

A Comparison of Intrusive Stochastic Galerkin Methods for Uncertainty Quantification of Stochastic PDEs

Eric Phipps

**Optimization and Uncertainty Quantification Department
Sandia National Laboratories**

Albuquerque, NM USA

etphipp@sandia.gov

**10th US National Congress on Computational Mechanics
July 16, 2009**

Motivation For This Work

- Understand benefits of *intrusive stochastic expansion* methods in complex nonlinear PDEs
 - Uncertainty quantification
 - Multi-physics coupling
 - Optimization under uncertainty
- Provide software tools for studying these methods in complex nonlinear PDEs
- Focus here on
 - Approaches for generating stochastic Galerkin residual/Jacobian coefficients
 - How these methods compare for simple PDEs

Intrusive Stochastic Galerkin Uncertainty Quantification Methods

- Steady-state stochastic problem:

Find $u(\xi)$ such that $f(u, \xi) = 0$, $\xi : \Omega \rightarrow \Gamma \subset \mathbb{R}^M$, density ρ

- Stochastic Galerkin method (Ghanem and many, many others...):

$$\hat{u}(\xi) = \sum_{i=0}^P u_i \psi_i(\xi) \rightarrow F_i(u_0, \dots, u_P) = \int_{\Gamma} f(\hat{u}(y), y) \psi_i(y) \rho(y) dy = 0, \quad i = 0, \dots, P$$

- Basis polynomials are *usually* tensor products of 1-D orthogonal polynomials of degree N
- Method generates new coupled spatial-stochastic nonlinear problem

$$0 = \mathbf{F}(U) = \begin{bmatrix} \mathbf{F}_0 \\ \mathbf{F}_1 \\ \vdots \\ \mathbf{F}_P \end{bmatrix}, \quad U = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_P \end{bmatrix}$$

- Total size grows rapidly with degree or dimension

$$P = \frac{(M + N)!}{M!N!}$$

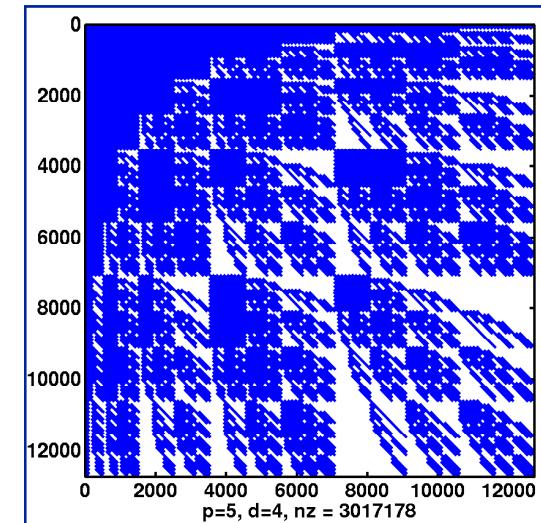
Challenges for Intrusive SG

- Generating SG residual & Jacobian entries in nonlinear simulation codes

$$F_i = \int_{\Gamma} f(\hat{u}(y), y) \psi_i(y) \rho(y) dy, \quad \langle \cdot \rangle = \int_{\Gamma} \cdot \rho(y) dy$$

$$\frac{\partial F_i}{\partial u_j} \approx \sum_{k=0}^P J_k \langle \psi_i \psi_j \psi_k \rangle, \quad J_k = \frac{1}{\langle \psi_k^2 \rangle} \int_{\Gamma} \frac{\partial f}{\partial u}(\hat{u}(y), y) \psi_k(y) \rho(y) dy$$

- Solving resulting fully-coupled spatial-stochastic problem
- Study 3 methods for generating coefficients
 - Global assembly quadrature
 - Local assembly quadrature
 - Scalar operation propagation



Semi-Intrusive Methods for Generating SG Residual and Jacobian Entries

- Quadrature at global residual/Jacobian assembly level

$$F_i \approx \sum_{l=0}^Q w_l f(\hat{u}(y_l), y_l) \psi_i(y_l), \quad J_i \approx \frac{1}{\langle \psi_i^2 \rangle} \sum_{l=0}^Q w_l \frac{\partial f}{\partial u}(\hat{u}(y_l), y_l) \psi_i(y_l), \quad i = 0, \dots, P$$

- Repeatedly call code's global residual/Jacobian fill interface
- Parallel data structures only need add and scale functions
- Take advantage of sparse-grid quadrature technology

- Quadrature at local residual/Jacobian assembly level

$$f(u, y) = \sum_{e=1}^{N_e} S_e^T f_e(G_e u, y) \implies F_i \approx \sum_{e=1}^{N_e} S_e^T \sum_{l=0}^Q w_l f_e(G_e \hat{u}(y_l), y_l) \psi_i(y_l),$$

$$G_e \hat{u}(y_l) = \sum_{i=0}^P (u_e)_i \psi_i(y_l)$$

- Repeatedly call code's local residual/Jacobian fill interface
- Allows use of BLAS for polynomial evaluation/integration

Computing SG Residuals/Jacobians via Automatic Differentiation (AD)

- Technology for computing analytic derivatives in simulation codes
 - Propagates derivatives at the scalar-operation level
 - Good tools available
- Provides deep interface into application code
- Leverage AD interface for any computation that can be done in an operation by operation manner

$$y = \sin(e^x + x \log x), \quad x = 2$$

x	$\frac{d}{dx}$
2.000	1.000
7.389	7.389
0.301	0.500
0.602	1.301
7.991	8.690
0.991	-1.188

$x \leftarrow 2$ $\frac{dx}{dx} \leftarrow 1$
 $t \leftarrow e^x$ $\frac{dt}{dx} \leftarrow t \frac{dx}{dx}$
 $u \leftarrow \log x$ $\frac{du}{dx} \leftarrow \frac{1}{x} \frac{dx}{dx}$
 $v \leftarrow xu$ $\frac{dv}{dx} \leftarrow u \frac{dx}{dx} + x \frac{du}{dx}$
 $w \leftarrow t + v$ $\frac{dw}{dx} \leftarrow \frac{dt}{dx} + \frac{dv}{dx}$
 $y \leftarrow \sin w$ $\frac{dy}{dx} \leftarrow \cos(w) \frac{dw}{dx}$

SG Projections of Arithmetic Operations

- Assume that SG expansions for two intermediate variables a and b have been computed, and we wish to compute a third c

Given $a(y) = \sum_{i=0}^P a_i \psi_i(y)$, $b = \sum_{i=0}^P b_i \psi_i(y)$, find $c(y) = \sum_{i=0}^P c_i \psi_i(y)$

such that $\int_{\Gamma} (c(y) - \phi(a(y), b(y))) \psi_i(y) \rho(y) dy = 0$, $i = 0, \dots, P$

- Addition/subtraction

$$c = a \pm b \Rightarrow c_i = a_i \pm b_i$$

- Multiplication

$$c = a \times b \Rightarrow \sum_i c_i \psi_i = \sum_i \sum_j a_i b_j \psi_i \psi_j \rightarrow c_k = \sum_i \sum_j a_i b_j \frac{\langle \psi_i \psi_j \psi_k \rangle}{\langle \psi_k^2 \rangle}$$

- Division

$$c = a/b \Rightarrow \sum_i \sum_j c_i b_j \psi_i \psi_j = \sum_i a_i \psi_i \rightarrow \sum_i \sum_j c_i b_j \langle \psi_i \psi_j \psi_k \rangle = a_k \langle \psi_k^2 \rangle$$

Projections of Transcendental Operations

e.g., $c = \exp(a)$

- Taylor series approximations (Debusschere *et al*, UQ Toolkit)

$$c \approx \sum_{k=0}^n \frac{a^k}{k!}$$

- Use arithmetic rules for evaluating Taylor polynomial
- Convergence can cause problems

- Time integration (Debusschere *et al*, UQ Toolkit)

$$u(x) = \exp(x) \text{ is a solution to ODE } \frac{du}{dx} = u$$

- Translate this to an ODE on coefficients of c
- Call time integration package (e.g., CVODE)
- More accurate and robust, but more expensive

- Quadrature

$$c_k = \frac{1}{\langle \psi_k^2 \rangle} \int_{\Gamma} \exp(a(y)) \rho(y) dy \approx \sum_{l=0}^Q w_l \exp(a(y_l))$$

- Simple implementation
- Take advantage of sparse-grid technology
- Call BLAS for polynomial evaluation and integration

Sacado: AD Tools for C++ Applications

- AD via operator overloading and C++ templating
 - Transform to template code & instantiate on Sacado AD types
 - Easy to add new AD types to a code
- Designed for use in complex C++ codes
 - `Sacado::FEApp` example demonstrates approach
- Very successful in enabling analytic sensitivity calculations in large-scale simulation codes
 - `Charon`, `Aria`, `Xyce`, `Alegra`, `LAMMPS`, `Albany`

- <http://trilinos.sandia.gov>
- Algorithms and enabling technologies
- Large-scale scientific and engineering applications
- C++ Object oriented framework

Stokhos: Trilinos Tools for Intrusive Stochastic Galerkin UQ Methods

- **Sacado overloaded operators for SG propagation**

- Taylor & time integration approaches
(UQ Toolkit – Najm, Debusschere, Knio, ...)
 - Tensor product and sparse grid quadrature
(Dakota – Mike Eldred and John Burkardt)

<http://trilinos.sandia.gov>

- **Tools solving SG linear systems**

- Jacobian-free (Ghanem) or fully assembled
 - Mean-based preconditioning
 - Hooks to Trilinos parallel linear solvers

$$\frac{\partial F_i}{\partial u_j} \approx \sum_{k=0}^P J_k (\psi_i \psi_j \psi_k) \implies \left(\frac{\partial F}{\partial U} V \right)_i \approx \sum_{j=0}^P \sum_{k=0}^P J_k v_j (\psi_i \psi_j \psi_k)$$

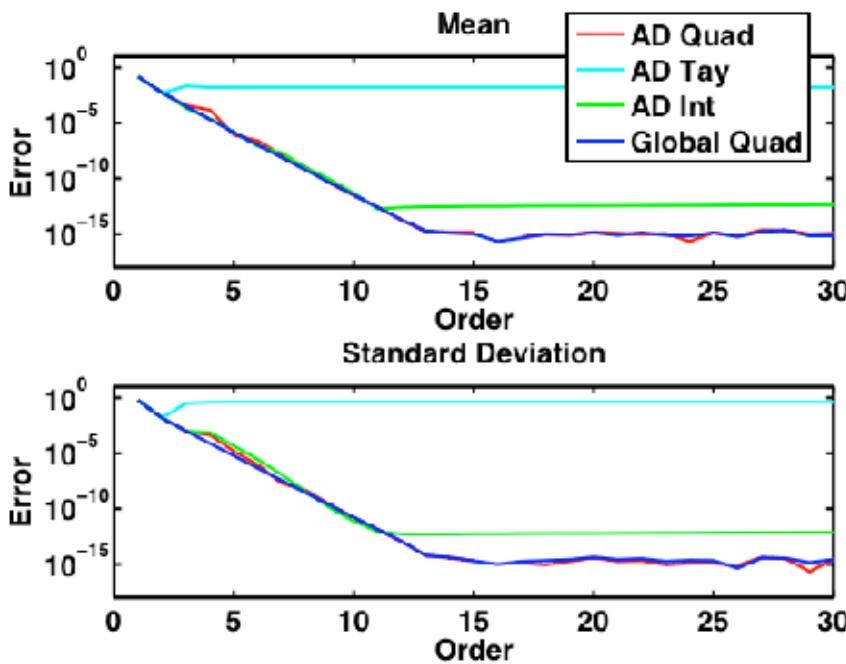
- **Nonlinear SG application code interface**

- Interface to nonlinear solver, time integrator, optimizer
 - Provides global-level SG expansion method

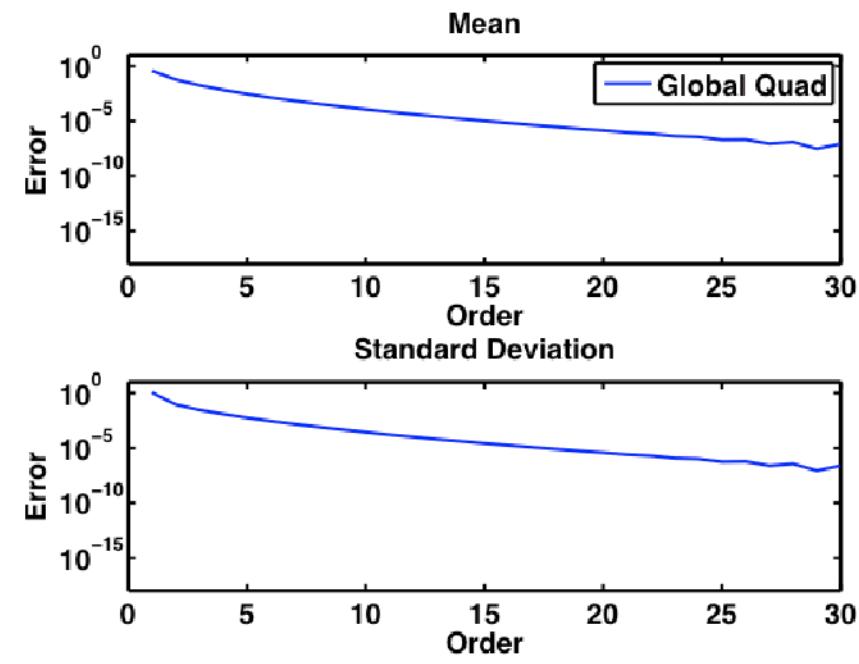
Accuracy of AD Approach

$$u = \log \left(\frac{1}{1 + (e^x)^2} \right)$$

Uniform $U(-1,1) \times$



Gaussian $N(0,1) \times$

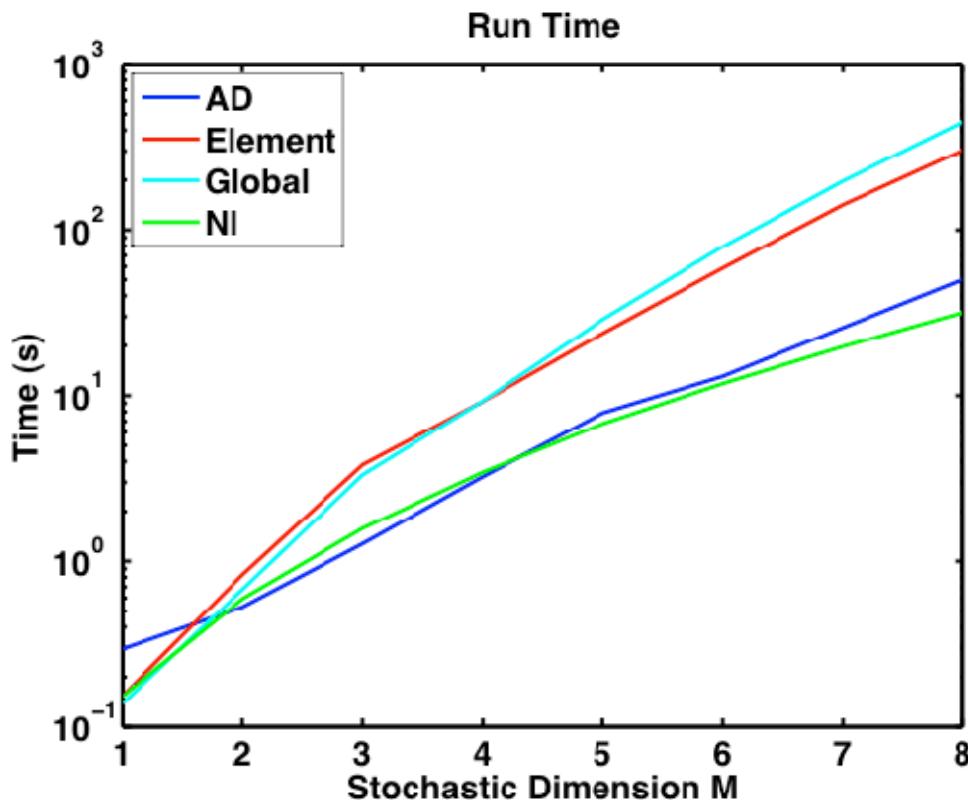


All 3 AD approaches fail

- AD approach is usually accurate
- Truncation error *can* cause catastrophic failure

1-D Quadratic PDE

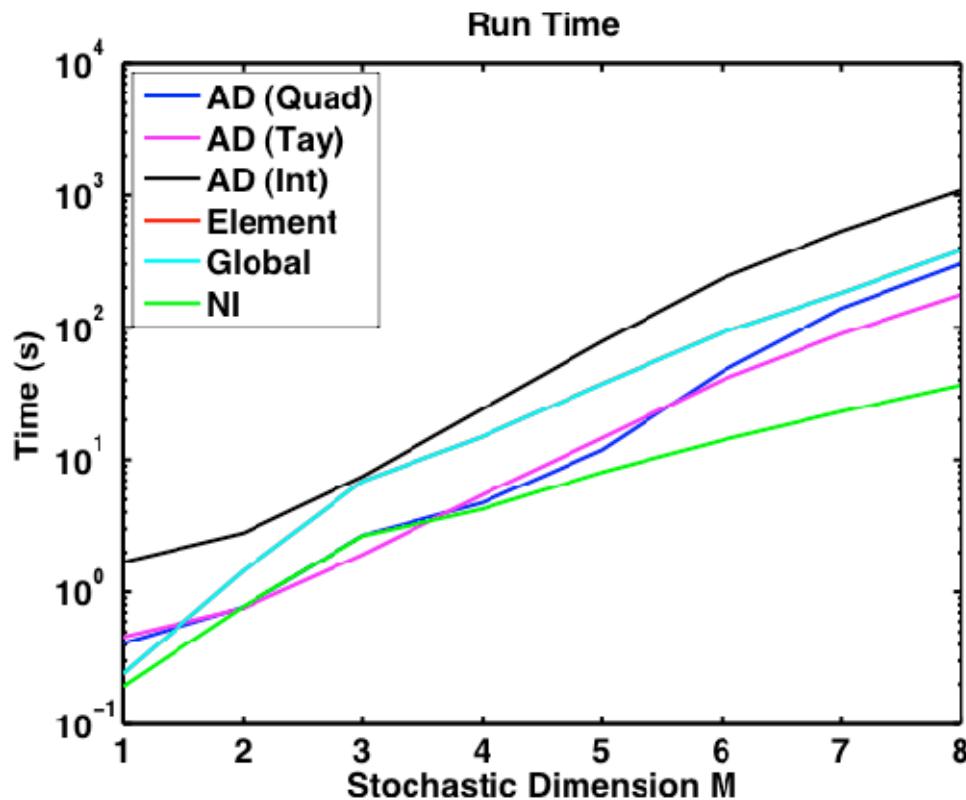
$$\frac{d^2u}{dx^2} + \frac{\alpha_1 + \cdots + \alpha_M}{M} u^2 = 0, \quad u \in [-1, 1], \quad \alpha_i = U(1, 3)$$



- **Sacado FEApp**
- **Clenshaw-Curtis sparse grid quadrature**
- **Algorithmic parameters chosen to give 1e-6 accuracy in 2nd moment**
- **AD approach significantly more efficient than element or global**
- **Intrusive times for larger M's dominated by mat-vec**
- **Preconditioner computation time not significant**

1-D Exponential PDE

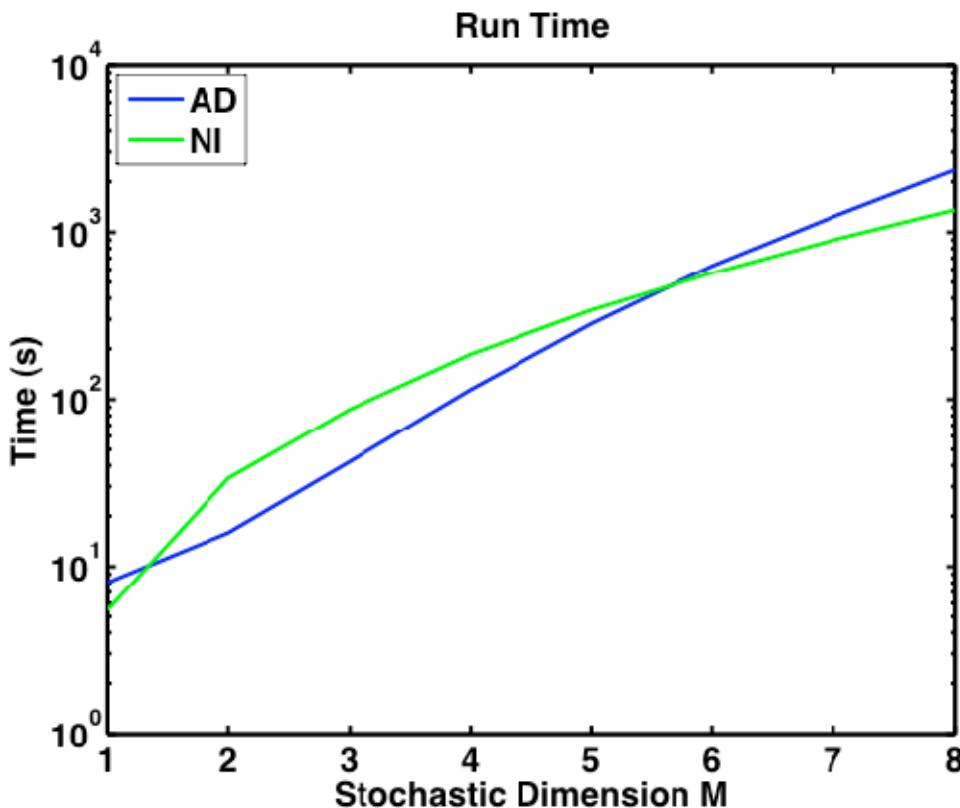
$$\frac{d^2u}{dx^2} + \frac{\alpha_1 + \cdots + \alpha_M}{M} e^u = 0, \quad \alpha_i = U(1, 3)$$



- Intrusive significantly more expensive than non-intrusive
 - Fill cost is important
- AD approaches still more efficient than element or global
 - Likely diminish with more terms
- Quadrature fill times dominated by polynomial evaluation & integration

2-D Quadratic PDE

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\alpha_1 + \cdots + \alpha_M}{M} u^2 = 0, \quad u \in [-1, 1] \times [-1, 1], \quad \alpha_i = U(1, 3)$$



- New Sandia Albany code
- More expensive preconditioner improves performance of intrusive approach
- Window likely increases for 3-D PDEs

Concluding Remarks

- Intrusive AD approach appears efficient for problems with polynomial nonlinearities
 - Many interesting PDEs fall into this category
- For transcendental nonlinearities, quadrature provides nice balance between efficiency and robustness
 - Difference between AD/Element/Global diminishes with more transcendental terms
 - New AD type to propagate all quadrature points simultaneously
- Now have capabilities to incorporate these ideas into complex codes
 - 3-D PDEs
 - Multi-physics coupling
- Trilinos packages Stokhos and Sacado
 - <http://trilinos.sandia.gov>
 - Sacado is currently available
 - Stokhos will be released with Trilinos 10.0, this fall

Auxiliary Slides

What is Automatic Differentiation (AD)?

- Technique to compute analytic derivatives without hand-coding the derivative computation
- How does it work -- freshman calculus
 - Computations are composition of simple operations (+, *, sin(), etc...) with known derivatives
 - Derivatives computed line-by-line, combined via chain rule
- Derivatives accurate as original computation
 - No finite-difference truncation errors
- Provides analytic derivatives without the time and effort of hand-coding them

$$y = \sin(e^x + x \log x), \quad x = 2$$

$x \leftarrow 2$	$\frac{dx}{dx} \leftarrow 1$
$t \leftarrow e^x$	$\frac{dt}{dx} \leftarrow t \frac{dx}{dx}$
$u \leftarrow \log x$	$\frac{du}{dx} \leftarrow \frac{1}{x} \frac{dx}{dx}$
$v \leftarrow xu$	$\frac{dv}{dx} \leftarrow u \frac{dx}{dx} + x \frac{du}{dx}$
$w \leftarrow t + v$	$\frac{dw}{dx} \leftarrow \frac{dt}{dx} + \frac{dv}{dx}$
$y \leftarrow \sin w$	$\frac{dy}{dx} \leftarrow \cos(w) \frac{dw}{dx}$

x	$\frac{d}{dx}$
2.000	1.000
7.389	7.389
0.301	0.500
0.602	1.301
7.991	8.690
0.991	-1.188

AD Takes Three Basic Forms

$$x \in \mathbf{R}^n, f : \mathbf{R}^n \rightarrow \mathbf{R}^m$$

- **Forward Mode:**

$$(x, V) \longrightarrow \left(f, \frac{\partial f}{\partial x} V \right)$$

- Propagate derivatives of intermediate variables w.r.t. independent variables forward
- Directional derivatives, tangent vectors, square Jacobians, $\partial f / \partial x$ when $m \geq n$

- **Reverse Mode:**

$$(x, W) \longrightarrow \left(f, W^T \frac{\partial f}{\partial x} \right)$$

- Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
- Gradient of a scalar value function with complexity $\approx 4 \text{ ops}(f)$
- Gradients, Jacobian-transpose products (adjoints), $\partial f / \partial x$ when $n > m$

- **Taylor polynomial mode:**

$$x(t) = \sum_{k=0}^d x_k t^k \longrightarrow \sum_{k=0}^d f_k t^k = f(x(t)) + O(t^{d+1}), \quad f_k = \frac{1}{k!} \frac{d^k}{dt^k} f(x(t))$$

- **Basic modes combined for higher derivatives:**

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} V_1 \right) V_2, \quad W^T \frac{\partial^2 f}{\partial x^2} V, \quad \frac{\partial f_k}{\partial x_0}$$

Our AD Research is Distinguished by Tools & Approach for Large-Scale Codes

- Many AD tools and research projects
 - ✗ Most geared towards Fortran (ADIFOR, OpenAD)
 - ✗ Most C++ tools are slow (ADOL-C)
 - ✗ Most applied in black-box fashion
- Sacado: Operator overloading AD tools for C++ applications
 - ✓ Multiple highly-optimized AD data types
 - ✓ Transform to template code & instantiate on Sacado AD types
 - ✓ Apply AD only at the “element level”
- This is the only successful, sustainable approach for large-scale C++ codes!
- Directly impacting QASPR through Charon
 - ✓ Analytic Jacobians and parameter derivatives



Basic Sacado C++ Example

```
#include "Sacado.hpp"

// The function to differentiate
template <typename ScalarT>
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
    ScalarT r = c*std::log(b+1.)/std::sin(a);

    return r;
}

int main(int argc, char **argv) {
    double a = std::atan(1.0);           // pi/4
    double b = 2.0;
    double c = 3.0;
    int num_deriv = 2;                  // Number of independent variables

    // Fad objects
    Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var
    Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
    Sacado::Fad::DFad<double> cfad(c);                // Passive variable
    Sacado::Fad::DFad<double> rfad;                   // Result

    // Compute function
    double r = func(a, b, c);

    // Compute function and derivative with AD
    rfad = func(afad, bfad, cfad);

    // Extract value and derivatives
    double r_ad = rfad.val();    // r
    double drda_ad = rfad.dx(0); // dr/da
    double drdb_ad = rfad.dx(1); // dr/db
```

Efficiency of AD in Charon

Set of N hypothetical chemical species:

$$2X_j \rightleftharpoons X_{j-1} + X_{j+1}, \quad j = 2, \dots, N-1$$

Steady-state mass transfer equations:

$$\nabla^2 Y_j + \mathbf{u} \cdot \nabla Y_j = \dot{\omega}_j, \quad j = 1, \dots, N-1$$

$$\sum_{j=1}^N Y_j = 1$$

- **Forward mode AD**

- Faster than FD
- Better scalability in number of PDEs
- Analytic derivative
- Provides Jacobian for all Charon physics

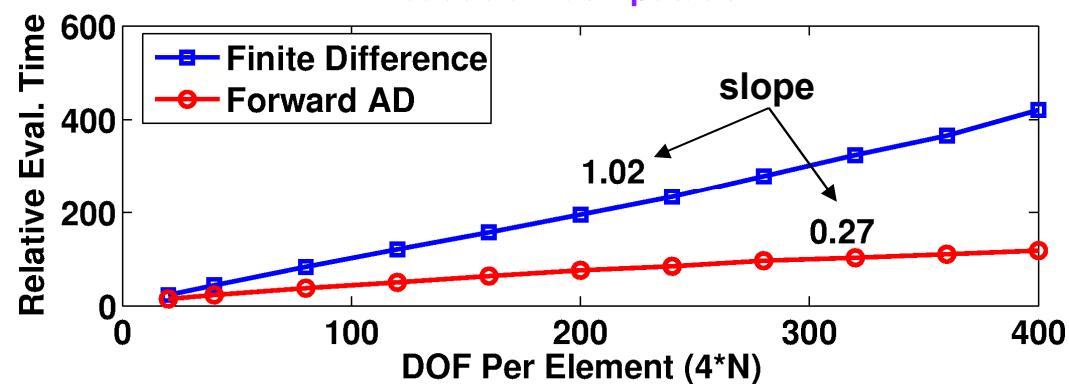
- **Reverse mode AD**

- Scalable adjoint/gradient

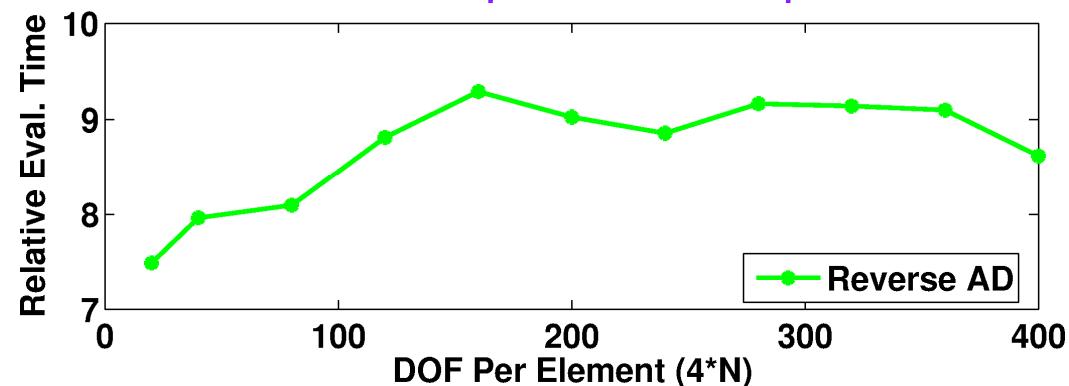
$$J^T \mathbf{w} = \nabla(\mathbf{w}^T \mathbf{f}(\mathbf{x}))$$

Efficiency of the element-level derivative computation

Jacobian Computation



Jacobian–Transpose Product Computation



Charon Drift-Diffusion Formulation with Defects

Current Conservation for e- and h+

$$\frac{\partial n}{\partial t} - \nabla \cdot J_n = -R_n(\psi, n, p, Y_1, \dots, Y_N), \quad J_n = -n\mu_n \nabla \psi + D_n \nabla n$$

$$\frac{\partial p}{\partial t} + \nabla \cdot J_p = -R_p(\psi, n, p, Y_1, \dots, Y_N), \quad J_p = -p\mu_p \nabla \psi - D_p \nabla p$$

Defect Continuity

$$\frac{\partial Y_i}{\partial t} + \nabla \cdot J_{Y_i} = -R_{Y_i}(\psi, n, p, Y_1, \dots, Y_N), \quad J_{Y_i} = -\mu_i Y_i \nabla \psi - D_i \nabla Y_i$$

Electric potential

$$-\nabla(\epsilon \nabla \psi(x)) = -q(p(x) - n(x) + N_D^+(x) - N_A^-(x)) - \sum_{i=1}^N q_i Y_i(x)$$

Recombination/generation source terms

R_X

Include electron capture and hole capture by defect species and reactions between various defect species

Electron emission/capture
 $Z^i \leftrightarrow Z^{i+1} + e^-$

$$R_{[Z^i \rightarrow Z^{i+1} + e^-]} \propto \sigma_{[Z^i \rightarrow Z^{i+1} + e^-]} Z^i \exp\left(\frac{\Delta E_{[Z^i \rightarrow Z^{i+1} + e^-]}}{kT}\right)$$

Cross section

Activation Energy

Rythmos Sensitivity Analysis Capability Demonstrated on the QASPR Simple Prototype*

*Phipps et al

- Bipolar Junction Transistor
- Pseudo 1D strip (9x0.1 micron)
- Full defect physics
- 126 parameters

