
Palacios and Kitten: High Performance Operating Systems
For Scalable Virtualized and Native Supercomputing

John Lange? Kevin Pedretti† Trammell Hudson†

Peter Dinda? Zheng Cui‡ Lei Xia? Patrick Bridges‡

Steven Jaconette? Mike Levenhagen† Ron Brightwell† Patrick Widener‡

{jarusl,pdinda,leixia,jaconette}@northwestern.edu
{ktpedre,mjleven,rbbrigh}@sandia.gov

hudson@osresearch.net {cuizheng,bridges,pmw}@cs.unm.edu
?Northwestern University, Department of Electrical Engineering and Computer Science

†Sandia National Laboratories, Scalable System Software Department
‡University of New Mexico, Department of Computer Science

ABSTRACT
Palacios and Kitten are new open source tools that enable applica-
tions, whether ported or not, to achieve scalable high performance
on large machines. They provide a thin layer over the hardware to
support both full-featured virtualized environments and native code
bases. Kitten is an OS under development at Sandia that implements
a lightweight kernel architecture to provide predictable behavior and
increased flexibility on large machines, while also providing Linux
binary compatibility. Palacios is a VMM that is under development
at Northwestern University and the University of New Mexico. Pala-
cios, which can be embedded into Kitten and other OSes, supports
existing, unmodified applications and operating systems by using
virtualization that leverages hardware technologies. We describe
the design and implementation of both Kitten and Palacios. Our
benchmarks show that they provide near native, scalable perfor-
mance. Palacios and Kitten provide an incremental path to using
supercomputer resources that is not performance-compromised.

1. INTRODUCTION
This paper introduces two new operating systems (OSes), Kitten

and Palacios, that together provide a flexible, high performance vir-
tualized system software platform for HPC systems. This platform
broadens the applicability and usability of HPC systems by:

This project is made possible by support from the National Science
Foundation (NSF) via grants CNS-0709168, CNS-0707365, and the
Department of Energy (DOE) via a subcontract from Oak Ridge
National Laboratory on grant DE-AC05-00OR22725. Sandia Na-
tional Laboratory has also provided assistance. Jack Lange was
partially supported by a Symantec Research Labs Fellowship. San-
dia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

• providing access to advanced virtualization features such as
migration, full system checkpointing, and debugging;
• allowing system owners to support a wider range of appli-

cations and to more easily support legacy applications and
programming models when changing the underlying hardware
platform;
• enabling system users to incrementally port their codes from

small-scale development systems to large-scale supercom-
puter systems while carefully balancing their performance
and system software service requirements with application
porting effort; and
• providing system hardware and software architects with a plat-

form for exploring hardware and system software enhance-
ments without disrupting other applications.

Kitten is a open source operating system substrate for high per-
formance computing under development at Sandia National Labs
that provides scalable performance to ported applications. Kitten’s
simple memory model enables high performance communication
and data sharing, and it has a low noise profile in massively multi-
processor environments. Kitten has been developed in the spirit of
lightweight kernels [27], such as Sandia’s Catamount [18] and IBM’s
CNK [29], that are well known to perform better than commodity
kernels for HPC.

Palacios is a “type-I” pure virtual machine monitor [11] (VMM)
under development at Northwestern University and the University
of New Mexico that provides the ability to virtualize existing, un-
modified applications and their operating systems with no porting.
Palacios is designed to be embeddable into other operating systems,
and has been embedded in two so far, including Kitten. Palacios
makes extensive, non-optional use of hardware virtualization tech-
nologies and thus can scale with improved implementations of those
technologies, has emerging support for sophisticated I/O virtualiza-
tion features [37], pass-through I/O for trusted guests, and symbiotic
virtualization, a new approach to structuring guests and VMMs.
Finally, Palacios is part of an effort to achieve compile-time config-
urability that will allow developers to generate VMMs of different
structures from the same code base.

Kitten and Palacios together provide a scalable, flexible HPC
system software platform that addresses the challenges laid out ear-
lier and by others [22]. Applications ported to Kitten will be able
to achieve maximum performance on a given machine. Further-
more, Kitten is itself portable and open, propagating the benefits

SAND2009-2306C

of such porting efforts to multiple machines. Palacios provides the
ability to run existing, unmodified applications and their operating
systems, requiring no porting. Furthermore, as Palacios has quite
low overhead, it could potentially be used to manage a machine,
allowing a mixture of workloads running on commodity and more
specialized OSes, and could even run ported applications on more
generic hardware.

Both Palacios and Kitten are open source tools that are available
to use and build on right now. Palacios and Kitten can be used
separately or together, and are outcomes of community resource
development efforts to which everyone is welcome to contribute.
They run today on a variety of machines ranging from emulated
testing environments, through commodity clusters and servers, all
the way to a large scale parallel machine at Sandia.

In the remainder of this paper, we describe the design and im-
plementation of both Kitten and Palacios, and evaluate their perfor-
mance. The core contributions of this paper are the following:
• We introduce and describe the Kitten HPC operating system.

Kitten is open source and publicly available.
• We introduce and describe the Palacios virtual machine moni-

tor. Palacios is open source and publicly available.
• We show how the combination of Palacios and Kitten can

provide an incremental path to using many different kinds of
HPC resources for the mutual benefit of users and machine
owners.
• We show that an integrated virtualization system combining

Palacios and Kitten can provide nearly native performance
for existing codes, even when extensive communication is
involved.
• We present the largest scale study to date of parallel applica-

tion and benchmark performance and overheads using virtual-
ization on high-end computing resources. The overheads we
see, particularly using hardware nested paging, are typically
less than 5%.

2. MOTIVATION
Palacios and Kitten are parts of larger projects that have numerous

motivations. More details are available on their web sites. Here we
consider their joint motivation in the context of high performance
computing, particularly on large scale machines.

Maximizing performance through lightweight kernels.
Lightweight compute node OSes maximize the resources delivered
to applications, delivering them so that the application can determine
allocation and management policies best suited to maximize its
performance. Such kernels provide only the basic services needed to
initialize hardware and coordinate application startup. A lightweight
kernel does not implement much of the functionality of a traditional
operating system; instead, it provides mechanisms that allow system
services to be implemented outside the OS, for example in a library
linked to the application. Lightweight kernels can provide nearly
maximum possible performance, but they require that applications
be carefully ported to their minimalist interfaces.

Increasing portability and compatibility through com-
modity interfaces. Standardized application interfaces would
make it easier to port existing applications, particularly parallel ap-
plications, to a lightweight kernel. Even partial ABI compatibility
with a common interface, such as the Linux ABI, would allow many
existing binaries to run directly on the lightweight kernel. How-
ever, a lightweight kernel cannot support the full functionality of
a commodity kernel without losing the benefits noted above. This

means that some applications cannot be run without modification.
Furthermore, applications targeting a different commodity kernel
require complete rewrites.

Achieving full application and OS compatibility through
virtualization. Full system virtualization provides full compati-
bility at the hardware level, allowing all existing unmodified appli-
cations and OSes to run. The machine is thus immediately available
to be used by any application code, increasing system utilization
when ported application jobs are not available. The performance of
the full system virtualization implementation (the VMM) partially
drives the choice of either using the VMM or porting an application
to the lightweight kernel. Lowering the overhead of the VMM,
particularly in communication, allows more of the workload of the
machine to consist of VMMs.

Preserving and enabling investment in ported appli-
cations through virtualization. A VMM which can run a
lightweight kernel provides straightforward portability to applica-
tions where the lightweight kernel is not available natively. Virtual-
ization makes it possible to emulate a large scale machine on a small
machine, desktop, or cluster. This emulation ability makes commod-
ity hardware useful for developing and debugging applications for
lightweight kernels running on large scale machines.

Integrating full OS and lightweight kernel application
components. Applications in which the majority of the compute
nodes would ideally run a lightweight kernel and a smaller subset
need the functionality of a full OS are common. For example, cou-
pling multiple simulations using Python requires nodes running an
OS that supports the dynamic linking of Python’s runtime environ-
ment and libraries, while the individual simulation codes require
a lightweight kernel for performance. Virtualization makes such
combinations straightforward.

Managing the machine through virtualization. Full sys-
tem virtualization would allow a site to dynamically configure nodes
to run a full OS or a lightweight OS without requiring rebooting the
whole machine. The alternative is to reboot nodes on a per-job basis.
We view this approach as overly restrictive and potentially harmful
in several ways: system reliability is jeopardized by more reboot
cycles, diagnosing and monitoring the health of individual nodes is
difficult, and the system is less available for use. Management based
on virtualization would also make it possible to backfill work on
the machine using loosely-coupled programming jobs [26] or other
low priority work. A batch-submission or grid computing system
could be run on a collection of nodes where a new OS stack could
be dynamically launched; this system could also be brought up and
torn down as needed.

Augmenting the machine through virtualization. Virtu-
alization offers the option to enhance the underlying machine with
new capabilities or better functionality. Virtualized lightweight ker-
nels can be extended at runtime with specific features that would
otherwise be too costly to implement. Legacy applications and OSes
would be able to use features such as migration that they would
otherwise be unable to support. Virtualization also provides new
opportunities for fault tolerance, a critical area that is receiving
more attention as the mean time between system failures continues
to decrease. The ability to capture the state of an entire virtual
machine and restore it without any direct application involvement
is a promising approach for dealing with reliability issues facing

future extreme-scale systems.

Enhancing systems software research in HPC and else-
where. The combination of Kitten and Palacios provides an open
source toolset for HPC systems software research that can run exist-
ing codes without the need for victim hardware. Palacios and Kitten
enable new systems research into areas such as fault-tolerant system
software, checkpointing, overlays, multicore parallelism, and the
integration of high-end computing and grid computing.

3. KITTEN
Kitten is an open-source OS designed specifically for high perfor-

mance computing. It employs the same “lightweight” philosophy as
its predecessors—SUNMOS, Puma, Cougar, and Catamount 1—to
achieve superior scalability on massively parallel supercomputers
while at the same time exposing a more familiar and flexible envi-
ronment to application developers, addressing one of the primary
criticisms of previous lightweight kernels. Kitten provides par-
tial Linux API and ABI compatibility so that standard compiler
tool-chains and system libraries (e.g., Glibc) can be used without
modification. The resulting ELF executables can be run on either
Linux or Kitten unchanged. In cases where Kitten’s partial Linux
API and ABI compatibility is not sufficient, the combination of
Kitten and Palacios enables unmodified guest operating systems to
be loaded on-demand.

Kitten is being developed as part of a research project at Sandia
National Laboratories that is investigating system software tech-
niques for better leveraging multicore processors and hardware vir-
tualization in the context of capability supercomputers. The simple
framework provided by a lightweight kernel facilitates experimen-
tation and has led to novel techniques such as SMARTMAP [4],
which halves the memory bandwidth requirements of intra-node
message passing. Kitten is also being used to explore system-level
options for improving resiliency to hardware faults, arguably the
most significant issue facing large-scale supercomputers.

Kitten currently targets the x86_64 architecture, but could be
easily ported to other architectures. The code base borrows heavily
from the Linux kernel when doing so does not compromise scala-
bility or performance (e.g., the bootstrap code). Subsystems that
are performance critical, such as memory management and task
scheduling, are replaced with code written from scratch for Kitten.
To avoid licensing and export control issues, the Kitten kernel uses
no code from prior Sandia-developed lightweight kernels. Kitten
consists of 61–92-thousand lines of C and assembly, as shown in
Figure 2. Kitten is publicly available from http://software.
sandia.gov/trac/kitten and is released under the terms of
the GNU Public License (GPL) version 2.

3.1 Architecture
Kitten (Figure 1) is a monolithic kernel that runs symmetrically

on all processors in the system. Straightforward locking techniques
are used to protect access to shared data structures. At system boot-
up, the kernel enumerates and initializes all hardware resources
(processors, memory, and network interfaces) and then launches
the initial user-level task, which runs with elevated privilege (the
equivalent of root). This process is responsible for interfacing with
the outside world to load jobs onto the system, which may either be
native Kitten applications or guest operating systems. The Kitten
kernel exposes a set of resource management system calls that the
initial task uses to create virtual address spaces, allocate physical

1The name Kitten continues the cat naming theme, but indicates a
new beginning.

Hardware

Initial
User-level Task

Launches and
manages native tasks

and guest OSes,
Allocates physical

resources

Thread

Physical Memory
Management

U
se

r
A

P
I

Local
Files

Remote
Files

A
d
d
r

S
p
a
ce

A
d
d
r

S
p
a
ce

Thread

Thread

Thread

Single-
Threaded
Process

(Unmodified
Linux ELF

executable)A
d
d
r

S
p
a
ce Guest

OS
(Linux,
CNL,

Catamount,
Windows,

etc.)A
d
d
r

S
p
a
ce

D
ir

e
ct

 U
se

r-
le

v
e
l
to

 D
e
v
ic

e
 I

/O

Address Space
Management

U
se

r
A

P
I

Task
Management
+ SchedulingU

se
r

A
P
I

Virtual Machine
Monitor

(Palacios)U
se

r
A

P
I

Linux Syscall
API + ABI

Portals,
TCP/IP (lwIP),

Infiniband (OFA)

Networking

Console,
Network,

etc.

Device Drivers

Kernel
Threads

(if necessary)

Kitten Kernel

R
e
so

u
rc

e
 M

a
n
a
g
e
m

e
n
t

S
ys

ca
lls

Processors Memories
Network

Interfaces

VMExit Handler
(Palacios)

User Space

Kernel Space

Figure 1: Kitten architecture.

memory, create additional native Kitten tasks, and launch guest
operating systems.

The Kitten kernel supports a subset of the Linux system call API
and adheres to the Linux ABI to support native user-level tasks.
Compatibility includes system call calling conventions, user-level
stack and heap layout, thread-local storage conventions, and a variety
of standard system calls such as read(), write(), mmap(),
clone(), and futex(). The subset of system calls implemented
is intended to support the usage of the high performance computing
applications in use at Sandia. The subset is sufficient to support
Glibc’s NPTL POSIX threads implementation and GCC’s OpenMP
implementation. Implementing additional system calls is a relatively
straightforward process.

The Kitten kernel also contains functionality aimed at easing
the task of porting of Linux device drivers to Kitten. Many device
drivers and user-level interface libraries create or require local files
under /dev, /proc, and /sys. Kitten provides limited support
for such files. When a device driver is initialized, it can register a set
of callback operations to be used for a given file name. The open()
system call handler then inspects a table of the registered local file
names to determine how to handle each open request. Remote files
are forwarded to a user-level proxy task for servicing. Kitten also
provides support for kernel threads, interrupt registration, and one-
shot timers since they are required by many Linux drivers. We
recently ported the Open Fabrics Alliance (OFA) Infiniband stack
to Kitten without making any significant changes to the OFA code.

3.2 Memory Management
Unlike traditional general-purpose kernels, Kitten delegates most

virtual and physical memory management to user-space. The ini-
tial task allocates memory to a new application by making a series
of system calls to create an address space, create virtual memory
regions, and bind physical memory to those regions. Memory topol-
ogy information (i.e., NUMA) is provided to the initial-task so it can
make intelligent decisions about how memory should be allocated.

Memory is bound to a Kitten application before it starts executing
and a contiguous linear mapping is used between virtual and physical
addresses. The use of a regular mapping greatly simplifies virtual to
physical address translation compared to demand-paged schemes,
which result in an unpredictable mapping with complex performance
implications. Networking hardware and software can take advantage
of the simple mapping to increase performance (which is the case on

http://software.sandia.gov/trac/kitten
http://software.sandia.gov/trac/kitten

Lines of Code
Component sloccount . wc *.c *.h *.s

Kitten
Kitten Core (C) 17,995 29,540
Kitten x86_64 Arch Code (C+Assembly) 14,604 22,190
Misc. Contrib Code (Kbuild + lwIP) 27,973 39,593
Palacios Glue Module (C) 286 455
Total 60,858 91,778

Palacios
Palacios Core (C+Assembly) 15,084 24,710
Palacios Virtual Devices (C) 8,708 13,406
XED Interface (C+Assembly) 4,320 7,712
Total 28,112 45,828
Grand Total 88,970 137,606

Figure 2: Lines of code in Kitten and Palacios as measured with
the SLOCCount tool and with the wc tool.

Cray XT) and potentially decrease cost by eliminating the need for
translation table memory and table walk hardware on the network
interface.

3.3 Task Scheduling
All contexts of execution on Kitten are represented by a task

structure. Tasks that have their own exclusive address space are con-
sidered processes and tasks that share an address space are threads.
Processes and threads are identical from a scheduling standpoint.
Each processor has its own run queue of ready tasks that are pre-
emptively scheduled in a round-robin fashion. Currently Kitten does
not automatically migrate tasks to maintain load balance. This is
sufficient for the expected common usage model of one MPI task or
OpenMP thread per processor.

The initial task allocates a set of processors to each task it creates
and starts the task executing on one of them. The task may then
spawn additional tasks (threads) on its set of processors via the
clone() system call. By default tasks created with clone() are
spread out to minimize the number of tasks per processor but the
native Kitten task creation system call can be used to specify the
exact processor a task should be spawned on.

4. PALACIOS
Palacios2 is an OS independent VMM designed as part of the the

V3VEE project (http://v3vee.org). The V3VEE project is a
collaborative community resource development project involving
Northwestern University and the University of New Mexico. It
seeks to develop a virtual machine monitor framework for modern
architectures (those with hardware virtualization support) that will
permit the compile-time creation of VMMs with different structures,
including those optimized for computer architecture research, com-
puter systems research, operating systems teaching, and research
and use in high performance computing. Palacios is the first VMM
from the project and will form the basis of the broader framework.
Support for high performance computing significantly informed its
design.

Palacios currently targets the x86 and x86_64 architectures (hosts
and guests) and makes extensive, and non-optional use of the AMD
SVM [1] extensions (partial support for Intel VT [15, 35] is also
implemented). Palacios uses Intel’s XED library from Pin [21, 6],
to decode instructions in some cases, and it uses the BOCHS [20]

2 Palacios, TX is the “Shrimp Capital of Texas.”

BIOS and VGA BIOS to bootstrap a guest machine. Palacios sup-
ports both 32 and 64 bit host OSes as well as 32 and 64 bit guest
OSes3. Palacios supports virtual memory using either shadow or
nested paging. It runs directly on the hardware and provides a
non-paravirtualized interface to the guest with optional paravirtual-
ized extensions. An extensive infrastructure for hooking of guest
resources facilitates extension and experimentation.

Palacios was developed from scratch at Northwestern University.
Figure 2 shows the scale of Palacios, as measured by two different
source code analysis tools. Note that the Palacios core is quite
small. The entire VMM, including the default set of virtual devices
is on the order of 28–45 thousand lines of C and assembly. The
combination of Palacios and Kitten is 89–138 thousand lines of code.
In comparison, Xen 3.0.3 consists of almost 580 thousand lines of
which the hypervisor core is 50–80 thousand lines, as measured by
the wc tool. Palacios is publicly available from http://v3vee.
org, and a technical report [19] describes the initial release in detail.
Palacios is released under a BSD license.

Palacios supports multiple physical host and virtual guest envi-
ronments. Palacios is compatible with any AMD architecture with
SVM features enabled. We have successfully run Palacios on com-
modity Dell and HP servers, a high end Infiniband cluster, as well as
Red Storm development cages consisting of Cray XT nodes. Most
of the development is done using the QEMU emulator environment.
Palacios also supports the virtualization of a diverse set of guest OS
environments. Palacios supports full featured Linux environments
such as 32 bit Puppy Linux 3.0 and the 64 bit Finnix 92.0 distribu-
tions. Palacios has also successfully virtualized several lightweight
HPC OSes including CNL [17], Catamount [18], and Kitten itself.

4.1 Architecture
Palacios is an OS independent VMM, and as such is designed to

be easily portable to diverse host operating systems. Currently, Pala-
cios actively supports Kitten, for high performance environments, as
well as GeekOS [13], an educational operating system developed to
teach operating system development. Palacios integrates with a host
OS through a minimal and explicitly defined functional interface that
the host OS is responsible for supporting. Furthermore, the interface
is modularized so that a host environment can decide its own level
of support and integration. Less than 500 lines of code needed to
be written to embed Palacios into Kitten. Palacios is designed to be
internally modular and extensible and provides common interfaces
for registering event handlers for common operations.

Figure 3 illustrates the Palacios architecture.

Resource hooks. The Palacios core provides an extensive inter-
face to allow VMM components to register to receive and handle
guest and host events. Guest events that can be hooked include
accesses to MSRs, IO ports, and specific memory pages, as well as
hypercalls.4 Palacios also includes functionality to receive notifica-
tions of host events such as general interrupts, keystrokes and timer
ticks. This combined functionality makes it possible to construct a
wide range of different guest environments. We include a configura-
tion interface that supports common configuration options (amount
of memory, selection of virtual and physical devices, etc).

Palacios interfaces with the host OS through a small set of func-
tion hooks that the host OS is required to provide. These functions
include methods for allocating and freeing physical memory pages
as well as heap memory, address conversion functions for translating

364 bit guests are only supported on 64 bit hosts
4Although Palacios is not a paravirtualized VMM, we do allow
direct guest calls to the VMM.

http://v3vee.org
http://v3vee.org
http://v3vee.org

VM Guest

Exit Dispatchp

Nested Shadow IO PortMSR HypercallPaging Paging
VM Memory Map

IO Port
Map

MSR
Map

Hypercall
Map

Device Layer
APIC

ATAPI

PIC PIT

NVRAM

PCI

Keyboard

NIC

Host OSIRQs

HardwarePassthrough IO

Figure 3: Palacios architecture.

physical addresses to the VMMs virtual address space, a function to
yield the CPU when a VM is idle, and an interface for interfacing
with the host’s interrupt handling infrastructure. In addition to this
interface, Palacios also includes an optional socket interface that
consists of a small set of typical socket functions.

Palacios jointly handles interrupts with the host OS. In general,
Palacios can disable local and global interrupts in order to have
interrupt processing on a core run at times it chooses. For the most
part, handling interrupts correctly requires no changes on the part of
the host OS. However, for performance reasons, and for complicated
interactions such as passthrough devices, small host OS interrupt
handling changes may be necessary.

4.2 Palacios as a HPC VMM
Part of the motivation behind Palacios’s design is that it be well

suited for high performance computing environments, both on the
small scale (e.g., multicores) and large scale parallel machines.
Palacios is designed to interfere with the guest as little as possible,
allowing it to achieve maximum performance. Several aspects of its
implementation facilitate this:
• Minimalist interface: Palacios does not require extensive host

OS features, which allows it to be easily embedded into even
small kernels, such as Kitten and GeekOS.
• Full system virtualization: Palacios does not require guest

OS changes. This allows it to run existing kernels without
any porting, including lightweight kernels [27] like Kitten,
Catamount, Cray CNL [17], and IBM’s CNK [29].
• Contiguous memory preallocation: Palacios preallocates guest

memory as a physically contiguous region. This vastly sim-
plifies the virtualized memory implementation, and provides
deterministic performance for most memory operations.
• Passthrough resources and resource partitioning: Palacios

allows host resources to be easily mapped directly into a guest
environment. This allows a guest to use high performance
devices, with existing device drivers, with no virtualization
overhead.
• Low noise: Palacios minimizes the amount of OS noise [9]

injected by the VMM layer. Palacios makes no use of internal
timers, nor does it accumulate deferred work.

4.3 Symbiotic Virtualization

Palacios also serves as a platform for research on symbiotic vir-
tualization, a new approach to structuring VMMs and guest OSes
so that they can better work together without requiring such coop-
eration for basic functionality of the guest OS either on the VMM
or on raw hardware. In symbiotic virtualization, an OS targets the
native hardware interface as in full system virtualization, but also
optionally exposes a software interface that can be used by a VMM,
if present, to increase performance and functionality. Neither the
VMM nor the OS needs to support the symbiotic virtualization in-
terface to function together, but if both do, both benefit. Symbiotic
virtualization has the potential to provide the compatibility benefits
of full system virtualization while providing an incremental path
towards the functionality and performance benefits possible with
paravirtualization.

The high performance computing context provides a special op-
portunity for symbiotic virtualization because there can be a much
greater level of trust between the VMM, guest OS, and applications.
Because of the increased level of trust, a VMM and OS can be de-
signed to coexist symbiotically. This approach allows, for example,
a VMM to provide a trusted guest with direct access to hardware
resources. Because the guest is symbiotic the VMM can assume
that the guest will configure the granted resources in a safe manner,
using information provided by the VMM. This allows the guest to
perform I/O directly without the overhead of permission checks or a
translation layer.

5. INTEGRATING PALACIOS AND KITTEN
The explicit host interface exported by Palacios results in an ex-

tremely simple integration with Kitten. The integration includes no
internal changes in either Kitten or Palacios. As shown in Figure 2
the interface was implemented in only a few hundred lines of code
contained in a single file. The interface file and Palacios library are
encapsulated in a an optional compile time module for Kitten.

Kitten exposes the Palacios control functions via a system call
interface available from user space. This allows user level tasks
to instantiate virtual machine images directly from user memory.
This interface allows VMs to be loaded and controlled via processes
received from the job loader. A VM image can thus be linked into a
standard job that includes loading and control functionality.

Seastar Passthrough Support. Because Palacios provides sup-
port for passthrough I/O, it is possible to support high performance,
partitioned access to particular communication devices. We do this
for the Seastar communication hardware on the Red Storm machine.
The Seastar is a high performance network interface that utilizes the
AMD HyperTransport Interface and proprietary mesh interconnect
for data transfers between Cray XT nodes [5]. At the hardware layer
the data transfers take the form of arbitrary physical-addressed DMA
operations. To support a virtualized Seastar the physical DMA ad-
dresses must be translated from the guest’s address space. However,
to ensure high performance the Seastar’s command queue must be
directly exposed to the guest. This requires the implementation of a
simple high performance translation mechanism. Both Kitten and
Palacios include a simple memory model that makes such support
straightforward.

The programmable Seastar architecture provides several possible
avenues for optimizing DMA translations. These include a self-
virtualizable firmware as well as an explicitly virtualized guest driver.
In the performance study we conducted for this paper we chose to
modify the Seastar driver running in the guest to support Palacios’s
passthrough I/O. This allows the guest to have exclusive and direct
access to the Seastar device. Palacios uses the large contiguous
physical memory allocations supported by Kitten to map contiguous

guest memory at a known offset. The Seastar driver has a tiny
modification that incorporates this offset into the DMA commands
sent to the Seastar. This allows the Seastar to execute actual memory
operations with no performance loss due to virtualization overhead.

Besides memory-mapped IO, the Seastar also directly uses an
APIC interrupt line to notify the host of transfer completions as
well as message arrivals. Currently, Palacios exits from the guest
on all interrupts. For Seastar interrupts, we immediately inject such
interrupts into the guest and resume. While this introduces an VM
exit/entry cost to each Seastar interrupt, in practice this only results
in a small increase in latency. We also note that the Seastar interrupts
are relatively synchronized, which does not result in a significant
increase in noise. We are investigating the use of next generation
SVM hardware which allows for selective interrupt exiting, which
would eliminate this already small cost.

While implicitly trusting guest environments to directly control
DMA operations is not possible in normal environments, the HPC
context allows for such trust. We have developed another technique,
virtual passthrough I/O (VPIO), for passthrough I/O in environments
where such trust is impossible [37].

6. PERFORMANCE
We conducted a careful performance evaluation of the combina-

tion of Palacios and Kitten on diverse hardware, and at scales up
to 48 nodes. We focus the presentation of our evaluation on the
Red Storm machine and widely recognized applications/benchmarks
considered critical to its success. As far as we are aware, ours is
the largest scale evaluation of parallel applications/benchmarks in
virtualization to date, particularly for those with significant com-
munication. It also appears to be the first evaluation on petaflop-
capable hardware. Finally, we show performance numbers for native
lightweight kernels, which create a very high bar for the performance
of virtualization. The main takeaways from our evaluation are the
following.

1. The combination of Palacios and Kitten is generally able to
provide near-native performance. This is the case even with
large amounts of complex communication, and even when
running guest OSes that themselves use lightweight kernels
to maximize performance.

2. It is generally preferable for a VMM to use nested paging (a
hardware feature of AMD SVM and Intel VT) over shadow
paging (a software approach) for guest physical memory vir-
tualization. However, for guest OSes that use simple, high
performance address space management, such as lightweight
kernels, shadow paging can sometimes be preferable due to
its being more TLB-friendly.

The typical overhead for virtualization is less than 5%.

6.1 Testbed
We evaluated the performance and scaling of Palacios running

on Kitten on the development system rsqual, part of the Red Storm
machine at Sandia National Labs. Each XT4 node on this ma-
chine contains a quad-core AMD Budapest processor running at
2.2 GHz with 4 GB of RAM. The nodes are interconnected with a
Cray Seastar 2.2 mesh network [5]. Each node can simultaneously
send and receive at a rate of 2.1 GB/s via MPI. The measured node
to node MPI-level latency ranges from 4.8 µsec (using the Cata-
mount [18] operating system) to 7.0 µsec (using the native CNL [17]
operating system).

All benchmark timing in this paper is done using the AMD cycle
counter. When virtualization is used, the cycle counter is direct

mapped to the guest and not virtualized. Every benchmark receives
the same accurate view of the passage of real time regardless of
whether virtualization is in use or not.

6.2 Guests
We evaluated Palacios running on Kitten with two guest environ-

ments:
• Cray Compute Node Linux (CNL). This is Cray’s stripped

down Linux operating system customized for Cray XT hard-
ware of the Red Storm machine at Sandia. CNL is a mini-
mized Linux (2.6 kernel) that leverages BusyBox [36] and
other embedded OS tools/mechanism. This OS is also known
as Unicos/LC and the Cray Linux Environment (CLE).
• Catamount. Catamount is a lightweight kernel descended

from the SUNMOS and PUMA operating systems developed
at Sandia National Labs and the University of New Mex-
ico [31][2]. These operating systems, and Catamount, were
developed, from-scratch, in reaction to the heavyweight oper-
ating systems for parallel computers that began to proliferate
in the 1990s. Catamount provides a very simple memory
model with a physically-contiguous virtual memory layout,
parallel job launch, and message passing facilities.

6.3 HPCCG Benchmark Results
We used the HPCCG benchmark to evaluate the impact of vir-

tualization on application performance and scaling. HPCCG [12]
is a simple conjugate gradient solver that represents an important
workload for Sandia. It is commonly used to characterize the per-
formance of new hardware platforms that are under evaluation. The
majority of its runtime is spent in a sparse matrix-vector multiply
kernel.

We ran HPCCG on top of CNL and Catamount on Red Storm,
considering scales from 1 to 48 nodes. A fixed-size problem per
node was used to obtain these results. The specific HPCCG input
arguments were “100 100 100”, requiring approximately 380 MB
per node. This software stack was compiled with the Portland
Group pgicc compiler version 7, and was run both directly on the
machine and on top of Palacios. Both shadow paging and nested
paging cases were considered. Communication was done using the
passthrough-mapped SeaStar interface, as described earlier.

Figures 4(a) and 4(b) show the results for CNL and Catamount
guests. Each graph compares the performance and scaling of the na-
tive OS, the virtualized OS with shadow paging, and the virtualized
OS with nested paging. The graph shows both the raw measure-
ments of multiple runs and the averages of those runs. The most
important result is that the overhead of virtualization is less than
5% and this overhead remains essentially constant at the scales we
considered, despite the growing amount of communication. Note
further that the variance in performance for both native CNL and
virtualized CNL (with nested paging) is both minuscule and inde-
pendent of scale. For Catamount, all variances are minuscule and
independent, even with shadow paging.

The figure also illustrates the relative effectiveness of Palacios’s
shadow and nested paging approaches to virtualizing memory. Clearly,
nested paging is preferable for this benchmark running on a CNL
guest, both for scaling and for low variation in performance. There
are two effects at work here. First, shadow paging results in more
VM exits than nested paging. On a single node, this overhead results
in a 13% performance degradation compared to native performance.
The second effect is that the variance in single node performance
compounds as we scale, resulting in an increasing performance
difference.

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32

M
F

L
O

P
S

/n
o
d
e

Number of nodes

Shadow page tables
Nested page tables

Native

(a) CNL Guest

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32

M
F

L
O

P
S

/n
o
d
e

Number of nodes

Shadow page tables
Nested page tables

Native

(b) Catamount Guest

Figure 4: HPCCG benchmark comparing scaling for virtualization with shadow paging, virtualization with nested paging, and no
virtualization. Palacios/Kitten can provide scaling to 48 nodes with less than 5% performance degradation.

Surprisingly, shadow paging is slightly preferable to nested pag-
ing for the benchmark running on the Catamount guest. In Cata-
mount the guest page tables change very infrequently, avoiding the
exits for shadow page table refills that happen with CNL. Addi-
tionally, instead of the deep nested page walk (O(nm) for n-deep
guest and m-deep host page tables) needed on a TLB miss with
nested pages, only a regular m-deep host page table walk occurs on
a TLB miss with shadow paging. These two effects explain the very
different performance of shadow and nested paging with CNL and
Catamount guests.

It is important to point out that the version of Palacios’s shadow
paging implementation we tested does not include either speculative
paging or shadow page table caching, features currently in devel-
opment. With these features, the performance differences between
nested and shadow paging are likely to be smaller. Interestingly, the
tested shadow paging implementation is 1606 LOC compared to
the tested nested paging implementation’s 483 LOC—-achieving
correctness, much less high performance, in a shadow paging im-
plementation is much more challenging than in a nested paging
implementation.

6.4 CTH Benchmark
CTH [8] is a multi-material, large deformation, strong shock

wave, solid mechanics code developed by Sandia National Labora-
tories with models for multi-phase, elastic viscoplastic, porous, and
explosive materials. CTH supports three-dimensional rectangular
meshes; two-dimensional rectangular, and cylindrical meshes; and
one-dimensional rectilinear, cylindrical, and spherical meshes, and
uses second-order accurate numerical methods to reduce dispersion
and dissipation and to produce accurate, efficient results. It is used
for studying armor/anti-armor interactions, warhead design, high
explosive initiation physics, and weapons safety issues.

Figures 5(a) and 5(b) show the results using the CNL and Cata-
mount guests. We can see that adding virtualization, provided the
appropriate choice of shadow or nested paging is made, has virtually
no effect on performance or scaling. For this highly communication
intensive benchmark, virtualization is essentially free.

6.5 Intel MPI Benchmarks

The Intel MPI Benchmarks (IMB) [16], formerly known as PAL-
LAS, are designed to characterize the MPI communication perfor-
mance of a system. IMB employs a range of MPI primitive and
collective communication operations, at a range of message sizes
and scales to produce numerous performance characteristics. We
ran IMB on top of CNL and Catamount on Red Storm using SeaStar
at scales from 2 to 48 nodes. We compared native performance,
virtualized performance using shadow paging, and virtualized per-
formance using nested paging. IMB generates large quantities of
data. Figures 6 through 7 illustrate the most salient data on CNL
and Catamount.

Figure 6 shows the bandwidth of a ping-pong test between two
nodes for different message sizes. For large messages, bandwidth
performance is identical for virtualized and native operating systems.
For small messages where ping-pong bandwidth is latency-bound,
the latency costs of virtualization reduce ping-pong bandwidth. We
have measured the extra latency introduced by virtualization as
either 5 µsec (nested paging) or 11 µsec (shadow paging) for the
CNL guest. For the Catamount guest, shadow paging has a higher
overhead. Although the SeaStar is accessed via passthrough I/O,
interrupts are virtualized. When the SeaStar raises an interrupt,
a VM exit is induced. Palacios quickly transforms the hardware
interrupt into a virtual interrupt that it injects into the guest on
VM entry. The guest will quickly cause another VM exit/entry
interaction when it acknowledges the interrupt to its (virtual) APIC.
Shadow paging introduces additional overhead because of the need
to refill the TLB after these entries/exits. This effect is especially
pronounced in Catamount since, other than capacity misses, there
is no other reason for TLB refills. Avoiding these VM exits via
nested paging allows us to measure the raw overhead of the interrupt
exiting process.

virtualized. When the SeaStar raises an interrupt, a VM exit is
In Figure 7, we fix the message size at 16 bytes and examine the

effect on an IMB All-Reduce as we scale from 2 to 48 nodes. We
can see that the performance impacts of nested and shadow paging
diverges as we add more nodes—nested paging is superior here.

The upshot of these figures and the numerous IMB results which
we have excluded for space reasons is that the performance of a

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8 16 32

R
u
n
 t

im
e

(s
ec

)

Nodes

Shadow page tables
Nested page tables

Native

(a) CNL Guest

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8 16 32

R
u
n
 t

im
e

(s
ec

)

Nodes

Shadow page tables
Nested page tables

Native

(b) Catamount Guest

Figure 5: CTH benchmark comparing scaling for virtualization with shadow paging, virtualization with nested paging, and no
virtualization. Palacios/Kitten can provide scaling to 32 nodes with less than 5% performance degradation.

 0.01

 0.1

 1

 10

 100

 1000

 10000

1B 4B 16B
64B

256B
1K 4K 16K

64K
256K

1M 4M

B
an

d
w

id
th

 (
M

B
/s

)

Message size

Shadow page tables
Nested page tables

Native

(a) CNL Guest

 0.01

 0.1

 1

 10

 100

 1000

 10000

1B 4B 16B
64B

256B
1K 4K 16K

64K
256K

1M 4M

B
an

d
w

id
th

 (
M

B
/s

)

Message size

Shadow page tables
Nested page tables

Native

(b) Catamount Guest

Figure 6: IMB PingPong Bandwidth in MB/sec as a function of message size

passthrough device, such as the SeaStar, in Palacios is in line with
the expected hardware overheads due to interrupt virtualization.
This overhead is quite small. Virtualized interrupts could be avoided
using the AMD SVM interrupt handling features, which we expect
would bring IMB performance with nested paging-based virtualiza-
tion in line with native performance. However, at this point, we
expect that doing so would require minor guest changes.

7. RELATED WORK
Recent research activities on operating systems for large-scale

supercomputers generally fall into two categories: those that are
Linux-based and those that are not. A number of research projects
are exploring approaches for configuring and adapting Linux to be
more lightweight. Alternatively, there are a few research projects
investigating non-Linux approaches, using either custom lightweight

kernels or adapting other existing open-source operating systems
specifically for HPC.

The Cray Linux Environment [17] is the most prominent exam-
ple of the Linux-based approach and is currently being used on the
petaflop-class Jaguar system at Oak Ridge National Laboratories.
Cray’s approach is to specially configure a nearly unmodified Linux
kernel and combine it with a BusyBox-based initramfs image to pro-
vide the compute node environment. Since a full Linux distribution
is not used, this approach suffers many of the same functionality
weaknesses as the non-Linux approaches, while not providing the
performance advantages. Other examples of this approach are the
efforts to port Linux to the IBM BlueGene/L and BlueGene/P sys-
tems [30, 3]. These projects have encountered performance issues
due to the mismatch between the platform’s memory management
hardware and the Linux memory management subsystem.

Examples of the non-Linux approach include IBM’s Compute

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

L
at

en
cy

 (
u
s)

Node count

Shadow page tables
Nested page tables
Native

(a) CNL Guest

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

L
at

en
cy

 (
u
s)

Node count

Shadow page tables
Nested page tables
Native

(b) Catamount Guest

Figure 7: IMB Allreduce 16 byte latency in µsec as a function of nodes up to 48 nodes

Node Kernel (CNK) [24] and several projects being led by Sandia,
including the Catamount [27] and Kitten projects as well as an
effort using Plan9 [23]. The custom OS approaches have been
designed to minimize OS noise and jitter so that tightly-coupled
parallel applications can scale to full-system execution with as much
performance as possible. Both CNK and Kitten address one of the
primary weaknesses of previous lightweight operating systems by
providing an environment that is largely compatible with Linux.
Kitten differs from CNK in that it supports commodity x86_64
hardware, is being developed in the open under the GPL license,
and provides the ability to run full-featured guest operating systems
when linked with Palacios.

The desire to preserve the benefits of a lightweight environment
but provide support a richer feature set has also led other lightweight
kernel developers to explore more full-featured alternatives [29]. We
have also explored other means of providing a more full-featured set
of system services [34], but the complexity of building a framework
for application-specific OSes is significantly greater than simply
using an existing full-featured virtualized OS, especially if the per-
formance impact is minimal.

There has been considerable interest, both recently and histor-
ically, in applying existing virtualization tools to HPC environ-
ments [28, 7, 10, 14, 32, 33, 38]. However, most of the recent
work has been exclusively in the context of adapting or evaluating
Xen and Linux on cluster platforms. Palacios and Kitten are a new
OS/VMM solution developed specifically for HPC systems and ap-
plications. There are many examples of the benefits available from a
virtualization layer [25] for HPC. There is nothing inherently restric-
tive about the virtualization tools used for these implementations, so
these approaches could be directly applied to Palacios and Kitten.

8. CONCLUSION
Palacios and Kitten open source tools, available now, that support

virtualized and native supercomputing on diverse hardware. We de-
scribed the design and implementation of both Kitten and Palacios,
and evaluated their performance. Virtualization support, such as
Palacios’s, that combines hardware features such as nested paging
with passthrough access to communication devices can support even
the highest performing guest environments with minimal perfor-

mance impact, even at relatively large scale. Palacios and Kitten
provide an incremental path to using supercomputer resources that
has few compromises for performance. Our analysis furthermore
points the way to eliminating overheads that remain.

9. REFERENCES
[1] AMD CORPORATION. AMD64 virtualization codenamed

“Pacific” technology: Secure Virtual Machine Architecture
reference manual, May 2005.

[2] ARTHUR B. MACCABE, KEVIN S. MCCURLEY, R. R., AND
WHEAT, S. R. SUNMOS for the Intel Paragon: A brief user’s
guide. In Intel Supercomputer Users’ Group. 1994 Annual
North America Users’ Conference (1994), pp. 245–251.

[3] BECKMAN, P., ET AL. ZeptoOS project website,
http://www.mcs.anl.gov/research/projects/
zeptoos/.

[4] BRIGHTWELL, R., HUDSON, T., AND PEDRETTI, K.
SMARTMAP: Operating system support for efficient data
sharing among processes on a multi-core processor. In
International Conference for High Performance Computing,
Networking, Storage, and Analysis (November 2008).

[5] BRIGHTWELL, R., PEDRETTI, K. T., UNDERWOOD, K. D.,
AND HUDSON, T. SeaStar interconnect: Balanced bandwidth
for scalable performance. IEEE Micro 26, 3 (2006), 41–57.

[6] BUNGALE, P., AND LUK, C.-K. PinOS: A programmable
framework for whole system dynamic instrumentation. In 3rd
international conference on Virtual execution environments
(VEE) (June 2007).

[7] EMENEKER, W., AND STANZIONE, D. HPC cluster readiness
of Xen and User Mode Linux. In 2006 IEEE Conference
Cluster Computing (CLUSTER) (2006), pp. 1–8.

[8] E.S. HERTEL, J., BELL, R., ELRICK, M., FARNSWORTH,
A., KERLEY, G., MCGLAUN, J., PETNEY, S., SILLING, S.,
TAYLOR, P., AND YARRINGTON, L. CTH: A Software
Family for Multi-Dimensional Shock Physics Analysis. In
19th International Symposium on Shock Waves, held at
Marseille, France (July 1993), pp. 377–382.

[9] FERREIRA, K., BRIDGES, P., AND BRIGHTWELL, R.
Characterizing application sensitivity to OS interference using

http://www.mcs.anl.gov/research/projects/zeptoos/
http://www.mcs.anl.gov/research/projects/zeptoos/

kernel-level noise injection. In 2008 ACM/IEEE conference
on Supercomputing (SC) (2008), pp. 1–12.

[10] GAVRILOVSKA, A., KUMAR, S., RAJ, H., SCHWAN, K.,
GUPTA, V., NATHUJI, R., NIRANJAN, R., RANADIVE, A.,
AND SARAIYA, P. High performance hypervisor architectures:
Virtualization in HPC systems. In 1st Workshop on
System-level Virtualization for High Performance Computing
(HPCVirt) (2007).

[11] GOLDBERG, R. Survey of virtual machine research. IEEE
Computer (June 1974), 34–45.

[12] HEROUX, M. HPCCG MicroApp.
https://software.sandia.gov/mantevo/
downloads/HPCCG-0.5.tar.gz, July 2007.

[13] HOVENMEYER, D., HOLLINGSWORTH, J., AND
BHATTACHARJEE, B. Running on the bare metal with
GeekOS. In 35th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE) (2004).

[14] HUANG, W., LIU, J., ABALI, B., AND PANDA, D. K. A case
for high performance computing with virtual machines. In
20th Annual International Conference on Supercomputing
(ICS) (2006), pp. 125–134.

[15] INTEL CORPORATION. Intel virtualization technology
specification for the IA-32 Intel architecture, April 2005.

[16] INTEL GMBH. Intel MPI benchmarks: Users guide and
methodology description, 2004.

[17] KAPLAN, L. Cray CNL. In FastOS PI Meeting and Workshop
(June 2007).

[18] KELLY, S., AND BRIGHTWELL, R. Software architecture of
the lightweight kernel, Catamount. In 2005 Cray Users’
Group Annual Technical Conference (May 2005), Cray Users’
Group.

[19] LANGE, J. R., AND DINDA, P. A. An introduction to the
Palacios Virtual Machine Monitor—release 1.0. Tech. Rep.
NWU-EECS-08-11, Northwestern University, Department of
Electrical Engineering and Computer Science, November
2008.

[20] LAWTON, K. Bochs: The open source IA-32 emulation
project. http://bochs.sourceforge.net.

[21] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND
HAZELWOOD, K. Pin: Building customized program analysis
tools with dynamic instrumentation. In ACM SIGPLAN 2005
Conference on Programming Language Design and
Implementatin (PLDI) (June 2005).

[22] MERGEN, M. F., UHLIG, V., KRIEGER, O., AND XENIDIS,
J. Virtualization for high-performance computing. Operating
Systems Review 40, 2 (2006), 8–11.

[23] MINNICH, R. G., SOTTILE, M. J., CHOI, S.-E., HENDRIKS,
E., AND MCKIE, J. Right-weight kernels: an off-the-shelf
alternative to custom light-weight kernels. SIGOPS Oper. Syst.
Rev. 40, 2 (2006), 22–28.

[24] MOREIRA, J. E., BRUTMAN, M., CASTAÑOS, J.,
ENGELSIEPEN, T., GIAMPAPA, M., GOODING, T., HASKIN,
R., INGLETT, T., LIEBER, D., MCCARTHY, P., MUNDY, M.,
PARKER, J., AND WALLENFELT, B. Designing a
highly-scalable operating system: The Blue Gene/L story. In
ACM/IEEE Supercomputing SC’2006 conference (2006).

[25] NAGARAJAN, A. B., MUELLER, F., ENGELMANN, C., AND
SCOTT, S. L. Proactive fault tolerance for HPC with Xen
virtualization. In 21st Annual International Conference on
Supercomputing (ICS) (2007), pp. 23–32.

[26] RAICU, I., ZHANG, Z., WILDE, M., FOSTER, I., BECKMAN,
P., ISKRA, K., AND CLIFFORD, B. Toward loosely-coupled
programming on petascale systems. In ACM/IEEE
International Conference on High-Performance Computing,
Networking, Storage, and Analysis (November 2008).

[27] RIESEN, R., BRIGHTWELL, R., BRIDGES, P., HUDSON, T.,
MACCABE, A., WIDENER, P., AND FERREIRA, K.
Designing and implementing lightweight kernels for
capability computing. Concurrency and Computation:
Practice and Experience 21, 6 (April 2009), 793–817.

[28] RITCHIE, D. M. A guest facility for Unicos. In UNIX and
Supercomputers Workshop Proceedings (September 1988),
USENIX, pp. 19–24.

[29] SHMUELI, E., ALMASI, G., BRUNHEROTO, J., CASTANOS,
J., DOZSA, G., KUMAR, S., AND LIEBER, D. Evaluating the
effect of replacing CNK with Linux on the compute-nodes of
Blue Gene/L. In roceedings of the 22nd International
Conference on Supercomputing (New York, NY, USA, 2008),
ACM, pp. 165–174.

[30] SHMUELI, E., ALMÁSI, G., BRUNHEROTO, J., CASTAÑOS,
J., DÓZSA, G., KUMAR, S., AND LIEBER, D. Evaluating the
effect of replacing CNK with Linux on the compute-nodes of
Blue Gene/L. In 22nd Annual International Conference on
Supercomputing (ICS) (New York, NY, USA, 2008), ACM,
pp. 165–174.

[31] SHULER, L., JONG, C., RIESEN, R., VAN DRESSER, D.,
MACCABE, A. B., FISK, L. A., AND STALLCUP, T. M. The
PUMA operating system for massively parallel computers. In
1995 Intel Supercomputer User’s Group Conference (1995),
Intel Supercomputer User’s Group.

[32] THIBAULT, S., AND DEEGAN, T. Improving performance by
embedding HPC applications in lightweight Xen domains. In
2nd Workshop on System-level Virtualization for High
Performance Computing (HPCVirt) (2008), pp. 9–15.

[33] TIKOTEKAR, A., VALLÉE, G., NAUGHTON, T., ONG, H.,
ENGELMANN, C., SCOTT, S. L., AND FILIPPI, A. M.
Effects of virtualization on a scientific application running a
hyperspectral radiative transfer code on virtual machines. In
2nd Workshop on System-Level Virtualization for High
Performance Computing (HPCVirt) (2008), pp. 16–23.

[34] TOURNIER, J.-C., BRIDGES, P., MACCABE, A. B.,
WIDENER, P., ABUDAYYEH, Z., BRIGHTWELL, R., RIESEN,
R., AND HUDSON, T. Towards a framework for dedicated
operating systems development in high-end computing
systems. ACM SIGOPS Operating Systems Review 40, 2
(April 2006).

[35] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A.,
MARTIN, F., ANDERSON, A., BENNETTT, S., KAGI, A.,
LEUNG, F., AND SMITH, L. Intel virtualization technology.
IEEE Computer (May 2005), 48–56.

[36] WELLS, N. BusyBox: A Swiss Army knife for Linux. Linux
Journal (November 2000). http://busybox.net/.

[37] XIA, L., LANGE, J., AND DINDA, P. Towards virtual
passthrough I/O on commodity devices. In Workshop on I/O
Virtualization at OSDI (December 2008).

[38] YOUSEFF, L., WOLSKI, R., GORDA, B., AND KRINTZ, C.
Evaluating the performance impact of Xen on MPI and
process execution for HPC systems. In 2nd International
Workshop on Virtualization Technology in Distributed
Computing (VTDC) (2006), p. 1.

https://software.sandia.gov/mantevo/downloads/HPCCG-0.5.tar.gz
https://software.sandia.gov/mantevo/downloads/HPCCG-0.5.tar.gz
http://bochs.sourceforge.net
http://busybox.net/

	Introduction
	Motivation
	Kitten
	Architecture
	Memory Management
	Task Scheduling

	Palacios
	Architecture
	Palacios as a HPC VMM
	Symbiotic Virtualization

	Integrating Palacios and Kitten
	Performance
	Testbed
	Guests
	HPCCG Benchmark Results
	CTH Benchmark
	Intel MPI Benchmarks

	Related Work
	Conclusion
	References

