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Outline of Presentation

 Brief Biographical Note

 Where this Section Fits in the Structure of the Complex Systems 
Course

 Overview of heuristic optimization techniques (Tabu Search and GA)

 Small case study: MILP versus GA for Optimal Terrorist Attack

 Real-world case study: Mitigating Bridges in NMSZ

 Summary

 Question & Answer Session
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Brief Biographical Note on Nathanael Brown

 Education: BSEE (UNM), MSEE (Purdue) focused on DSP/algorithms

 Non-SNL Work Experience
 Intel Corp (2001 – 2003): Performance tuning expert system (patent 7,043,719)

 Tera Research (1997 – 2000): Data analysis software

 Amtech Systems Corp (1996-1997): RF tag reader embedded software

 American Laser Games (1993 – 1996): Video game design

 Compaq Computer Corporation (1991 – 1992): Handwriting recognition

 SNL Work Experience
 Investment Planning LDRD (2010 – 2013): Development of a Modeling 

Framework for Infrastructures in Multi-Hazard Environments

 Resilience LDRD (2010):  Measurement and Optimization of Infrastructure 
Resilience

 Systems tester development (2003 – 2010): Helped design/develop a suite of 
testers which utilizes multiple networked subsystems to capture and analyze 
real-time data from a unit under test

CSYS 300 – COMPLEX SYSTEMS FUNDAMENTALS, 
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CSYS 300 – COMPLEX SYSTEMS FUNDAMENTALS, 
METHODS & APPLICATIONS
Structure of the Course

 Fundamentals of Complex Systems

 Methods
 Modeling Techniques

 Approaches to Examining Complex 
Systems

 Applications
 Examples of the use of complex systems 

fundamentals to solve problems

 Learning how to use complex systems 
modeling tools
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*Note: These approaches represent a simplified set of complex systems concepts chosen for the CSYS 300 systems lectures.  
Please see the initial two lectures for additional detail and expanded references.

Focus of this session
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 What is a Heuristic Method (in the context of optimization)?
 Approximate algorithms that do not guarantee global optimality

 An iterative, non-deterministic algorithm used for solving combinatorial 
optimization problems (finding an optimal arrangement or ordering of a finite 
set of discrete objects)

 Useful when solution space is non-convex and/or is dependent on multiple, 
possibly competing, objectives

 When should a Heuristic Method be used?
 When standard techniques (e.g., MILP) are insufficient

 Solution space is too large and can’t be searched exhaustively

 Objective calculation is very expensive (e.g., solution evaluation involves a 
complex simulation)

 Popular Heuristic Methods 
 Simulated Annealing, Tabu Search, Genetic Algorithm

 Sait, S. M. and H. Youssef. 1999. “Iterative Computer Algorithms with Applications in 
Engineering: Solving Combinatorial Optimization Problems.” Los Alamitos, CA: IEEE 
Computer Society.

Heuristic Methods for Optimization – Overview
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 General adaptive heuristic for solving combinatorial optimization 
problems, designed to escape local optima

 Algorithm is analogous to the physical annealing process: heating 
a solid to a high enough temperature to melt, then slowly cooling 
the liquid until it crystallizes
 By cooling at a proper rate, proper crystal structure with perfect lattices will 

be created

 The algorithm simulates the heating/cooling cycle of annealing

 Has been used to solve a variety of optimization problems
 Traveling salesman problem (TSP)

 Image Processing

 Scheduling

 Facilities layout

 VLSI design

 Fairly easy to implement

Simulated Annealing – Overview 
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 From a random initial state, iteratively searches the local 
neighborhood for better solutions

 Starts with a heating cycle which allows for poor solutions to be 
accepted with a certain probability
 Allows the escape from local optima by “hill climbing”

 The cooling cycle slowly decreases the probability of accepting 
“worse” solutions until only “better” solutions are accepted

Simulated Annealing – Algorithm Details

7Hotrodanglican.blogspot.com

 Utilized in an LDRD to determine 
the best recovery strategy for a 
damaged railway system based on: 
cost of repairs, duration of repairs, 
priority of commodity delivery

 Found to be within 1% – 2% of 
“true” optimal based on full 
enumeration



 Generalization of local search used to explore very large solution 
spaces

 Algorithm samples different “neighborhoods” within the solution 
space via a sequence of “moves”

 Composed of three different memory components:
 Short-term component prevents cycling (Tabu List)

 Intermediate-term component is used for regional search intensification

 Long-term component promotes global solution diversification

 Designed to escape local optima

Tabu Search – Overview 
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 Find “best” solution in current 
neighborhood by doing a local 
search

 Accept best solution as current if:
 Not on the Tabu List

 Better than current best solution

 If solution is accepted, continue 
searching in current neighborhood 
(intensification)

 If solution is not accepted, move 
to a new neighborhood 
(diversification)

 Repeat process a fixed number of 
times

Tabu Search – Algorithm Details
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 Simulates the process of evolution based on the Darwinian theory 
of natural selection

 Individuals are represented by encoded strings (chromosomes) 
which mate to produce offspring with (mostly) the best 
characteristics of both parents

 Computationally straightforward and easy to implement 
 Requires no assumptions about the search space (e.g., continuity, existence 

of derivatives)

 Only need objective function values to evaluate solution fitness

 Composed of the following steps:
 Initialization

 Selection

 Crossover

 Mutation

 Termination

Genetic Algorithm (GA) – Overview 
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 Initialization – Create a population of randomly generated 
individuals (hundreds to thousands depending on search space)

 Selection – Choose a portion of the existing population to breed a 
new generation
 Bias the selection such that fitter individuals are more likely to be selected

 Crossover – Each new individual is created from a pair of “parent” 
solutions by splitting and recombining the parent chromosomes

 Mutation – Randomly change a few genes in the child 
chromosome to promote diversity (on the order of 5%)

 Termination – Terminate after a fixed number of iterations or 
when there is no significant improvement

Genetic Algorithm (GA) – Algorithmic Details
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 Heuristic Algorithms often require making probabilistically-biased 
selections

 One technique is to assign contiguous, integer intervals to each item 
based on a bias factor and use a random number generator to select

 Example: 10 numbers to select from where probability of selection is 
proportional to the square of the number

 Randomly select an integer value between 0 and 384; interval that 
value falls into indicates the target number

Implementing a Biased Selection
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

Terrorist Attack on a Hospital Network – Basic 
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 Use a “leader-follower” model to find the optimal reinforcement 
strategy for minimizing the worst terrorist attack.

 Assumptions
 Same network and terrorist budget

 Terrorist will not attack reinforced hospitals

 Cost to reinforce a single hospital is 1 and protector can reinforce up to N-1 (19) 
hospitals

 Approach
 Use CPLEX to find optimal attack given a reinforcement

 Use a GA to determine the optimal investment strategy within solution space of 
size 220 – 1 = 1,048,575 different permutations 

 Dual objective: hospital service impact and mitigation cost

 What is the “best” solution?
 Could equally weight 2 objectives and get a single solution (adequate)

 Use a Pareto Frontier to give a range of good solutions (better)

Terrorist Attack on a Hospital Network – Game Theoretic
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Fitness Evaluation – Pareto Frontier

 A Pareto Frontier consists of only those solutions which are not
dominated by any other solutions

 Solution A dominates B if both conditions are true:
 Solution A is no worse than B in all objectives

 Solution A is strictly better than B in at least one objective

 Example: Solutions A, B and C with dual objectives f1 and f2 which 
must be minimized
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• Solution A does not dominate B 
because f1(A) > f1(B)

• Solution A dominates C because 
f1(A) < f1(C) and f2(A) < f2(C)



 Frontier is composed of 
15 data points

 Equally weighted 
objectives approach 
would have selected 
mitigation cost of 7 
(circled in plot)

 Chose 1000 mitigation 
strategies for initial 
population (roughly 0.1% 
of total solution space)

 90 crossover steps using 
100 “parent” solutions per 
iteration

 Solutions with cost 18 and 
19 are non-Pareto

Terrorist Attack on a Hospital Network – Pareto Frontier
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Earthquake Mitigation of a Highway Network –
Problem Overview

 Examine earthquake hazard in New 
Madrid Seismic Zone (NMSZ)

 Highway network overlaid with 
hospital locations

 Bridges are the most vulnerable 
components of the network
 Damage affects both travel times and 

network connectivity 

 Investments can be made to reinforce 
bridges to reduce level of damage
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Memphis Highway Network

Blue dots represent highway bridges (335 total)



Modeling Process
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Identify hazard-consistent earthquake 
scenarios

Identify hazard-consistent consequence 
scenarios for each earthquake scenario

Assess objectives for post-event system 
performance

Optimize investment



Representing the Hazard

 Analysis requires a collection of 
earthquake scenarios

 Two sources of candidate earthquake 
scenarios
 USGS has cataloged 433 historic events

 USGS has developed 5 synthetic faults

 We consider 4 possible magnitudes 

from each fault (20 total events)

 Computations preclude considering 

all 453 events

 Use optimization to select a 
representative subset of 8 events of 
which only 2 are significant
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Modeling Process
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Identify hazard-consistent earthquake 
scenarios

Identify hazard-consistent consequence 
scenarios for each earthquake scenario

Assess objectives for post-event system 
performance

Optimize investment



Consequence Scenarios: Before Mitigation

Scenario j 1 2 3 … k

None X

Slight X

Moderate

Extensive X

Complete X
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Consequence Scenarios: After Mitigation

Scenario j 1 2 3 … k

None X
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Extensive X

Complete X
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Approach

 Use optimization to identify a set of consequence scenarios and the 
probability of occurrence for each that “match” marginal 
distribution of damage for each component and the correlation 
between components

ekmd
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Modeling Process

24

Identify hazard-consistent earthquake 
scenarios

Identify hazard-consistent consequence 
scenarios for each earthquake scenario

Assess objectives for post-event system 
performance

Optimize investment



Objective Functions

 Determine optimal investment strategy which minimizes:
 Travel Time Objective - travel time across the network

 Hospital Connectivity Objective - travel time and disconnections from major 
population centers to nearby hospitals

 Investment Cost Objective – bridge mitigation costs

 Investment cost objective is simply the sum of the mitigation costs

 The other two objectives require an assessment of the post-event 
network performance
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Dynamic Traffic Assignment (DTA)

 Models the dynamic movement of vehicles over a network 
 An extension of Static User Equilibrium

 Requires a collection of origin-destination tables over a defined time interval 
(time-varying demand)

 Li, A., Nozick, L., Davidson, R., Brown, N., Jones, D., and Wolshon, B., “An Approximate Solution 

Procedure for Dynamic Traffic Assignment”, Journal of Transportation Engineering, in press.

 Comparable to industry standard but much faster
 Validated against DynusT and measured link counts during Katrina evacuation

 Two day Katrina evacuation runs in about 10 seconds on 8 cores versus 110 
minutes for DynusT

 “Essentially, all models are wrong, but some are useful.”
 George E. P. Box (statistician, 1919 - 2013) 
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Modeling Process
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Identify hazard-consistent earthquake 
scenarios

Identify hazard-consistent consequence 
scenarios for each earthquake scenario

Assess objectives for post-event system 
performance

Optimize investment



Investment Planning Optimization: 
Multi-Objective 2-Stage Stochastic Program

 Use Pareto Efficiency to evaluate each solution composed of 3 
objectives
 Avoids use of arbitrary weighting method

 Goal is to minimize the Euclidean distance to the Pareto Frontier

 Overall objective is a weighted aggregate across 40 earthquake 
scenarios
 Two earthquake events (remaining 6 do not create a sufficient level of 

damage to highway bridges in Memphis) 

 Each earthquake has 20 scenarios where each scenario has damage states for 
each bridge with/without reinforcement

 The objective for a scenario is weighted by the scenario’s probability of 
occurrence

 Decisions variables: the set of bridges to reinforce
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Computational Challenges

 DTA requires 11 minutes for each consequence scenario at 15 
minute time intervals

 A single run requires 40 scenario evaluations at 11 minutes each = 
440 minutes (7 hrs 20 min)

 There are 286 bridges that can be reinforced
 2286 different permutations ≈ 1086 ≈ number of particles in the universe!

 Impossible to examine all permutations
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Tabu Search Implementation
 Heuristic method for finding a near optimal solution within a large 

search space which may contain local optima

 Each iteration examines a single mitigation strategy and the 
surrounding neighborhood

 Use threading to take advantage of multiple cores

 Scenario differencing
 Recompute values only for those scenarios that change due to a bridge 

reinforcement

 Subsample the evaluation space
 Sample top 10 (25%) of earthquake scenarios based on greatest number of 

bridges impacted

 Bias bridge selection towards those that impact the most scenarios

 Run DTA at 1 hour time intervals

 Use parallel processing to cover more of the solution space

30



Parallel Processing

 Spawned 100 processes across a collection of compute nodes using 
RMI (Remote Method Invocation) and MPI (Message Passing 
Interface)

 Each instance starts with a random bridge mitigation strategy

 Best solution from each instance sent back to master which 
generates a new set of starting points via genetic crossover

 Add diversification by performing variable-rate genetic mutation
 Used a similarity ratio to determine the rate of mutation

 Ratio of bridges that are usually reinforced/unreinforced to total number of 
bridges across current collection of solutions
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Pareto Frontier (2D)
 Pareto frontier when only 2 of the 3 objectives are examined
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Pareto Frontier (3D)
 Tradeoffs across all three objectives can be explored

 Relatively small tradeoffs between travel time and hospital 
connectivity compared to mitigation cost
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Bubble Plot of Pareto Frontier Points Considering Three 
Objectives

Cost Objective (Larger 
Bubble Size Indicates 
Higher Cost)

Most expensive option ($191.1M) produces 
best result in other two objectives

Cheapest option ($0.0) produces 
worst result in other two 
objectives
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