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SUMMARY & CONCLUSIONS

Many people, when thinking about different stages of a
particular device’s life vis-a-vis defectiveness, use the notion
of the “bathtub curve” as a model. However this model is not
fully applicable for nuclear weapons (and one-shot devices in
general). A new model will be proposed that includes two
regimes: birth defect dominated and time-dependent
dominated. A short discussion of why a bathtub curve might
mistakenly be inferred is included. Finally, the relationship
between inherent and estimated reliability will be described in
the context of this model.

1 NUCLEAR WEAPON RELIABILITY

Nuclear weapons are generally considered as one-shot
devices, even though they are partially composed of
subsystems capable of multiple operations. This is because
their operational time (on the order of seconds) is very short
compared to the time they spend in dormant storage (decades).
Hence performance is quantified in terms of failure probability
— what is the probability that a weapon will fail to achieve the
specified nuclear output if functioned? This probability can be
thought of in a very general sense as the percentage of failures
one would expect to observe in a given number of weapons
operated. This is contrasted with the usual characterization of
performance for continuously operating devices in terms of
failure rate (the number of observed failures divided by the
operating time). Failure probability, as used for nuclear
weapons, is unit-less and in particular does not include the unit
of time, as does failure rate. Failure rate for continuously
operating systems can be used to calculate a failure probability
by integrating over some time period. This in fact gives
meaningful information about a population. However trying
to use failure probability for one-shot devices to calculate a
failure rate is much less useful since there is no “operating
time” per se associated with them. For the purpose of
evaluation, they either work or they don’t when selected.

2 THE BATHTUB CURVE MODEL

Many people, when thinking about different stages of a
particular device’s life vis-a-vis defectiveness, use the notion
of the “bathtub curve” as a model. This model in fact is used
quite pervasively to think about product defectiveness. As
will be discussed below, this model is not very apt for nuclear
weapons (and one-shot devices in general) but it is useful to
review it first and then describe its shortcomings with respect
to weapons.

A useful discussion of the bathtub curve model is
provided below by Wilkins [1], and Figure 1 is extracted from
the same article:

“Reliability specialists often describe the lifetime of a
population of products using a graphical representation called
the bathtub curve. The bathtub curve consists of three periods:
an infant mortality period with a decreasing failure rate
followed by a normal life period (also known as ‘useful life’)
with a low, relatively constant failure rate and concluding
with a wear-out period that exhibits an increasing failure
rate.”
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Figure I - Classic Bathtub Curve Model

Note that the bathtub curve model is specifically intended
to depict the behavior of continuously operating systems — the
y-axis is failure rate not failure probability and the x-axis is
operating time, not “calendar time” as one would use for
nuclear weapons in the stockpile. As a depiction of failure
rate, the bathtub curve only applies to those items that are
“alive” or working at a given time. That is, if the failure rate
is A at time t, then given that a unit is alive and operating at
time t the probability of failing or “dying” in the next time
period At is approximated by A-At. Therefore, a constant
failure rate implies an increasing failure probability function,
since the probability of having failed by a certain time is an
accumulation of the chances of having failed at any of the
previous times.

In addition, the terms “infant mortality” and “wear-out”
refer to failures that are experienced during (and as a result of)
operation and thus neither of these concepts are germane to
one-shot devices that spend most of their lives in dormant
storage. Finally, systems that are continuously operating
allow for (nearly) immediate detection and removal of
defective units when they occur. This is most assuredly not
the case for weapons, where defects may be present in the
stockpile for long periods of time degrading reliability but not
being known. Stated another way, weapons with birth defects
do not get removed from the stockpile unless we do sampling
and testing to find them and then take action, whereas
continuously operating systems with infant mortality defects



remove themselves from the population by failing during
operation early on. We can never infer from nuclear weapon
testing when a defect has occurred — only that it occurred
sometime between the present test and any prior applicable
test. In short, while the bathtub curve is a commonly used and
easily understood model, it is not particularly applicable to
nuclear weapons. As a side note, if a continuously operating
system was not operated continuously or was stored for a
while before being used, the resulting failure rate plotted as a
function of calendar time would not look like the bathtub
curve either.

3 ANEW MODEL FOR WEAPON RELIABILITY

A more suitable model for one-shot device reliability is
proposed in this section. This model has served to lay the
foundation for a new test and evaluation program for nuclear
weapons that is tailored for the unique stages of a weapon’s
life. The new model has two regimes. While to a modest
degree there is an analogy to the bathtub curve model, the new
model is indeed different.

Understanding this model requires one to differentiate
between inherent reliability (which “is what it is” but is never
known) and estimated reliability (the estimate of inherent
reliability based upon knowledge gained through experience,
testing, and analysis). In all of the examples shown below,
inherent reliability (or failure probability) is shown as a
dashed line and estimated reliability (or failure probability) is
shown as a dotted line. For clarity, failure probability is used
in each of the following figures. The y-axis is labeled as
“Average System Failure Probability” and represents a
calculation of the average failure probability for a population
of weapons that share the same design (referred to as a
“weapon system”). The x-axis represents “calendar time” and
would generally be in units of years, with the entire length of
the x-axis representing the total lifetime of a weapon system.

The model of inherent reliability that will be used is
shown in Figure 2.
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Figure 2 - Notional Model of Inherent Reliability

There are two discrete regimes identified in the figure:
Birth Defect Dominated and Time-Dependent Dominated.

3.1 Birth Defect Dominated

The first regime begins at production, and it is
characterized by the presence of defects that are in the
weapons when they enter the stockpile. These defects may be
due to design errors, production or assembly problems, or
material flaws that were not detected during product
acceptance testing. Thus these defects are in the stockpile
from Day 1 and will remain there unless they are fixed — and

of course, fixing them requires them to be found first. That, in
turn, relies on sampling and testing. This initial regime will be
called “Birth Defect Dominated”. With regard to failure rate
in the first regime the assumption is that, given that a unit is
working (reliable) at time t, it remains reliable for the
foreseeable future. Note that a failure rate at time t only
applies to units that are alive or reliable at time t, and does not
apply to those units with birth defects and are not reliable at
time t. This effectively means that the failure rate for reliable
units is, for all practical purposes, zero in the first regime.

3.2 Time-Dependent Dominated

The second regime of weapon life begins when there is
any onset of time-dependent defects affecting reliability.
Obviously one does not know when this transition point
occurs. In the past, there have been time-dependent problems
observed through testing that have affected reliability very
soon after production. In general though, weapon systems
have not experienced many time-dependent failures during
their lifetime. To some extent, onset of this regime is little
more than a hypothesis at this point because there have been
few time-dependent issues that have arisen that affect
performance (ability to get nuclear output when functioned).
On the other hand, investigations have revealed changes in
either materials or parameters which indicate that time-
dependent behavior is afoot, even if it doesn’t yet affect
performance.

Note that this regime is not the same as “wear-out”, as
used in the bathtub curve model. Defects are not due to long-
term use and wear, but rather arise during dormant storage as
materials change with age. Material properties may eventually
shift to the extent that performance is impacted. As with birth
defects, this will not be detectable without on-going
evaluation.

The new test and evaluation program is intended to
capitalize on this model. First, it is recognized that there must
be a deliberate, carefully-planned effort made early in the life
of a weapon to detect the unknown birth defects that are
present at Day 1. Without such an effort, these defects will
remain unknown. Eventually though, there is a point of
diminishing returns. Smaller and smaller birth defects will
continue to be detected with further testing, but their impact is
so small that the costs outweigh the benefits. At this point, the
major concern becomes time-dependent behavior that may
arise to jeopardize performance. Thus the focus shifts from a
broad search for unknown birth defects across the entire state
space of conditions to monitoring specific high-risk issues
(parameters with small margin, known or suspected trends,
material vulnerabilities, etc.).

4 CHANGES IN INHERENT RELIABILITY

Although as noted earlier, inherent reliability “is what it
is”, there are things that can cause it to go up or down. Figure
3 shows the ways in which inherent reliability can change. As
before, the y-axis is average system failure probability and the
x-axis is weapon system lifetime in years.

Example A shows that the inherent failure probability can




decrease if an existing problem is corrected. This change is
shown as gradual slope downward, where the transition
between failure probability values extends over the duration of
the repair operation on the population of weapons. Example
B, which unfortunately does occur, shows a case where an
action results in the introduction of a new problem which
increases failure probability; this could occur during the
course of adding of a new capability, for example. As with
Example A, the change in failure probability is gradual and
occurs over the duration of the incorporation into the
stockpile. The final graph (C) shows an example of a time-
dependent issue that afflicts increasingly large segments of the
stockpile over time. These changes can be due to stockpile
aging or aggregated exposure time to a particular accelerating
environment such as the field storage environment.
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Figure 3 - How Inherent Reliability Can Change

Note that there are many ways in which a time-dependent
problem can manifest itself, depending upon (1) the speed at
which the mechanism evolves and (2) the degree of
homogeneity in how it evolves (i.e., does the change take
place in all units of the stockpile at an equal rate, or does it
evolve at different rates for different units — or perhaps not at
all for some units?). This is shown by the multiple curves in
Figure 4 that illustrate different types of behavior. They are

offset on the failure probability axis for clarity.
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Figure 4 - Examples of Time-Dependent Failure Probabilities
5 RELIABILITY ESTIMATION AND THE NEW MODEL

A reliability estimate is an attempt to quantify the
inherent reliability based upon all available knowledge. This
estimate is used to make key operational and programmatic
decisions. Hence it is also helpful to review some examples of
the relationship between inherent and estimated reliability
during the course of a weapon’s life. These are shown
notionally in Figure 5.

Average PR
System Failure = = = = — /= = 2 = = = Inherent
Probability .’l \
Lo “.‘ ........ Estimated
............... :,:.\.._//

A. Finding and assessing an
existing stockpile defect

Average -—=N
System Failure H N o e o Inherent
Probability | o
N Estimated
.......... ;\,:_: TR

B. Finding, assessing, and fixing
an existing stockpile defect

»  Inherent

Average //;— ’\\
System Failure Jm m = = = - - \  Estimated
Probability ! R
1 u““ )]
\ )
S S
C. Finding and assessing a time-
dependent stockpile defect
Average | ==========- Inherent
System Failure
Probability b errrsraninnnn, Estimated

D. Gradual aggregation of
successdata



Figure 5 - Relationship of Inherent and Estimated Reliability

Note that for each example in Figure 5, the inherent
failure probability is shown as being larger than the estimated
failure probability. However this will not necessarily always
be the case — estimated failure probability could also be larger
than the inherent failure probability or the lines could cross
during the course of a corrective action. In practice, one
sometimes finds that the initial calculated impact due to
detecting a defect is based upon limited data. Thus a failure
probability estimate may initially be large and then decrease
over time if more success data are collected. This may result
in estimated failure probability being higher than inherent
failure probability. On the other hand, undetected defects may
result in the estimated failure probability being lower than the
inherent failure probability.

The goal of course is to have estimated reliability
converge over time to inherent reliability, and every test
observation must be considered carefully to understand its
impact on the estimate. Issues such as sample quantities,
sampling philosophy, and test quality and diversity do not
directly enter into calculation of the estimate. However these
issues are quite critical in that they affect the ability to detect
previously unknown defectiveness. Generally undetected
defects cannot be credibly assessed and included in the
estimate.

In summary, estimated failure probability changes when
(1) defects are found through sampling and testing indicating a
higher failure probability than currently estimated, (2) success
data are aggregated over time indicating that a lower failure
probability than currently estimated, and (3) defects are being
fixed. Here as well, sample testing allows one to make better
estimates as test results are aggregated.

The lifetime profile for a particular weapon type can be
quite complex since there are so many combinations of
changing inherent reliability and changing estimated
reliability. A notional example is shown in Figure 6; again,
inherent failure probability is shown as being larger than the
estimate for clarity, but these lines can be in inverse position
or cross multiple times during the life of a weapon.

As indicated earlier, the intent is to have the estimated
reliability line eventually coincide over time with the inherent
reliability, based upon the knowledge gained by sampling and
testing (both detection of unknown defects as well as
aggregation of success data). Unknown defects in the

stockpile are the greatest risk that these lines will not coincide,
and the point of the sample testing and analysis programs is to
reduce the gap between the two failure probability lines to as
small as possible (given risk and cost considerations). Note
that success data has an important role here too in helping the
inherent and estimated reliability converge, although emphasis
tends to be on tests that reveal defects.

6 INCORRECT INFERENCE OF THE BATHTUB CURVE

Historical evaluation results have often been used to infer
that nuclear weapons follow the bathtub curve model. This is
not an unreasonable inference to make, given the data, but it
can be explained more properly by the new conceptual model
for inherent reliability.

There are two major artifacts that cause people to assume
that a bathtub curve model is appropriate for nuclear weapons.
The first is that the defect detection rate (i.e., the number of
defects detected per unit time) for a particular weapon system
is generally higher early in its lifetime than later. [As a side
note, it should be pointed out that defect detection rate for
nuclear weapons is unrelated to reliability impact. Some
defects are determined to have a small failure probability
impact and some a large one, and thus defect detection rate
does not have a direct relationship to reliability.] The second
artifact, which does relate to reliability, is that the impacts of
newly identified defects for a particular weapon tend to be
higher earlier in stockpile life.

In each of these cases, use of the bathtub curve model to
explain the results is flawed. For the first case, it is vital to
note that the quantity of tests performed over a weapon’s
lifetime is heavily front-loaded by intent. Because more units
are being tested, the expectation is that more birth defects will
be found. This is not due to a changing product as the bathtub
curve implies (i.e., a changing failure rate over time) — instead,
it is due to the profile of the test program, where testing more
units gives a higher likelihood of finding birth defects present
in the stockpile from Day 1. In short, it is incorrect to infer
that the product is changing based upon this pattern alone. If
there were no evaluation program to find the defects (or no
fixes once the defects were found), then the inherent reliability
curve would be flat until the onset of aging problems.
Similarly, if we were to test fewer units, it would take longer
to find these defects and the hump of the curve would move to
the right.
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Figure 6 - Comparison of Inherent and Estimated Reliability



For the second case above, there is also a better technical
explanation for this pattern. Larger defects, in general, take
fewer tests to detect than smaller defects. For example, on
average it takes 100 tests to find a 1% defect (assuming it is
detectable in the test) whereas it takes 1000 tests on average to
find a 0.1% defect. Thus we would expect a pattern of
decreasing defect impact for newly identified defects as time
goes by and more tests are aggregated. Note that the overall
defect detection rate (new defects as well as already identified
defects) may not decrease over time at all, if action is not
taken to remove identified defects from the stockpile.

One other pertinent historical observation is that very
large birth defects have sometimes been discovered relatively
late in a weapon’s life, which seems to contradict the new
model. However, analysis of historical defects suggests that
these cases have been due to the following causes:

1. The test program that was being done was completely
incapable of detecting a particular birth defect. Once a
new test regime was introduced later in life that allowed
for detection, the defect was then discovered.

2. The defect was manifested under a narrow range of
conditions that were examined very infrequently in the
test program. Thus the time to detection was greatly
extended.

3. The birth defect,
subpopulation.

4. A new birth defect was introduced through an upgrade in
capability conducted later in the life of a weapon system.

7 CONCLUSION

while severe, only affected a

In summary, the bathtub curve loosely appears to explain
the test history for nuclear weapons but is an incorrect model
to assume. The test history instead is chiefly a manifestation
of the way that tests are spread over time as well as the simple
statistical principle that larger defects will take fewer tests to
detect than smaller defects. The traditional bathtub curve
presents a failure rate as a function of operating time, t, and is
meant to characterize the chances of a unit “dying” or
becoming unreliable in the immediate near future from time t
given that the unit was, in fact, “alive” or reliably operating at
time t. As such, it does not address the observations resulting
from sample testing that reveals underlying “deaths”, all of
which would have occurred in the past.

This new model may have applicability for other one-shot
devices and systems that share similar characteristics. Key
consequences of this are as follows:

1. It will almost certainly require explicit action to achieve

convergence of the estimated reliability with the inherent
reliability, through sampling, testing, and analysis.

2. Interpretation of defect detection history for one-shot
devices must be done carefully with consideration of the
underlying evaluation program. Unsurprisingly, more
tests will typically yield more defects, so some attempt to
normalize with respect to test quantities may be helpful.

3. One must generally choose to take action to improve
reliability for one-shot devices when defects are found;
this is different for the case of continuously operating
systems where failed units essentially remove themselves
from the population. As noted before, this makes it
essential to conduct testing on samples to identify defects
present in the stockpile such that they can be addressed if
appropriate.  This continues to be important as the
systems age and potentially enter the regime of time-
dependent change.
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