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Laser machining and
manufacturing

Nanoporous metals
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Thermal processes in metals

Heat generated at metal
contacts in transistors

Multilayered systems —
understanding interface
conductance

S°cT
k

Sandia
National
Laboratories

LT =



A 4
-_—
# Outline

*The transient thermoreflectance technique (TTR)
*Thermal conductivity measurements of metalized layers
*Electron-phonon coupling factor measurements in metal

films
e Effects of interface scattering

*Electron scattering in nanoporous metals
*Electron-phonon coupling enhancement due to d-

band excitations
e Ballistic transport
*Interface scattering
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- Thermal processes measured with
the TTR technique

Thermal processes in metal films
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Lock in magnitude, R [a.u.]

40

Electron-phonon coupling

35-
30-
25-
20-
15-

10

| ! I
N 20 nmAu filmon glass substrate _
)
°e
" o @ 4
I
o o
/ \
e
o °
°
B '. Electron-phonon 7]
Electron system ®  collisions and
B Fermi-relaxation /' ¢  thermalization i
°
° K 1
! L
" /. 4
i ]
|
- . =
|
°
by ]
e : . s
5 10

Pump-probe delay time [ps]

15

Lock in ratio, X/Y [a.u.]

TTR data

1.0

Thermal diffusion

—eo— 100 nmAl film on Si substrate
—m— 100 nmAl film on glass substrate

o,
.\o\. Thermal boundary conductance
. -e.
I\I—.‘-_.>._.‘.‘. \.~.;';.;.
LU B BRI e
h Meltal ﬁdlm .. o ..>.:.:.(':':':‘:=:::='.~I—I>I-l
thermal conductivity Substrate.‘.'.'."
thermal conductivity
0.0 1 L | | '
0 1000 2000 3000 4000

Pump-probe delay time [ps]

Sandia
National
Laboratories



etermining the thermal conductivity, A

EEVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 12 DECEMBEE. 2004

Analysis of heat flow in layered structures for time-domain
thermoreflectance
David G. Cahill®

Department of Materials Science and Engineering and Frederick Seiftz Materials Research Laboratory,
University of Hlinois, Urbana, Illincis 61801

REVIEW OF SCIENTIFIC INSTRUMENTS 79, 114902 (2008)

Pulse accumulation, radial heat conduction, and anisotropic thermal
conductivity in pump-probe transient thermoreflectance

Aaron J. Schmidt,* Xiaoyuan Chen, and Gang Chen

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 021394307, USA
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Best fit results

Thermal boundary conductance
AlSiz =100 MW m” K

Al/glass: h,_ =60 MW m” K" |

Thermal conductivity
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Thermoreflectance signal, X/Y [a.u.]

Pump-probe delay time, t [ns]

etermining the thermal conductivity, A
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Extended to measure thermal
conductivity of multilayer films

IMECE2009-12238

EFFECTS OF THERMAL ANALYSIS ON THERMAL CONDUCTIVITY To be presented at
MEASUREMENTS IN PUMP-PROBE THERMOREFLECTANCE TECHNIQUES ASME IMECE in

Patrick E. Hopkins®, Justin R. Serrano, Leslie M. Phinney, Sean P. Kearney, Thomas W. Grasser

Engineering Sciences Center
P.C. Box 5800
Sandia National Laboratories
Albuquerque, NM, USA 87185-0346
C. Thomas Harris, Gang Chen
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA, USA 02139-4307
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i Determining the electron-phonon
coupling factor, G

REVIEW OF SCIENTIFIC INSTRUMENTS 77, 084901 (2006)

Signal analysis and characterization of experimental setup for the transient
thermoreflectance technique

Robert J. Stevens™
Mechanical Engmeering Department, Rochester Institute of Technology, Rochester, New York 14623

Andrew M. Smith

Department af Mechanical Engineering, United States Naval Academy, Annapolis, Marvland 21402

Pamela M. Norris
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904

R =aAT AT

Temperature rise determined
from thermal model

Lock in magnitude is
proportional to temperature rise

through a (thermoreflectance ¢
coefficient)
Pulse accumulation from lock in
phase

know analytical form of AT instrument noise where XY National

Advantage: Do not need to Disadvantage: R contains i
noise cancels out @ Laboratories



i Determining the electron-phonon
coupling factor, G

The two temperature model (TTM)
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‘ Determining the electron-phonon
coupling factor, G

The thermoreflectance coefficient
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G is a material property. For Au, G = 3x10'® W m3 K1,
Measured G changes with film thickness. Why?
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*The transient thermoreflectance technique
*Thermal conductivity measurements of metalized layers
*Electron-phonon coupling factor measurements in metal

films
*Effects of interface scattering

*Electron scattering in nanoporous metals
*Electron-phonon coupling enhancement due to

d-band excitations
e Ballistic transport
*Interface scattering
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‘ Influence of electron-interface
scatteringon G
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Influence of electron-interface
scattering on thermoreflectance
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*The transient thermoreflectance technique (TTR)
*Thermal conductivity measurements of metalized layers
*Electron-phonon coupling factor measurements in metal

films
e Effects of interface scattering

*Electron scattering in nanoporous metals
*Electron-phonon coupling enhancement due to d-

band excitations
Ballistic transport
*Interface scattering
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A
ermal properties of nanoporous metals

“Matrix” of nanowires
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Hopkins et al., Journal of Nanomaterials, 2008, 418050 (2008)



of electron-phonon nonequilibrium and

boundary scattering on thermal conductivity
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Wire thermal conductivity, ke (Wm™ ' K1)
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Hopkins et al., Journal of Nanomaterials, 2008, 418050 (2008)
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G in nanoporous metals

Nanoporous metal fabrication at CINT
Collaborators: Amit Misra and Hongqi Li
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