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THz QCLs: The Promise

• Miniature, all solid-state source from ~ 2 to 5 THz

– Power output 1 to > 10 mW CW

• Very good intrinsic spectral characteristics

– Decent free-running linewidth & stability

– Can be locked to achieve ~ 10 Hz linewidth with low drift

• Relatively low ~ 1 W DC input power required

• Scalable production using microelectronic fab

Replace This:

Aura 2.5 THz LO (Coherent-DEOS)
30 mW CW output
21 kg weight 
120 W DC input power required
$$$$ per laser

75 cm

With This:

Six THz QCLs on chip
≥ 10 mW CW output (each)
0.1 kg weight (not including cryostat)
1 W DC input power required
$ (eventually ¢¢?) per laser

3 mm



THz QCLs: The LO Problems

• QCLs still requires cryogens

– Fundamental THz QCLs work up to 184 K (MIT/Sandia)

– New mixed MIR design gives 8 µW at 300K (Harvard/ETH)

• Difficult to provide precise absolute frequency

– e.g., Hitting 4.7448 ± 0.001 THz is really hard

• Lack of connection to existing THz infrastructure 

• Beam quality is fairly poor

– Sub-wavelength aperture diffraction

– Highly non-Gaussian beam

– Very inefficient power coupling

QCL Beam Patterns
(Delft/MIT/Sandia)
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• Beam quality is fairly poor

– Sub-wavelength aperture diffraction

– Highly non-Gaussian beam

– Very inefficient power coupling

• THz QCL: Integration Solutions

1 - Mate the THz QCL into rectangular waveguide

2 - Monolithic integration of a THz  QCL/mixer 

heterodyne circuit

QCL Beam Patterns
(Delft/MIT/Sandia)
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Solution 1:
Integrate QCLs into rectangular waveguide

• Payoffs

– RWG is a widely used standard 

– Propagation mode structure in RWG known

– Horns should improve beampatterns and coupling

– Waveguide elements (couplers, splitters, horns) can be used

– Mixers can also be placed in RWG

QCL

RF horn

Mixer
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Integrate QCLs into rectangular waveguide

• Payoffs

– RWG is a widely used standard 

– Propagation mode structure in RWG known

– Horns should improve beampatterns and coupling

– Waveguide elements (couplers, splitters, horns) can be used

– Mixers can also be placed in RWG

– Problem: Converntional machined split-block RWG 
doesn’t work well with QCLs

QCL

RF horn

Mixer
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• Solution: Build waveguide around QCL 
using microfab techniques and additive 
electroplating techniques.

Micromachining Rectangular  Waveguides
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PR

substrate

1. Deposit seed 
metal and pattern 

photoresist

Micromachining Rectangular  Waveguides
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1. Deposit seed 
metal and pattern 

photoresist

2. Electoplate Au 
in photoresist 

openings

3. Deposit 2nd

seed metal, 
pattern 2nd 

resists, and plate 
in opening to 
create tops

Micromachining Rectangular  Waveguides
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• Additive electroplating technique 
suitable for various substrates

– Allows waveguide fabrication 
on QCL or other wafers

PR

substrate

PR

substrate

PR

substrate

substrate

1. Deposit seed 
metal and pattern 

photoresist

2. Electoplate Au 
in photoresist 

openings

3. Deposit 2nd

seed metal and 
plate in opening 
to create tops

4. Remove 
photoresist and 
2nd seed metal

Micromachining Rectangular  Waveguides
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Micromachined THz Waveguides

Horn antenna

Photoresist 
removal holes

End view of 
waveguide 

horn antenna

080711

H-Plane Bends



ISSTT - 2009 Slide 15

Promising Waveguide Propagation

5mm

• Made straight waveguides, 
bends, tees, splitters, 
couplers, horns

• Low propagation & bend 
losses near 2.9 THz

– 1.4 dB/mm propagation 
loss (0.17 dB/wavelength)

– ≤ 0.15 dB/bend loss
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Beampattern
(Empty RWGs)

Scanned pinhole 
4.5° resolution

FIRL input

Bolometer
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Multiple Interference Effects

FIRL input

Bolometer

Y

Phase periodically oscillates in Y every /2
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Improved Beampattern

FROM TO

FIRL input
Bolometer
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Integrated Lasers with Waveguides

Chip Tests
• Insertion position
• WG length
• H-plane bends
• E-plane bends
• Magic-Tees
• Horns

Note: parallel assembly advantage

Built waveguides 
on top of lasers
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QCLs integrated with RWGs work…
THz QCLs QCL bias contacts (bottom contact is ground plane)

QCL Emission
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…with long or  short waveguides…

5 µs pulses

• No significant performance 
change with length.
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… and through various bends

H-plane bend

E-plane bend
• Vertical Emission

6 bends
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Solution 2:
Monolithically Integrate mixer into a QCL

• Payoffs

– No external optics to align LO to mixer.

– Internal field coupling can be much larger.

– Can monitor laser behavior.
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QCL/Schottky THz IC

Vbottom

Vtop

Vtop

GND GNDIF

diode

IF
GND GND

LASER

3mm x 1.5 mm

air 
bridges

3 mm
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Integrated Diode THz Mixer

3mm x 1.5 mm

• Purposely built a multimoded QCL 
centered on 2.81 THz

– QCL emission (FTIR) spectra show 
Fabry-Perot modes spaced by ~13 GHz

Laser output to FTIR
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Diode detects the QCL LO

3mm x 1.5 mm

Electrical feed to spectrum analyzer

• Diode outputs IF signal at spacing 
between QCL modes

• Strong IF power: up to -53 dBm 
without amplifiers

Laser output to FTIR
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Integrated Diode acts as THz Transceiver
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Demonstration of heterodyne detection
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Summary

• THz QCLs continue to improve and 
hold promise as miniature, solid-state 
local oscillators.

• Electroplated rectangular waveguide 
circuit elements exhibit good 
performance > 2.5 THz.

• QCLs can be integrated into on-chip 
rectangular waveguide components 
and circuits.

• Heterodyne mixing can be achieved in a 
monolithically integrated diode/QCL.

080711

3mm x 1.5 mm
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Questions?


