
A Comparison of Intrusive Stochastic Galerkin Methods for
Uncertainty Quantification of Stochastic PDEs

Eric Phipps

Optimization and Uncertainty Quantification Department

Sandia National Laboratories

Albuquerque, NM USA

etphipp@sandia.gov

10th US National Congress on Computational Mechanics

July 16, 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

SAND2009-5069C

mailto:etphipp@sandia.gov

Motivation For This Work

• Understand benefits of intrusive stochastic expansion
methods in complex nonlinear PDEs

– Uncertainty quantification

– Multi-physics coupling

– Optimization under uncertainty

• Provide software tools for studying these methods in
complex nonlinear PDEs

• Focus here on

– Approaches for generating stochastic Galerkin
residual/Jacobian coefficients

– How these methods compare for simple PDEs

Intrusive Stochastic Galerkin
Uncertainty Quantification Methods

• Steady-state stochastic problem:

• Stochastic Galerkin method (Ghanem and many, many others…):

• Basis polynomials are usually tensor products of 1-D orthogonal polynomials of
degree N

• Method generates new coupled spatial-stochastic nonlinear problem

• Total size grows rapidly with degree or dimension

Challenges for Intrusive SG

• Generating SG residual & Jacobian entries in nonlinear
simulation codes

• Solving resulting fully-coupled spatial-
stochastic problem

• Study 3 methods for generating coefficients

- Global assembly quadrature

- Local assembly quadrature

- Scalar operation propagation

Semi-Intrusive Methods for Generating SG
Residual and Jacobian Entries

• Quadrature at global residual/Jacobian assembly level

– Repeatedly call code’s global residual/Jacobian fill interface

– Parallel data structures only need add and scale functions

– Take advantage of sparse-grid quadrature technology

• Quadrature at local residual/Jacobian assembly level

– Repeatedly call code’s local residual/Jacobian fill interface

– Allows use of BLAS for polynomial evaluation/integration

Computing SG Residuals/Jacobians via
Automatic Differentiation (AD)

• Technology for computing analytic
derivatives in simulation codes
– Propagates derivatives at the scalar-

operation level

– Good tools available

• Provides deep interface into
application code

• Leverage AD interface for any
computation that can be done in an
operation by operation manner

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

SG Projections of Arithmetic Operations

• Assume that SG expansions for two intermediate variables a and b
have been computed, and we wish to compute a third c

• Addition/subtraction

• Multiplication

• Division

Projections of Transcendental Operations
e.g., c = exp(a)

• Taylor series approximations (Debusschere et al, UQ Toolkit)

– Use arithmetic rules for evaluating Taylor polynomial
– Convergence can cause problems

• Time integration (Debusschere et al, UQ Toolkit)

– Translate this to an ODE on coefficients of c
– Call time integration package (e.g., CVODE)
– More accurate and robust, but more expensive

• Quadrature

– Simple implementation
– Take advantage of sparse-grid technology
– Call BLAS for polynomial evaluation and integration

Sacado: AD Tools for C++ Applications

• AD via operator overloading and C++ templating

- Transform to template code & instantiate on
Sacado AD types

- Easy to add new AD types to a code

• Designed for use in complex C++ codes

–Sacado::FEApp example demonstrates approach

• Very successful in enabling analytic sensitivity
calculations in large-scale simulation codes

– Charon, Aria, Xyce, Alegra, LAMMPS, Albany

• http://trilinos.sandia.gov

• Algorithms and enabling
technologies

• Large-scale scientific and
engineering applications

• C++ Object oriented
framework

http://trilinos.sandia.gov

Stokhos: Trilinos Tools for Intrusive
Stochastic Galerkin UQ Methods

• Sacado overloaded operators for SG propagation

- Taylor & time integration approaches
(UQ Toolkit – Najm, Debusschere, Knio, …)

- Tensor product and sparse grid quadrature
(Dakota – Mike Eldred and John Burkardt)

• Tools solving SG linear systems

– Jacobian-free (Ghanem) or fully assembled

– Mean-based preconditioning

– Hooks to Trilinos parallel linear solvers

• Nonlinear SG application code interface

– Interface to nonlinear solver, time integrator, optimizer

– Provides global-level SG expansion method

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Accuracy of AD Approach

• AD approach is usually accurate

• Truncation error can cause catastrophic failure

All 3 AD approaches fail

Uniform U(-1,1) x Gaussian N(0,1) x

1-D Quadratic PDE

• Sacado FEApp

• Clenshaw-Curtis sparse grid
quadrature

• Algorithmic parameters chosen to
give 1e-6 accuracy in 2nd moment

• AD approach significantly more
efficient than element or global

• Intrusive times for larger M’s
dominated by mat-vec

• Preconditioner computation time
not significant

1-D Exponential PDE

• Intrusive significantly more
expensive than non-intrusive

– Fill cost is important

• AD approaches still more efficient
than element or global

– Likely diminish with more terms

• Quadrature fill times dominated
by polynomial evaluation &
integration

2-D Quadratic PDE

• New Sandia Albany code

• More expensive preconditioner
improves performance of intrusive
approach

• Window likely increases for 3-D
PDEs

Concluding Remarks

• Intrusive AD approach appears efficient for problems with
polynomial nonlinearities
– Many interesting PDEs fall into this category

• For transcendental nonlinearities, quadrature provides nice balance
between efficiency and robustness
– Difference between AD/Element/Global diminishes with more

transcendental terms
– New AD type to propagate all quadrature points simultaneously

• Now have capabilities to incorporate these ideas into complex
codes
– 3-D PDEs
– Multi-physics coupling

• Trilinos packages Stokhos and Sacado
– http://trilinos.sandia.gov
– Sacado is currently available
– Stokhos will be release with Trilinos 10.0, this fall

http://trilinos.sandia.gov

Auxiliary Slides

What is Automatic Differentiation (AD)?

• Technique to compute analytic derivatives
without hand-coding the derivative
computation

• How does it work -- freshman calculus

– Computations are composition of
simple operations (+, *, sin(), etc…)
with known derivatives

– Derivatives computed line-by-line,
combined via chain rule

• Derivatives accurate as original
computation

– No finite-difference truncation errors

• Provides analytic derivatives without the
time and effort of hand-coding them

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

• Forward Mode:

– Propagate derivatives of intermediate variables w.r.t. independent variables forward

– Directional derivatives, tangent vectors, square Jacobians, when

• Reverse Mode:

– Propagate derivatives of dependent variables w.r.t. intermediate variables backwards

– Gradient of a scalar value function with complexity

– Gradients, Jacobian-transpose products (adjoints), when

• Taylor polynomial mode:

• Basic modes combined for higher derivatives:

AD Takes Three Basic Forms

Our AD Research is Distinguished by
Tools & Approach for Large-Scale Codes

• Many AD tools and research projects

 Most geared towards Fortran (ADIFOR, OpenAD)

 Most C++ tools are slow (ADOL-C)

 Most applied in black-box fashion

• Sacado: Operator overloading AD tools for C++
applications

 Multiple highly-optimized AD data types

 Transform to template code & instantiate on Sacado AD types

 Apply AD only at the “element level”

• This is the only successful, sustainable approach for
large-scale C++ codes!

• Directly impacting QASPR through Charon

 Analytic Jacobians and parameter derivatives

Basic Sacado C++ Example

#include "Sacado.hpp"

// The function to differentiate
template <typename ScalarT>
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
ScalarT r = c*std::log(b+1.)/std::sin(a);

return r;
}

int main(int argc, char **argv) {
double a = std::atan(1.0); // pi/4
double b = 2.0;
double c = 3.0;
int num_deriv = 2; // Number of independent variables

// Fad objects
Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var
Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
Sacado::Fad::DFad<double> cfad(c); // Passive variable
Sacado::Fad::DFad<double> rfad; // Result

// Compute function
double r = func(a, b, c);

// Compute function and derivative with AD
rfad = func(afad, bfad, cfad);

// Extract value and derivatives
double r_ad = rfad.val(); // r
double drda_ad = rfad.dx(0); // dr/da
double drdb_ad = rfad.dx(1); // dr/db

Steady-state mass transfer equations:

Efficiency of AD in Charon

Efficiency of the element-level derivative computationSet of N hypothetical chemical species:

• Forward mode AD

– Faster than FD

– Better scalability in number of
PDEs

– Analytic derivative

– Provides Jacobian for all Charon
physics

• Reverse mode AD

– Scalable adjoint/gradient

slope

Charon Drift-Diffusion
Formulation with Defects

Defect Continuity

Include electron capture and hole capture by defect species
and reactions between various defect species

Electric potential

Electron
emission/capture

Current
Conservation for e-

and h+

Cross section

Activation Energy

Recombination/
generation source

terms

Rythmos Sensitivity Analysis Capability
Demonstrated on the QASPR Simple Prototype*

*Phipps et al

1st-order Finite Difference Accuracy

• Bipolar Junction Transistor

• Pseudo 1D strip (9x0.1 micron)

• Full defect physics

• 126 parameters

Sensitivities show dominant physics

Comparison to FD:

 Sensitivities at all time points

 More accurate

 More robust

 14x faster!

Sensitivities computed at all times

FD perturbation size

