange(atm) ;
cmm->borders (atm) ;
nbr->build(atm);
}
frc->compute(atm, nbr);
env_->compute(this->interpolator ->get("integrate::run", 1));
if(thm->nstat)
thm->compute(n+l, atm, nbr, frc);

b Sandia
m National
Laboratories

Translating an application into discrete events

* MPI ping pong with
computation: Simulation
time increases going
down, events are bars
on the time axis, thread
0 executes code on left
and process 1 on right

Each thread inserts events
Into the discrete event
queue until it yields

Events can cause a
process to resume
execution

Single MPI calls can result
iIn multiple events

Scheduling of data
sent/received events
depends on network
traffic

THREAD O THREAD 1

MPI _Recv =
Yield until data available

MPI_Send 110 0
Schedule data sent
Schedule data recd
Yield until data sent
MPI_Send completes
Begin computation
Schedule completion

MPI_Recv completes Yield until complete

MPI| _Send 0 to 1
Schedule data sent
Schedule data recd

Yield until data sent Computation completes

MPI|_Recv

MPI_Send completes Yield until data available

Continue processing MPI_Recv completes

Continue processing

suljowi
1USAS 818.0SI(

() Senda
1 1| National
S Laboratories

'AThe circuit network component: a simple model

that includes network congestion effects

Example: Two pairs of nodes try to use the same network link simultaneously:

e Congestion
Circuit model handles this case as follows:

« T = 0s: Traffic begins from node 1 to node 3; duration is 3s.

* T =1s: Attempt to begin traffic from node 0O to 2; duration is 1s. Attempt fails
so attempt is rescheduled at T = 3s.

» T =3s: Traffic from node 1 to node 3 completes.
« T =3s: Traffic from node 0 to 2 begins; duration is 1s.
* T =4s: Traffic from node 0 to 2 completes. () 20

' || National
et Laboratories

Validation of simulator

Used AMG2006: part of NNSA ASC/Sequoia acceptance tests

*Collected traces on the Thunderbird machine and played back
through simulator

7

Simulated Runtime (s)

—e— Sim. vs. Obs. Time

| — ldeal

7
.
o
#
a"
o
o
#
-
. .y
-
- f ,
+ o O IdEQa |
- -
- -
o o
-
.o" -~
d" .0"’
#
-
&~ -
o" -
-
o" -~
-~
. "
S e - .
-
P -
-~ -
&
o
- |

’
-J
'I
@
-
_J

-I
—f
e
>
® g

-
' -.
-
-7
-

2 3 4 5

Observed Runtime (s)

“Narrow” decomposition

25

20

15 ¢

10 ¢

T +/- 20% of ideal

—e— Sim. vs. Obs. Time
—— |deal

. o
5 10 15 20
Observed Runtime (s)
)
1 1 11 dariona
Fat decompOS|t|on Laboratories

Sensitivity of AMG2006
to architectural parameters

Examined simulated time to
solution as bandwidth,
latency, and processors per
node are varied for several

Time (s)

topologies.
4.7
16 L —F Torus (8x8x8)
- —eo— Fat-tree (radix 24)
—v— Crossbar
4.5 - —s— Zero-congestion
4.4
4.3
4.2
4.1
4.0 t
39 T N R N I
10 10° 10°

Latency (s)

5.83

Torus (8x8x8) —&—
Fat-tree (radix 24) —e—
Crossbar —w—
Zero-congestion —»—

0

5.82
5.81 -
5.80 -
5.79

Time (s)

578 |
577 B
576
575 |

5.74

| I I I I | | [|
1 10 100
Processors per node

58nQ

Torus (8x8x8) —8—
5.6 - Fat-tree (radix 24) —e—
Crossbar —v—
9.4 Zero-congestion —%—

5.2 -
5.0 -
4.8 |-
4.6 -
4.4 -

Time (s)

4.0 —— u

38 | | N I I I B | I O I
10° 10° 10'°
Bandwidth (bytes/s)

Current Work

 Extended validation studies

— Using Red Storm Qualification system
» Can control process placement
* Results are highly consistent from run to run

* Advanced routing
— Dispersive routing
— Adaptive routing
* Trace file format (dumpi)
— Finalizing full MPI support
* User interface and visualization
— Developing a GUI to simplify problem setup
— Working with others to visualize network congestion, etc.
* Processor models
— Developing more sophisticated but inexpensive processor models

* Integration into the SST/Core interface

() Sandia
| ' 1| National
St Laboratories

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

