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Motivation For This Work

• Understand benefits of intrusive stochastic expansion 
methods in complex nonlinear PDEs

– Uncertainty quantification

– Multi-physics coupling

– Optimization under uncertainty

• Provide software tools for studying these methods in 
complex nonlinear PDEs

• Focus here on

– Approaches for generating stochastic Galerkin
residual/Jacobian coefficients

– How these methods compare for simple PDEs



Intrusive Stochastic Galerkin
Uncertainty Quantification Methods

• Steady-state stochastic problem:

• Stochastic Galerkin method (Ghanem and many, many others…):

• Basis polynomials are usually tensor products of 1-D orthogonal polynomials of 
degree N

• Method generates new coupled spatial-stochastic nonlinear problem

• Total size grows rapidly with degree or dimension



Challenges for Intrusive SG

• Generating SG residual & Jacobian entries in nonlinear 
simulation codes

• Solving resulting fully-coupled spatial-
stochastic problem

• Study 3 methods for generating coefficients

- Global assembly quadrature

- Local assembly quadrature

- Scalar operation propagation



Semi-Intrusive Methods for Generating SG 
Residual and Jacobian Entries

• Quadrature at global residual/Jacobian assembly level

– Repeatedly call code’s global residual/Jacobian fill interface

– Parallel data structures only need add and scale functions

– Take advantage of sparse-grid quadrature technology

• Quadrature at local residual/Jacobian assembly level

– Repeatedly call code’s local residual/Jacobian fill interface

– Allows use of BLAS for polynomial evaluation/integration



Computing SG Residuals/Jacobians via 
Automatic Differentiation (AD)

• Technology for computing analytic 
derivatives in simulation codes
– Propagates derivatives at the scalar-

operation level

– Good tools available

• Provides deep interface into 
application code

• Leverage AD interface for any 
computation that can be done in an 
operation by operation manner
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SG Projections of Arithmetic Operations

• Assume that SG expansions for two intermediate variables a and b
have been computed, and we wish to compute a third c

• Addition/subtraction

• Multiplication

• Division



Projections of Transcendental Operations
e.g., c = exp(a)

• Taylor series approximations (Debusschere et al, UQ Toolkit)

– Use arithmetic rules for evaluating Taylor polynomial
– Convergence can cause problems

• Time integration (Debusschere et al, UQ Toolkit)

– Translate this to an ODE on coefficients of c
– Call time integration package (e.g., CVODE)
– More accurate and robust, but more expensive

• Quadrature

– Simple implementation
– Take advantage of sparse-grid technology
– Call BLAS for polynomial evaluation and integration



Sacado:  AD Tools for C++ Applications

• AD via operator overloading and C++ templating

- Transform to template code & instantiate on 
Sacado AD types

- Easy to add new AD types to a code

• Designed for use in complex C++ codes

–Sacado::FEApp example demonstrates approach

• Very successful in enabling analytic sensitivity 
calculations in large-scale simulation codes

– Charon, Aria, Xyce, Alegra, LAMMPS, Albany

• http://trilinos.sandia.gov 

• Algorithms and enabling 
technologies

• Large-scale scientific and 
engineering applications

• C++ Object oriented 
framework

http://trilinos.sandia.gov


Stokhos:  Trilinos Tools for Intrusive 
Stochastic Galerkin UQ Methods

• Sacado overloaded operators for SG propagation

- Taylor & time integration approaches 
(UQ Toolkit – Najm, Debusschere, Knio, …)

- Tensor product and sparse grid quadrature
(Dakota – Mike Eldred and John Burkardt)

• Tools solving SG linear systems

– Jacobian-free (Ghanem) or fully assembled

– Mean-based preconditioning

– Hooks to Trilinos parallel linear solvers

• Nonlinear SG application code interface

– Interface to nonlinear solver, time integrator, optimizer

– Provides global-level SG expansion method

http://trilinos.sandia.gov 

http://trilinos.sandia.gov


Accuracy of AD Approach

• AD approach is usually accurate

• Truncation error can cause catastrophic failure

All 3 AD approaches fail

Uniform U(-1,1) x Gaussian N(0,1) x



1-D Quadratic PDE

• Sacado FEApp

• Clenshaw-Curtis sparse grid 
quadrature

• Algorithmic parameters chosen to 
give 1e-6 accuracy in 2nd moment

• AD approach significantly more 
efficient than element or global

• Intrusive times for larger M’s 
dominated by mat-vec

• Preconditioner computation time 
not significant



1-D Exponential PDE

• Intrusive significantly more 
expensive than non-intrusive

– Fill cost is important

• AD approaches still more efficient 
than element or global

– Likely diminish with more terms

• Quadrature fill times dominated 
by polynomial evaluation & 
integration



2-D Quadratic PDE

• New Sandia Albany code

• More expensive preconditioner
improves performance of intrusive 
approach

• Window likely increases for 3-D 
PDEs



Concluding Remarks

• Intrusive AD approach appears efficient for problems with 
polynomial nonlinearities
– Many interesting PDEs fall into this category

• For transcendental nonlinearities, quadrature provides nice balance 
between efficiency and robustness
– Difference between AD/Element/Global diminishes with more 

transcendental terms
– New AD type to propagate all quadrature points simultaneously

• Now have capabilities to incorporate these ideas into complex 
codes
– 3-D PDEs
– Multi-physics coupling

• Trilinos packages Stokhos and Sacado
– http://trilinos.sandia.gov
– Sacado is currently available
– Stokhos will be release with Trilinos 10.0, this fall

http://trilinos.sandia.gov


Auxiliary Slides



What is Automatic Differentiation (AD)?

• Technique to compute analytic derivatives 
without hand-coding the derivative 
computation

• How does it work -- freshman calculus

– Computations are composition of 
simple operations (+, *, sin(), etc…) 
with known derivatives

– Derivatives computed line-by-line, 
combined via chain rule

• Derivatives accurate as original 
computation

– No finite-difference truncation errors

• Provides analytic derivatives without the 
time and effort of hand-coding them
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• Forward Mode:

– Propagate derivatives of intermediate variables w.r.t. independent variables forward

– Directional derivatives, tangent vectors, square Jacobians,              when 

• Reverse Mode:

– Propagate derivatives of dependent variables w.r.t. intermediate variables backwards

– Gradient of a scalar value function with complexity

– Gradients, Jacobian-transpose products (adjoints),               when

• Taylor polynomial mode:

• Basic modes combined for higher derivatives:

AD Takes Three Basic Forms



Our AD Research is Distinguished by 
Tools & Approach for Large-Scale Codes

• Many AD tools and research projects

 Most geared towards Fortran (ADIFOR, OpenAD)

 Most C++ tools are slow (ADOL-C)

 Most applied in black-box fashion

• Sacado:  Operator overloading AD tools for C++ 
applications

 Multiple highly-optimized AD data types

 Transform to template code & instantiate on Sacado AD types

 Apply AD only at the “element level”

• This is the only successful, sustainable approach for 
large-scale C++ codes!

• Directly impacting QASPR through Charon

 Analytic Jacobians and parameter derivatives



Basic Sacado C++ Example

#include "Sacado.hpp"

// The function to differentiate
template <typename ScalarT>
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
ScalarT r = c*std::log(b+1.)/std::sin(a);

return r;
}

int main(int argc, char **argv) {
double a = std::atan(1.0);                        // pi/4 
double b = 2.0;
double c = 3.0;
int num_deriv = 2;                                // Number of independent variables

// Fad objects
Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var
Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
Sacado::Fad::DFad<double> cfad(c);               // Passive variable
Sacado::Fad::DFad<double> rfad;                  // Result

// Compute function
double r = func(a, b, c);

// Compute function and derivative with AD
rfad = func(afad, bfad, cfad);

// Extract value and derivatives
double r_ad = rfad.val();     // r
double drda_ad = rfad.dx(0);  // dr/da
double drdb_ad = rfad.dx(1);  // dr/db



Steady-state mass transfer equations:

Efficiency of AD in Charon

Efficiency of the element-level derivative computationSet of N hypothetical chemical species:

• Forward mode AD

– Faster than FD

– Better scalability in number of 
PDEs

– Analytic derivative

– Provides Jacobian for all Charon 
physics

• Reverse mode AD

– Scalable adjoint/gradient

slope



Charon Drift-Diffusion 
Formulation with Defects

Defect Continuity

Include electron capture and hole capture by defect species 
and reactions between various defect species

Electric potential

Electron 
emission/capture

Current 
Conservation for e-

and h+

Cross section

Activation Energy

Recombination/
generation source 

terms



Rythmos Sensitivity Analysis Capability 
Demonstrated on the QASPR Simple Prototype*

*Phipps et al

1st-order Finite Difference Accuracy

• Bipolar Junction Transistor

• Pseudo 1D strip (9x0.1 micron)

• Full defect physics

• 126 parameters

Sensitivities show dominant physics

Comparison to FD:

 Sensitivities at all time points

 More accurate

 More robust

 14x faster!

Sensitivities computed at all times

FD perturbation size


