

Advanced SmartGrid Modeling and Simulation using High Performance Computing

Steven D. Wix and Paul V Plunkett

Sandia National Laboratories

**Department 1734, Component
Information and Models**

**sdwix@sandia.gov; 505-844-0778
pvpplunk@sandia.gov; 505-844-7646**

Outline

- **SmartGrid Characteristics**
- **SmartGrid Technical Concerns**
- **Sandia Physics Based Modeling Enabling SmartGrid Development**
 - Model Validation: Physics Model Abstraction
 - Digital Control/Analog Function Interactions
 - Transient Dynamic Analysis of Renewable Energy Sources
- **Sandia's Unique High Performance Computing Resources and Capabilities**

SmartGrid Characteristics

Characteristic	Definition
Self Heals	Automatically detects and responds to actual and emerging transmission and distribution problems. Focus is on prevention. Minimizes consumer impact.
Motivates and includes the consumer	Informed, involved and active consumers. Broad penetration of Demand Response.
Resists Attack	Resilient to attack and natural disasters with rapid restoration capabilities.
Provides power quality for the 21 st century	Quality of power meets industry standards and consumer needs. PQ issues identified and resolved prior to manifestation. Various levels of PQ at various prices.
Accommodates all generation and storage options	Very large numbers of diverse distributed generation and storage devices deployed to complement the large generating plants. "Plug-and-play" convenience. Significantly more focus on and access to renewable
Enables markets	Mature wholesale market operations in place; well integrated nationwide and integrated with reliability coordinators. Retail markets flourishing where appropriate. Minimal transmission congestion and constraints.
Optimizes assets and operates efficiently	Greatly expanded sensing and measurement of grid conditions. Grid technologies deeply integrated with asset management processes to most effectively manage assets and costs. Condition based maintenance.

SmartGrid Technical Concerns

0 0 3 / 4 5 / 7 8 4 4

Technical Concerns of New Grid

Large Solar and Wind (Bulk System Connected Generation)

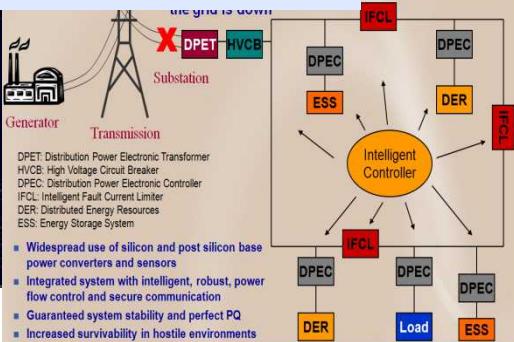
- Steady state and transient stability analysis
- Load/Generation Coincidence (Peak Load and Variability of Source)
- Regulation Requirements
- Integration with Automatic Generation Control (AGC)
- Incorporation of renewable resource forecasting
- Examine current operating practice and new concepts to enable high penetration;

Distributed Solar and Small Wind (Distributed Generation)

Renewable Energy Sources

- Unintentional Islanding
- Protection design and coordination (short circuit, recloser, etc.)
- Equipment grounding
- Load and generation imbalance
- Generation interaction with controllable loads (DSM)
- Storage and storage controls

2003 Blackout Area



Reliability/Failure Analysis

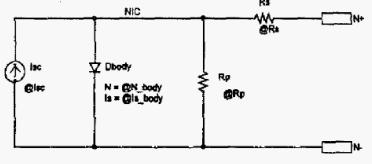
SmartGrid/Microgrid Deployment

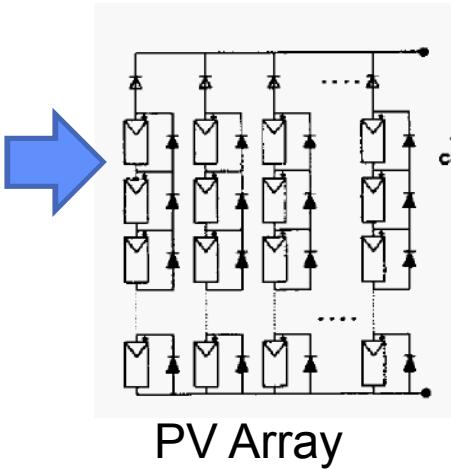
Grid Integrations

- ✓ Multi-Scale (Temporal, Capacity) Storage Technologies
- ✓ High-Power Switching Devices
- ✓ Embedded Sensors and Controls
- ✓ Secure Communications
- ✓ Hostile Environment Survivability

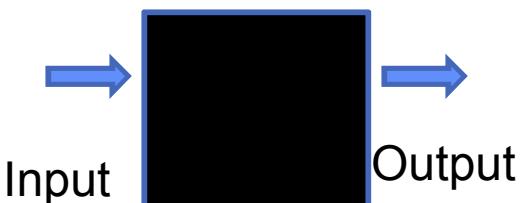
ISA
23:

Sandia Physics Based Modeling enables SmartGrid Development


SmartGrid Characteristic	Technical Concern	Physical Phenomena	Physics based modeling activity
Resists Attack	Effects of Solar Storms	Induced currents on transmission lines	<ul style="list-style-type: none">•Model Validation•Digital Control/Analog Function Interactions
Provides power quality for the 21st century	Introduction of distributed small scale renewable energy sources	Power Quality (Harmonics, Flicker, DC Injection)	<ul style="list-style-type: none">•Model Validation•Digital Control/Analog Function Interactions•Renewable energy source transient dynamic analysis
Accommodates all generation and storage options	Introduction of renewable energy sources	Dynamic grid stability	<ul style="list-style-type: none">•Renewable energy source transient dynamic analysis


Model Validation: High Fidelity Physics Based Models

Physics based PV Station



Single PV Cell

PV Array

Behavioral PV Station

Input

Output

Transient Dynamic Simulation

Behavioral Model

Use detailed physics based circuit models to
develop and validate higher level models

Digital Control/Analog Function Interactions

- Detailed control/grid interaction simulations (Microgrid and smaller)
- Failure Analysis (Identification of unknown positive feedback loops)
- Response of transient effects (solar storms, surges, instabilities, etc)

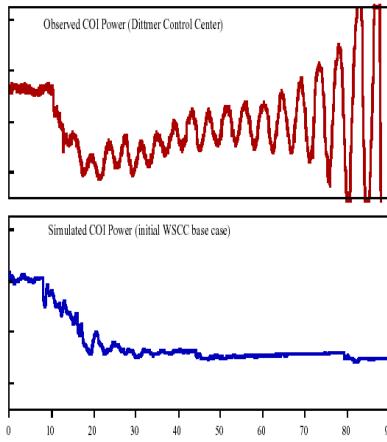
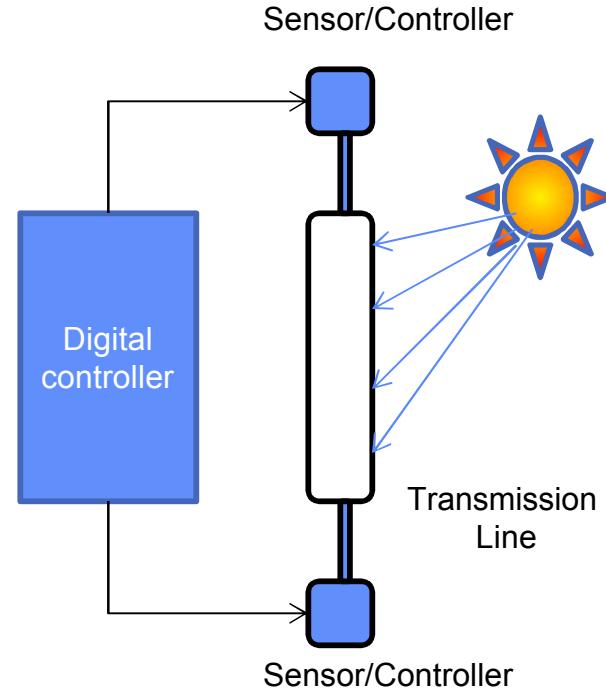
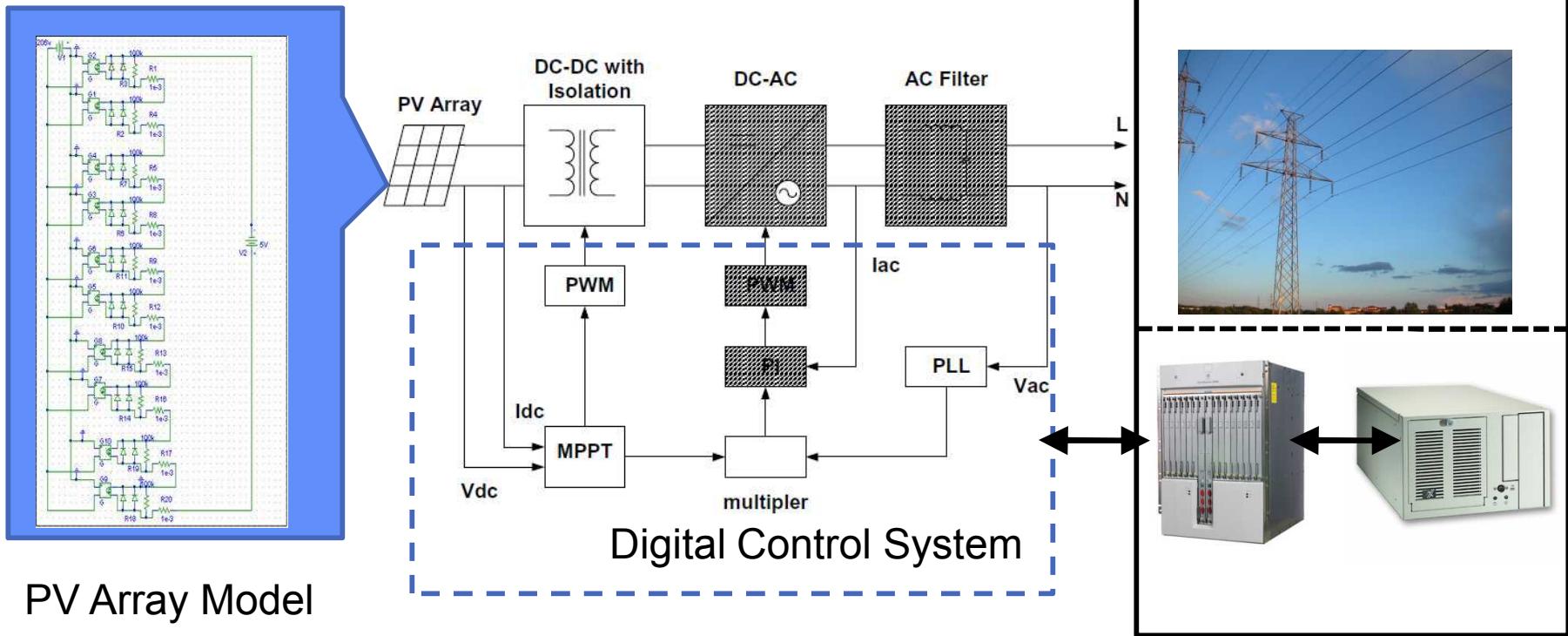



Figure 1: Modeling failure for August 10, 1996 California blackout. The figure shows the observed versus predicted power. From J. Hauer, T. Overbye, J. Dagle, and S. Widergren, "Advanced Transmission Technologies," National Transmission Grid Study Issue Papers, May 2002.

Failure Analysis

Mixed Signal Simulations



*Understanding Solar Storm
effects on System*

Transient Dynamic Analysis of Renewable Energy Sources

- Impact of distributed energy sources on the electrical grid
- Improved design and integration of distributed energy sources

Detailed physics based digital/analog simulation

Sandia's Unique High Performance Electrical/EM M&S Capabilities

Computing Hardware

TLCC

272 compute nodes or 4,352 processor cores
2.2 GHz AMD quad socket/quad core processors
32 GB DDR2 RAM per node
8.7 Terabytes of total RAM
38 TeraFlops of Sandia computing power/installation
3 Sandia installations

Thunderbird

Sandia's largest capacity cluster.
4,480 compute nodes
Dual 3.6 GHz Intel EM64T processors
6 GB RAM/node

Electrical/EM Modeling and Simulation Codes

Habanero – Mixed Signal Simulations (Digital/Analog)
Xyce – Circuit Simulations
Emphasis – Time domain EM simulations
Eiger – Frequency Domain EM Simulations

Circuit Modeling

Transient Dynamic Modeling
Functional Performance Evaluation
Harsh Environment Performance Modeling
Aging Electronics
Sensitivity and Margin Analysis
Mixed Signal Simulations (Digital/Analog)
Physics Model Abstraction

Device Modeling

Diode	Transistor (MOSFET/BJT/JFET/Power)
Passives	Digital Models (Verilog/VHDL)
Transformer	Parameter Extraction
Parasitics	Device Environmental Interactions
Parasitic Extraction	Aging Effects (Device/Board/Assembly)
Model Validation	

Conclusions

- **Sandia has the tools and expertise to enable Smart Grid Development**
 - Parallel electrical modeling and simulation for large scale problems
 - Physics based models
 - Analog/digital capability in one simulator
- **Sandia is a National Laboratory that can work with private industry, universities, and other government agencies**