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A
} Motivation For This Work

* Understand benefits of intrusive stochastic expansion
methods in complex nonlinear PDEs

— Uncertainty quantification
— Multi-physics coupling
— Optimization under uncertainty

* Provide software tools for studying these methods in
complex nonlinear PDEs

* Focus here on

— Approaches for generating stochastic Galerkin
residual/Jacobian coefficients

— How these methods compare for simple PDEs
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Intrusive Stochastic Galerkin
Uncertainty Quantification Methods

« Steady-state stochastic problem:
Find u(£) such that f(u. £) =0, £: 2 » T C BY, density p

« Stochastic Galerkin method (Ghanem and many, many others...):

F .
a(€) =¥ uiwi(€) > Fi(ups..oup) = / flafghoyhéi(y)ply)dy =0, 1 =0.....P

=0 ST

- Basis polynomials are usually tensor products of 1-D orthogonal polynomials of
degree N

 Method generates new coupled spatial-stochastic nonlinear problem
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» Total size grows rapidly with degree or dimension
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Challenges for Intrusive SG

» Generating SG residual & Jacobian entries in nonlinear
simulation codes

Fy = / Flaly). y)(y)p(yddy, () = / - ply)dy
r r

a0 F;
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« Solving resulting fully-coupled spatial-
stochastic problem

« Study 3 methods for generating coefficients
- Global assembly quadrature
- Local assembly quadrature
- Scalar operation propagation

p=5, d=4, nz = 3017178

Sandia
m National
Laboratories




" Semi-Intrusive Methods for Generating SG
Residual and Jacobian Entries

* Quadrature at global residual/Jacobian assembly level

ﬂ("(m] wyhly), i=0,...,0

L
Fom Y wef (), vy, o=
f=u
— Repeatedly call code’s global residual/Jacobian fill interface
— Parallel data structures only need add and scale functions
— Take advantage of sparse-grid quadrature technology

« Quadrature at local residual/Jacobian assembly level
N. ™, 0

Fflay) = STf(Couy) = F =Y SIY wfCa(wm). v)ddw).

e=1 e—1 [ =i}

F
Getly) = Z(ue]iﬁ‘i(yﬂ

— Repeatedly call code’s local residual/Jacobian fill interface
— Allows use of BLAS for polynomial evaluation/integration

Sandia
m National
Laboratories




r"

™ Computing SG Residuals/Jacobians via
‘ Automatic Differentiation (AD)

« Technology for computing analytic
derivatives in simulation codes

— Propagates derivatives at the scalar-
operation level

— Good tools available

* Provides deep interface into
application code

* Leverage AD interface for any
computation that can be done in an
operation by operation manner

y =sin(e® + xlogx), * = 2

u «— logx
UV — TU
w+—t+ov

Y «— sinw

dx

1

dx

dt dx

BERERPEE

dx dx

du 1dx

dx xrdx

dv dx du
dzx dx dx

d

€ -

dx
2.000 | 1.000
7.389 | 7.389
0.301 | 0.500
0.602 | 1.301
7.991 | 8.690
0.991 | -1.188
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A
*G Projections of Arithmetic Operations

 Assume that SG expansions for two intermediate variables a and b
have been computed, and we wish to compute a third ¢

F P
Given aly) = Zai*{.ﬁq{y], b= Z by (y), find ely) = ZLI

1=k = =

such that /I‘ '-i‘:{?'s"]' dlaly), bly))vi{y)p(yldy =0, ¢ =0,.... P

« Addition/subtraction
c=axtb=c=a;,1b
* Multiplication
c=axXb= Z Ci’l,bi = Z Z aibjl,bﬂ,bj — C| = Z Z bj <¢2:§J;bk>
i PR k

* Division

c=a/b= Z Z cibjpp; = Z a; P, — Z Z cibj(Yip;hr) = ar(1hy)
i g i T g
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Projections of Transcendental Operations

e.d., ¢ = exp(a)

» Taylor series approximations (Debusschere et al, UQ Toolkit)
i g
il
— Use arithmetic rules for evaluating_Taonr polynomial
— Convergence can cause problems

» Time integration (Debusschere ef al, UQ Toolkit)
ol
u{x) = expf{x) is a solution te ODE d_u = u
J2
— Translate this to an ODE on coefficients of c
— Call time integration package (e.g., CVODE)

— More accurate and robust, but more expensive

e Quadrature o
1

o [ esplaluptady = 3 wiexpla(n))
{1#‘;:} T g

— Simple implementation

— Take advantage of sparse-grid technology

— Call BLAS for polynomial evaluation and integration

oy =
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acado: AD Tools for C++ Applications

« AD via operator overloading and C++ templating

- Transform to template code & instantiate on
Sacado AD types

- Easy to add new AD types to a code

* Designed for use in complex C++ codes
—Sacado: : FEApp example demonstrates approach

* Very successful in enabling analytic sensitivity
calculations in large-scale simulation codes

— Charon, Aria, Xyce, Alegra, LAMMPS, Albany

* http://trilinos.sandia.gov
+ Algorithms and enabling

 Large-scale scientific and

« C++ Object oriented

M

technologies
engineering applications

framework
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Stokhos: Trilinos Tools for Intrusive
Stochastic Galerkin UQ Methods

« Sacado overloaded operators for SG propagation

- Taylor & time integration approaches
(UQ Toolkit — Najm, Debusschere, Knio, ...)

- Tensor product and sparse grid quadrature
(Dakota — Mike Eldred and John Burkardt)

* Tools solving SG linear systems oF, F
—Jacobian-free (Ghanem) or fully assembled Du, = ;] Trlwivyye; —
— Mean-based preconditioning O F P
— Hooks to Trilinos parallel linear solvers (EVJ = Z;} ;} Jpvg (g gt
i ke

* Nonlinear SG application code interface
— Interface to nonlinear solver, time integrator, optimizer
— Provides global-level SG expansion method
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Accuracy of AD Approach

1 ! -
= ”“(1 + (cz)zj

Uniform U(-1,1) x Gaussian N(0,1) x
. Mean —— AD Quad . Mean
10T ' ' | ADTay [ 10T ' | ' [— Global Quad
10_5 i _AD |m 1 10_5 L \\;
o — Global Quad s
& 107 - 10} -
107" ~——————— 107"}
0 é 1b 1'5 zln 2'5 30 0 5 10 01 ds 20 25 30
Qrder rder
Standard Deviation Standard Deviation
5 =5 | .
]ﬂ_ 10 B 1 § 10 “
5107 w 1077} '
107 — — 107"
0 é 1b 1'5 zln 2'5 30 0 5 10 15 20 25 30
Qrder Order

All 3 AD approaches fail

« AD approach is usually accurate
* Truncation error can cause catastrophic failure T Sandia
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1-D Quadratic PDE

du 'S TR IREICICRN I o ¥
At hel
5 Run Time
10 r
—AD
—— Element
Global
1IIJ2 NI

Time (s)

Stochastic Dimension M

1 2 3 4 5 6 7 8

u” =0, nC[ L1]. oy = U(L1,3)

« Sacado FEApp

* Clenshaw-Curtis sparse grid
quadrature

» Algorithmic parameters chosen to
give 1e-6 accuracy in 2"9 moment

« AD approach significantly more
efficient than element or global

* Intrusive times for larger M’s
dominated by mat-vec

* Preconditioner computation time

not significant

h
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1-D Exponential PDE

d‘etrl oy b o | fepr G = 0. o, = L"(L 3]
or? AT
. Run Time
1% —AD (@uag) ' ' ' ' - Intrusive significantly more
N Em’f’ expensive than non-intrusive
10 | — Element — Fill cost is important
N ea - AD approaches still more efficient
710 ¢ than element or global
E — Likely diminish with more terms
- 10 « Quadrature fill times dominated
by polynomial evaluation &
10’ integration
107

1 2 3 4 5 6 7 8
Stochastic Dimension M
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2-D Quadratic PDE

P o TRRNS =T R U NN P .
- : u' =10, ui 1.1~ 1l.1l|. &x; =L7{1.3
et o Cuc[ L[ L) e = UL

Run Time

 New Sandia Albany code

* More expensive preconditioner
improves performance of intrusive
approach

* Window likely increases for 3-D
PDEs

1 2 3 4 5 6 7 8
Stochastic Dimension M
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Concluding Remarks

* Intrusive AD approach appears efficient for problems with
polynomial nonlinearities

— Many interesting PDEs fall into this category

* For transcendental nonlinearities, quadrature provides nice balance
between efficiency and robustness

— Difference between AD/Element/Global diminishes with more
transcendental terms

— New AD type to propagate all quadrature points simultaneously

 Now have capabilities to incorporate these ideas into complex
codes

— 3-D PDEs
— Multi-physics coupling

 Trilinos packages Stokhos and Sacado
— http://trilinos.sandia.gov
— Sacado is currently available
— Stokhos will be release with Trilinos 10.0, this fall
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Auxiliary Slides
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hat is Automatic Differentiation (AD)?

Technique to compute analytic derivatives
without hand-coding the derivative
computation

How does it work -- freshman calculus

— Computations are composition of
simple operations (+, *, sin(), etc...)
with known derivatives

— Derivatives computed line-by-line,
combined via chain rule

Derivatives accurate as original
computation

— No finite-difference truncation errors

Provides analytic derivatives without the
time and effort of hand-coding them

y =sin(e® + xlogx), = = 2

dx
x «— 2 — «—1

dx

dt dx
t«— e” — «— t—

dx dx

du 1dx
u<«—loger — — ——

dx xrdx

dv dx du
vV — TU — —U— + T

dzx dx dx

dw dt dv
w—t+v — — — + —
dx dr dx
. dy dw
y «— sinw — « cos(w)—
dx dx

d

€ -

dx
2.000 | 1.000
7.389 | 7.389
0.301 | 0.500
0.602 | 1.301
7.991 | 8.690
0.991 | -1.188
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i AD Takes Three Basic Forms
e R" f:R" - R™

F Mode: of
orward Mode () V) — <f, %V>

— Propagate derivatives of intermediate variables w.r.t. independent variables forward
— Directional derivatives, tangent vectors, square Jacobians, 8 f/0x when m > n

* Reverse Mode: (x, W) — <f, v;ﬂ?)
£
— Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
— Gradient of a scalar value function with complexity ~ 4 ops(f)
— Gradients, Jacobian-transpose products (adjoints), df/9xwhen n > m

« Taylor polynomial mode:

1 d*

Eﬁf(w(t))

d d
o(t) =D mpth — D fitk = f(2(t) + O, fi =
k=0 k=0

Basic modes combined for higher derivatives:

o /0 0? o
— (—fvl> v, wrlly Ot
Ox \ Ox ox? oxg
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3 ’ Our AD Research is Distinguished by

Tools & Approach for Large-Scale Codes

 Many AD tools and research projects
x Most geared towards Fortran (ADIFOR, OpenAD)
x Most C++ tools are slow (ADOL-C)
x Most applied in black-box fashion

« Sacado: Operator overloading AD tools for C++
applications
v Multiple highly-optimized AD data types
v Transform to template code & instantiate on Sacado AD types
v Apply AD only at the “element level”

* This is the only successful, sustainable approach for
large-scale C++ codes!

* Directly impacting QASPR through Charon
v' Analytic Jacobians and parameter derivatives QAS P R

QUALTFICATION ALTERNATIVES TO SPR




Basic Sacado C++ Example

/#include "Sacado.hpp" \

< ScalarT>
ScalarT func( ScalarT& a, ScalarT& b, ScalarT&c) {
ScalarT r = c*std::log(b+1.)/std::sin(a);

r;

}
main(int argc, **argv) {
a = std::atan(1.0);
b=2.0;
c =3.0;
num_deriv = 2;
Sacado::Fad::DFad< > afad(num_deriv, 0, a);
Sacado::Fad::DFad< > bfad(num_deriv, 1, b);
Sacado::Fad::DFad< > cfad(c);
Sacado::Fad::DFad< >rfad;

r = func(a, b, c);
rfad = func(afad, bfad, cfad);

r_ad = rfad.val();
drda_ad = rfad.dx(0);

K drdb_ad = rfad.dx(1); l/
es




Efficiency of AD in Charon

Set of N hypothetical chemical species:

2Xj = Xj 1+ X1, 3=2,...,N—=1 o g00

Steady-state mass transfer equations:
VY, +u-VY,=w;, j=1,...,N—1

N
> Yi=1
j=1

 Forward mode AD
— Faster than FD

— Better scalability in number of
PDEs

— Analytic derivative
— Provides Jacobian for all Charon
physics
* Reverse mode AD

— Scalable adjoint/gradient
JTw = V(w” f(z))

Efficiency of the element-level derivative computation

Relative Eval. Tim

Relative Eval. Time

Jacobian Computation

400

200~

OO

—&— Finite Difference
—o—Forward AD

slope

100

200 300
DOF Per Element (4*N)

Jacobian-Transpose Product Computation

400

'y
o

©
T

(o]
T

-

—o— Reverse AD

o

100

200 300
DOF Per Element (4*N)
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_ ' Charon Drift-Diffusion
’ Formulation with Defects

QASPR

QUALTFICATION ALTERNATIVES TO SPR

on
Current a_vﬂ]n :_Rn(zpanapa}fla"'aYN)a Jn: —ﬂlbnvlb-l-DnVﬂ
Conservation for e- P
e U4V, = =Ry, Vi, Ya), = —pap Ve — DyVp
. 0Y;
Defect Continuity ot + V- JY:‘ — _RY?: (%b: n,p, Yl: R YN): JY-{, — _y’?,}/sz — D;VY;

N
Electric potential —V (eV¢(z)) = —¢q (p(z) — n(z) + Nj)(z) — N, (z)) — ZquZ(CE)

Eﬁ:;?g:]nzgzrée R Include electron capture and hole capture by defect species
g X and reactions between various defect species
terms
Elect Activation Energy
ectron -—
el . AE[Z-a_,Zz'+1+,3—]
emission/capture R, ...\ ) x 0z gitrpe 2 oxp >z
Z’i s Zi—f-l e~

Cross section m ﬁgﬁgﬁm
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| Rythmos Sensitivity Analysis Capability
q Demonstrated on the QASPR Simple Prototype

"Phipps et al

Bipolar Junction Transistor

Pseudo 1D strip (9x0.1 micron)

Full defect physics

126 parameters

{p l“_J-_J-LIT
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Scaled Sensitivity
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Scaled Sensitivity
o
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Sensitivities show dominant physics
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1st-order Finite Difference Accuracy
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FD perturbation size
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G|_4\ = '-2 '-1 0
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Comparison to FD:

v

NURNIN

Sensitivities at all time points
More accurate

More robust

14x faster!
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