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Optimization: Heuristic Methods and Applications
Brief Biographical Note on Nathanael Brown
= Education: BSEE (UNM), MSEE (Purdue) focused on DSP/algorithms

= Non-SNL Work Experience
= Intel Corp (2001 — 2003): Performance tuning expert system (patent 7,043,719)
= Tera Research (1997 — 2000): Data analysis software
= Amtech Systems Corp (1996-1997): RF tag reader embedded software
= American Laser Games (1993 — 1996): Video game design
= Compaq Computer Corporation (1991 — 1992): Handwriting recognition
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= SNL Work Experience

= |nvestment Planning LDRD (2010 — 2013): Development of a Modeling
Framework for Infrastructures in Multi-Hazard Environments

= Resilience LDRD (2010): Measurement and Optimization of Infrastructure
Resilience

= Systems tester development (2003 — 2010): Helped design/develop a suite of
testers which utilizes multiple networked subsystems to capture and analyze
real-time data from a unit under test 3
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Focus of this session

= Fundamentals of Complex Systems
= Methods

= Modeling Techniques

=  Approaches to Examining Complex W

Systems

= Applications

= Examples of the use of complex systems
fundamentals to solve problems

= Learning how to use complex systems D
modeling tools

*Note: These approaches represent a simplified set of complex systems concepts chosen for the CSYS 300 systems lectures.
Please see the initial two lectures for additional detail and expanded references. 4
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Heuristic Methods for Optimization — Overview

= What is a Heuristic Method (in the context of optimization)?
=  Approximate algorithms that do not guarantee global optimality

= An iterative, non-deterministic algorithm used for solving combinatorial
optimization problems (finding an optimal arrangement or ordering of a finite
set of discrete objects)

= Useful when solution space is non-convex and/or is dependent on multiple,
possibly competing, objectives
= When should a Heuristic Method be used?
= When standard techniques (e.g., MILP) are insufficient
= Solution space is too large and can’t be searched exhaustively
= QObjective calculation is very expensive (e.g., solution evaluation involves a
complex simulation)
= Popular Heuristic Methods

= Simulated Annealing, Tabu Search, Genetic Algorithm

= Sait, S. M. and H. Youssef. 1999. “Iterative Computer Algorithms with Applications in
Engineering: Solving Combinatorial Optimization Problems.” Los Alamitos, CA: IEEE
Computer Society. 5




Simulated Annealing — Overview
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= General adaptive heuristic for solving combinatorial optimization
problems, designed to escape local optima

= Algorithm is analogous to the physical annealing process: heating
a solid to a high enough temperature to melt, then slowly cooling
the liquid until it crystallizes

By cooling at a proper rate, proper crystal structure with perfect lattices will
be created

The algorithm simulates the heating/cooling cycle of annealing

= Has been used to solve a variety of optimization problems

Traveling salesman problem (TSP)
Image Processing

Scheduling

Facilities layout

VLSI design

= Fairly easy to implement
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Simulated Annealing — Algorithm Details

"= From arandom initial state, iteratively searches the local
neighborhood for better solutions

= Starts with a heating cycle which allows for poor solutions to be
accepted with a certain probability
= Allows the escape from local optima by “hill climbing”

= The cooling cycle slowly decreases the probability of accepting
“worse” solutions until only “better” solutions are accepted

= Utilized in an LDRD to determine
the best recovery strategy for a
damaged railway system based on:
cost of repairs, duration of repairs,
priority of commodity delivery

" Found to be within 1% — 2% of
“true” optimal based on full
e n u m e ratio n Hotrodanglican.blogspot.com 7

Local Optimum

Objective: Lower the Better Global Optimum
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Tabu Search — Overview

=  Generalization of local search used to explore very large solution
spaces

= Algorithm samples different “neighborhoods” within the solution
space via a sequence of “moves”

= Composed of three different memory components:
= Short-term component prevents cycling (Tabu List)
= |ntermediate-term component is used for regional search intensification
= Long-term component promotes global solution diversification

= Designed to escape local optima




Tabu Search — Algorithm Details

. o ) . .
Find “best” solution in current ]

neighborhood by doing a local Move 1
search Solution ) j
Accept best solution as current if:

= Not on the Tabu List

=  Better than current best solution @
NO

If solution is accepted, continue
searching in current neighborhood YES
(intensification)

Criterion
Passad?

If solution is not accepted, move
to a new neighborhood
(diversification) |

Repeat process a fixed number of [ i }
times
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Genetic Algorithm (GA) — Overview

= Simulates the process of evolution based on the Darwinian theory
of natural selection

" |ndividuals are represented by encoded strings (chromosomes)
which mate to produce offspring with (mostly) the best
characteristics of both parents

= Computationally straightforward and easy to implement

= Requires no assumptions about the search space (e.g., continuity, existence
of derivatives)

=  Only need objective function values to evaluate solution fitness

= Composed of the following steps:
= |nitialization
= Selection
= Crossover
=  Mutation

= Termination
10
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Genetic Algorithm (GA) — Algorithmic Details

= |nitialization — Create a population of randomly generated
individuals (hundreds to thousands depending on search space)

= Selection — Choose a portion of the existing population to breed a
new generation
= Bias the selection such that fitter individuals are more likely to be selected

= Crossover — Each new individual is created from a pair of “parent”
solutions by splitting and recombining the parent chromosomes

P Parent 2
RS > [ 22 [ 23 [ 2 |

EET e e s ao] 21 [ 22 [ 22 [ 2a |

= Mutation — Randomly change a few genes in the child
chromosome to promote diversity (on the order of 5%)

= Termination — Terminate after a fixed number of iterations or

when there is no significant improvement
11




Implementing a Biased Selection

h

= Heuristic Algorithms often require making probabilistically-biased

selections
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= One technique is to assign contiguous, integer intervals to each item
based on a bias factor and use a random number generator to select

= Example: 10 numbers to select from where probability of selection is
proportional to the square of the number

Mumber Square Interval Start | Interval End Frobability
1 1 (i} (i} 0.002597403
2 4 1 4 0.01038961
3 9 5 13 0.023376623
4 16 14 29 0.041553442
5 25 30 54 0.064935065
] 36 55 90 0.093506454
7 459 91 139 0.127272727
8 64 140 203 0.166233766
9 81 204 284 0.21038961
10 100 285 384 0.25974026
|[Total 385 0 384 1

= Randomly select an integer value between 0 and 384; interval that

value falls into indicates the target number

12
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= Network consists of 20 hospitals within the Memphis area

= Terrorist has a maximum “budget” of 7 hospitals to disrupt service to
the maximum number of people: 77,520 different permutations

= 20 choose 7 binomial coefficient: (2) = #ik)l; (270) = % = 77,520

* Full enumeration requires 9.25 minutes for an exhaustive search
= CPLEX (MILP solver) finds optimal solution in 42 seconds

" GA solution searching 30% of solution space (102 seconds)
= |nitial population of 7752 (10% of total) with 20 crossover steps (776 per step)
= 100 runs: 45% at optimal, 100% within 5.2% of optimal
= GA solution searching 10% of solution space (37 seconds)
= |nitial population of 775 (1% of total) with 90 crossover steps (78 per step)
= 100 runs: 22% at optimal, 93% within 5.8% of optimal, outliers up to 17.7%

= Neither GA solution is guaranteed to be optimal

13
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Terrorist Attack on a Hospital Network — Game Theoretic (g i
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= Use a “leader-follower” model to find the optimal reinforcement
strategy for minimizing the worst terrorist attack.

=  Assumptions
= Same network and terrorist budget
= Terrorist will not attack reinforced hospitals

= Cost to reinforce a single hospital is 1 and protector can reinforce up to N-1 (19)
hospitals

= Approach
= Use CPLEX to find optimal attack given a reinforcement

= Use a GA to determine the optimal investment strategy within solution space of
size 220 -1 =1,048,575 different permutations

= Dual objective: hospital service impact and mitigation cost
= What is the “best” solution?

= Could equally weight 2 objectives and get a single solution (adequate)
= Use a Pareto Frontier to give a range of good solutions (better)

14
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Fitness Evaluation — Pareto Frontier ) fouea,

= A Pareto Frontier consists of only those solutions which are not
dominated by any other solutions

= Solution A dominates B if both conditions are true:
= Solution Ais no worse than B in all objectives
= Solution A is strictly better than B in at least one objective

= Example: Solutions A, B and C with dual objectives f1 and f2 which
must be minimized

« Solution A does not dominate B
because f1(A) > f1(B)

« Solution A dominates C because
f1(A) < f1(C) and f2(A) < f2(C)

1

fI{A) > [1(B)

[2(A) < f2(B) f2




Terrorist Attack on a Hospital Network — Pareto Frontier

= Frontier is composed of
15 data points

=  Equally weighted
objectives approach
would have selected
mitigation cost of 7
(circled in plot)

= Chose 1000 mitigation
strategies for initial
population (roughly 0.1%
of total solution space)

= 90 crossover steps using
100 “parent” solutions per
iteration

= Solutions with cost 18 and
19 are non-Pareto
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Mitigation Cost
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Pareto Frontier: Cost vs. Impact
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Earthquake Mitigation of a Highway Network — )
Problem Overview

Laboratories

Memphis Highway Network

= Examine earthquake hazard in New
Madrid Seismic Zone (NMSZ)

= Highway network overlaid with
hospital locations

= Bridges are the most vulnerable b
components of the network -

= Damage affects both travel times and g i —&}f.". T
network connectivity s -

" |nvestments can be made to reinforce
bridges to reduce level of damage

VETTATT
[ [ I e S
¥

Blue dots represent highway bridges (335 total)




Modeling Process

J

|ldentify hazard-consistent consequence
scenarios for each earthquake scenario

!

Assess objectives for post-event system
performance

J

Optimize investment
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Representing the Hazard ) =,

= Analysis requires a collection of
earthquake scenarios

= Two sources of candidate earthquake
scenarios
= USGS has cataloged 433 historic events

=  USGS has developed 5 synthetic faults
= We consider 4 possible magnitudes ar

Indiana

from each fault (20 total events)

= Computations preclude considering

Tennessee

all 453 events
= Use optimization to select a

representative subset of 8 events of %%
. . . e 0 50 10 200
which only 2 are significant —%Kﬂometers

Alabama

Mississippi
—

LE““I_-I & " \Eu 1 " 1 " i




Modeling Process

|dentify hazard-consistent earthquake
scenarios

i
e

!

Assess objectives for post-event system
performance

J

Optimize investment
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Consequence Scenarios: Before Mitigation
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Scenario 1

| .
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Scenario | Probability
1 0.3
2 0.2
3 0.15
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Consequence Scenarios: After Mitigation

h
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Scenario Outcome Scenario Probability
Bridge: 1,...K
A
— e ol g Ta Ta 1 | .
Q Ve B D e . Scenario | Probability
— | i Scenario1 |1 |2 1 0.3
3 | ¥4 None X 2 0.2
g 1
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cDEu T Extensive X J 0.1
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Approach ) i,

=  Use optimization to identify a set of consequence scenarios and the
probability of occurrence for each that “match” marginal
distribution of damage for each component and the correlation
between components

0.7
/ J [ A
0.6 f M Vulnerability Implied by [———
I ‘\ Scenarios
0.5 B " e ¢ "True" Vulnerability [
kmd
£ 04
=
m
)
£03 L
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|
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0 T T T
No Damage Slight Damage  Moderate Extensive Complete
Damage Damage Damage

Damage State



Modeling Process

|dentify hazard-consistent earthquake
scenarios

J

|ldentify hazard-consistent consequence
scenarios for each earthquake scenario

i
S

J

Optimize investment
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Objective Functions Wi

= Determine optimal investment strategy which minimizes:
= Travel Time Objective - travel time across the network

= Hospital Connectivity Objective - travel time and disconnections from major
population centers to nearby hospitals

= Investment Cost Objective — bridge mitigation costs

= |nvestment cost objective is simply the sum of the mitigation costs

= The other two objectives require an assessment of the post-event
network performance




Dynamic Traffic Assignment (DTA) ) .

= Models the dynamic movement of vehicles over a network

= An extension of Static User Equilibrium
= Requires a collection of origin-destination tables over a defined time interval
(time-varying demand)

® Li, A., Nozick, L., Davidson, R., Brown, N., Jones, D., and Wolshon, B., “An Approximate Solution
Procedure for Dynamic Traffic Assignment”, Journal of Transportation Engineering, in press.

= Comparable to industry standard but much faster
= Validated against DynusT and measured link counts during Katrina evacuation

= Two day Katrina evacuation runs in about 10 seconds on 8 cores versus 110
minutes for DynusT

= “Essentially, all models are wrong, but some are usefu
= George E. P. Box (statistician, 1919 - 2013)

|"
L]




Modeling Process ) o,

|dentify hazard-consistent earthquake
scenarios

J

|ldentify hazard-consistent consequence
scenarios for each earthquake scenario

!

Assess objectives for post-event system
performance

J
| optmizoinvestment |




Investment Planning Optimization:
Multi-Objective 2-Stage Stochastic Program
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= Use Pareto Efficiency to evaluate each solution composed of 3
objectives
= Avoids use of arbitrary weighting method
=  @Goal is to minimize the Euclidean distance to the Pareto Frontier

= Qverall objective is a weighted aggregate across 40 earthquake
scenarios

= Two earthquake events (remaining 6 do not create a sufficient level of
damage to highway bridges in Memphis)

= Each earthquake has 20 scenarios where each scenario has damage states for
each bridge with/without reinforcement

= The objective for a scenario is weighted by the scenario’s probability of
occurrence

= Decisions variables: the set of bridges to reinforce



Computational Challenges ) e,

= DTA requires 11 minutes for each consequence scenario at 15
minute time intervals

= Asingle run requires 40 scenario evaluations at 11 minutes each =
440 minutes (7 hrs 20 min)

= There are 286 bridges that can be reinforced
= 2286 different permutations = 108¢ = number of particles in the universe!

= |mpossible to examine all permutations




Tabu Search Implementation ) s,

Heuristic method for finding a near optimal solution within a large
search space which may contain local optima

Each iteration examines a single mitigation strategy and the
surrounding neighborhood

Use threading to take advantage of multiple cores

Scenario differencing
= Recompute values only for those scenarios that change due to a bridge
reinforcement
Subsample the evaluation space

= Sample top 10 (25%) of earthquake scenarios based on greatest number of
bridges impacted

= Bias bridge selection towards those that impact the most scenarios
= Run DTA at 1 hour time intervals

Use parallel processing to cover more of the solution space



Parallel Processing ) i,

= Spawned 100 processes across a collection of compute nodes using
RMI (Remote Method Invocation) and MPI (Message Passing
Interface)

= Each instance starts with a random bridge mitigation strategy

= Best solution from each instance sent back to master which
generates a new set of starting points via genetic crossover

Parent 1 Parent 2

><_21nz.”4
0 N 0 N 0 P R

Child 1 Child 2

= Add diversification by performing variable-rate genetic mutation

= Used a similarity ratio to determine the rate of mutation

= Ratio of bridges that are usually reinforced/unreinforced to total number of
bridges across current collection of solutions




Pareto Frontier (2D)

= Pareto frontier when only 2 of the 3 objectives are examined
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Pareto Frontier (3D) ) &=,

= Tradeoffs across all three objectives can be explored

= Relatively small tradeoffs between travel time and hospital
connectivity compared to mitigation cost

Bubble Plot of Pareto Frontier Points Considering Three

Objectives
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QUESTIONS & ANSWERS

Nathanael Brown
Department 06131

Sandia National Laboratories
Albuquerque NM 87185-1188
njbrown@sandia.gov
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