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Abstract

We benchmarked and improved the single-
process streaming write efficiency of the Linux NFS
client. Deeper analyses of the benchmarks and of
various 1/0O short-circuit schemes establish upper
bounds on the performance of the NFS client even
with an infinitely fast network. The complex
interactions of the Linux Virtual File System and
Virtual Memory Management apparently impose a
limit on further improvement which is substantially
less that the theoretical streaming bandwidth of the
fast interconnects.

1. Overview of the Problem and Idea

Our goal is to enable a high performance parallel
file system that is an integral part of the mainline
Linux kernel [1]. Our initial benchmarks indicate that
only a small fraction of the available bandwidth on
high-speed transports (InfiniBand [2], 10 Gbps
iIWARP [3], and TCP) is utilized when streaming
writes are made to a Linux NFS volume. While
specialized distributed parallel filesystems have been
developed outside of the Linux main stream, they
have not proven to be satisfactory from the
standpoint of community support, reliability, and
performance. The Linux community is improving the
kernel-standard NFS file system, but the work is not
aimed at HPC needs [4]. In order to address the HPC
community, a new type of NFS, called Parallel NFS,
or pNFS [5], has been proposed. One obstacle in
scaling pNFS using NFS RDMA for Storage 1/O is
the performance bottleneck in NFS streaming-writes,
which stems from Linux’s NFS implementation and
its interaction with the Linux virtual file system
(VFS) [6] and virtual memory management system
(VMM) [7]. Write throughput is strongly affected by
the lack of concurrency between application 1/0 and
the NFS implementation's flushing of cached data
based on our initial experience [8].

We identified two strategies to optimize
streaming writes on the client side. The first strategy
is to re-implement the Linux NFS client to be
procedure-based, multi-threaded and asynchronous.
This approach is unacceptable by the Linux
community at large as it would be a giant
replacement of a kernel subsystem which most view
as robust and fully functional, and so we decided not
to pursue further. The second strategy is to improve
the behavior of the Linux VFS and VMM as they
interact with NFS to increase overlapping of
application and network 1/0.

2. Benchmark Profiles and Rate Results
2.1 Research Tools

We generated performance debugging data with
instrumented source code of the NFS server, the NFS
client, and the Linux file and cache subsystems while
running performance benchmarks. We also collected
large granularity performance profile data with a tool
(collectl) [9] that queries the /proc filesystem [10] on
un-instrumented kernels.
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Figure 1 1/O Profile of NFS Streaming Write

We present results collected with iozone [11] and
collectl in the following subsections. The test setup
consists of a single NFS-RDMA server with 8GB of
RAM, 2 AMD Opteron 248 Processors, a DDR
InfiniHost Il HCA, with a TYAN S2895
motherboard. Our client node has a similar setup with
the exception of having only 4 GB of RAM. They are
connected through a 24 port SilverStorm IB switch at
Double Data Rate.

2.2. The Linux 2.6.16 Kernel

Our initial benchmark was conducted under the
Linux 2.6.16 kernel with the earliest stable
implementation of NFS RDMA. We plotted the
traffic profile of a streaming-write test over the IB
RDMA transport in Figure 1 and found that NFS
writes were periodically throttled. We used collectl
to gather system statistics during a streaming-write
test at 10 Hertz in an attempt to identify and
understand the bottlenecks in the Linux kernel. We
collated these statistics in Figure 2 to study the
dynamic between the CPU, Memory-cache, NFS-
write, and the InfiniBand Network subsystems.
These plots clearly reflect the stop-and-go 1/O profile
demonstrated in Figure 1; when the usage of memory
cache reaches the 34% threshold, Linux’s Virtual
Memory Management throttles the user application
and starts to flush cached data through NFS writes,
resulting in visible increases in network traffic. With
sufficient cache memory reclaimed, the network



We upgraded the Linux kernel from 2.6.16 to

2.3. The 2.6.26 Kernel

short circuit the data flow as depicted in Figure 4.
The first patch short-circuits the server-side NFS-
write to bypass the server filesystem and disk 1/O.
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usage starts to rise, indicating the start of the next
iteration of application 1/0; we see no overlapping

traffic is stopped, and the CPU and memory cache
between the application and the network 1/0.

Time
Figure 2 Collectl Statistics of The 2.6.16 kernel —

CPU, Memory, NFS-write, and IB Traffic




This patch stubs the vfs_write operations to prevent
the VFS nfsd_write procedure from being fully
executed, which in effect emulates an infinitely fast
file and disk I/O subsystem on the server. The
second patch removes the RDMA transport from
NFS’s write-path to emulate an infinitely fast
network. It short-circuits only the
NFS3PROC_WRITE_RPC operation, and leaves the
rest of the NFS, RPC, and XDR procedures to
function as usual. Both short-circuits can be toggled
on a running system through a switch implemented in
/proc.

Additionally, we applied a kernel patch by James
Schutt to test the effect of NFS RPC transfer-size
(rsize/wsize) on performance. By default, RDMA
transport, iIWARP as well as IB, uses a 32 KB RPC
payload size. The only way to implement larger RPC
requests in the 2.6.25 and 2.6.26 kernel is by
increasing the value of
RPCRDMA_MAX_DATA_SEGS and then
recompile. Note that a bug in the RDMA transport
code under the 2.6.25 and 2.6.26 kernel mandates the
patch in http://marc.info/?1=linux-
nfs&m=121936891515202&w=2 to be applied prior
to this patch in order to make this work correctly.
Also because many stack variables in the kernel are
dimensioned by RPCRDMA_MAX_DATA_SEGS,
using larger than 64 KB RPC’s would require
significant work. We only developed a simplified
patch to provide proof of concept.
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Figure 4, NFS Write Path Traversing the Protocol
Stack from Client to Server

All patches developed in this study can be found
in [12].

2.3.2  Server-side Short-circuit

Table 1 summarizes our benchmark results with
the server-side short circuit applied, and with varying
record as well as RPC transfer sizes. As shown, both

the 512KB and the 1MB record-size had a negative
impact on throughput, presumably due to the
overhead of segmentation/reassembly to match the
RPC Transfer size on the client and server.
Increasing the RPC [13] transfer size from 32 KB to
512 KB, however, improved the write performance,
but throughput still maxed at 425MB/s, ~20% of the
available 1B bandwidth.

Table 1 Streaming Write Throughput with Server
Side Short Circuit and Varying RPC Transport
Sizes

RPC Throughput (MB/s)
Payload 32KB 512KB 1MB
(Bytes) Record Record Record

32768 245.60 283.40 281.60
65536 377.00 350.50 293.00
131072 387.50 363.50 306.00
262144 401.40 335.80 305.00
524288 425.00 376.50 312.50

2.3.3.  Kernel Profiling

We enabled Oprofile [14] on the 2.6.26 kernel
(including VMM, nfs and ib drivers) to search for
bottlenecks that would explain why, with the short of
NFS write on the server in place, we still only
achieved 425MB/s write rates when the available
bandwidth is 2 GB/second on the IB network. It is
well to remember that Oprofile is primarily
measuring CPU usage in a dual core system and that
in x86 derived systems the CPUs may be taken on
and off line by other hardware on the motherboard or
the kernel itself. Thus, accounting for all CPU time
is not equivalent to accounting for all wall clock
time. Our results do not point a finger at any
particular function as a bottleneck in the kernel. In
several areas of the kernel Oprofile collects only
incomplete data; in these areas samples are dropped
reliably, independent of the buffer sizes or sampling
rates used to collect profile data. The call graph
visualization of the profiling data during a write
experiment illustrates the deeply nested and
massively tangled nature of the code paths that
attempt to balance file 1/0 and other processes on the
commodity multicore Linux machine. The Oprofile
Summary Report, however, did report over 20% of
total elapsed time spent copying data from user to
kernel space.

With the server-side short circuit applied, we ran
iozone using an 8 MB record and toggled between
bypassing (with o_direct) and not bypassing (without
o_direct) data-copying..  Without “o_direct” to
bypass data-copying, Oprofile reported 22% of
elapsed time spent copying data, versus zero time




with “o_direct”, with a throughput improvement from
425 to 539 MB/s, a 28% gain.

2.3.4. RPC RDMA Transport

Figure 5 depicts the RDMA mechanism
employed by the NFS RPC transport. As shown,
large data segments are chunked into Linux page size
(4 KB) first. A descriptor consisting of pointers to
these pages is then generated and pre-pended to the
RPC write request before its transmission. Upon
receipt of this request, the server’s RPC layer passes
the client-side chunk descriptor to its IB hardware for
RDMA-reads of page-size data chunks from client to
its buffer cache; RDMA operations on page-size
chunks is not at all optimized considering the RDMA
overhead. In this case, the 32KB RPC data payload
required 8 individual RMDA transfers instead of 1.
Because today’s IB hardware doesn’t support scatter-
and-gather to handle discontinuous physical memory,
RPC is limited to transferring content of page-size
memory locations per RDMA operation. A patch [15]
is available through the NFS kernel community that
implements a software solution before the next
generation IB hardware becomes available. We
didn’t pursue the software solution in our study
because our preliminary result demonstrated very
little performance gain; we believe the RPC RDMA
mechanism, though not efficient, is not the
performance bottleneck in the NFS write-path at the
moment.
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Figure 5, NFS RPC RDMA Mechanism

2.3.5. Client-side Short-circuit

To further isolate NFS’s performance
bottlenecks, we applied a client-side patch that stubs
the RPC write and removes the RPC RDMA
transport from the write-path. With this patch, we
hope to understand the impact of interactions
between the Linux Virtual File System, Network File
System, and Virtual Memory Management on NFS’s
streaming-write performance. Figure 5 plots the
results of an iozone test suite in 3-D, with the x-axis

reflecting the varying record size in KB, y-axis the
iozone throughput in KB/s, and z-axis the file-size in
KB. This experiment evaluated the effects on
throughput of record-sizes ranging from 4K to 16M
Bytes, and file-size ranging from 64K to 2G Bytes.
As predicted, we found 32KB the optimal record-size
because it matches RPC’s default payload size.
Additionally, we found that file sizes less than 256
Mbytes can yield up to 1.25GB/s of throughput;
however, performance dropped drastically beyond
this point to 700MB/s, and gradually to 500MB/s as
the file-size reaching 2 GB, reflecting the heavy
impact on streaming-write due to the interactions
among Linux’s VFS, NFS, and VMM. These
complex interactions apparently impose a limit on
further improvement, which is substantially less that
the theoretical streaming bandwidth of the fast
interconnects.

Figure 5, Results of IOZONE Test Suite in 3-D

3. Summary Results

The section summarizes the improvements we
achieved on NFS’s  streaming-write  using
optimization techniques developed throughout this
work.  Additionally, we repeated our benchmark
without the server- and client-side short-circuits in
order to verify that these techniques also improve
NFS’s end-to-end performance, from user application
on the client to file and disk I/0 on the server. A
summary of our improvement is presented in Figure
6. As shown, we obtained 130 MB/s of end-to-end
throughput from a previous study with the NFS over
RDMA distributed with the 2.6.16 kernel. The kernel
community subsequently improved the performance
to 212 MBJ/s through bug fixes and advanced features
in the 2.6.26 kernel. We increased the RPC RDMA
payload from 32KB to 512KB for better network
efficiency, which further improved the write rate to
250MB/s. Because Oprofile revealed heavy penalties
copying user data to kernel buffer, we experimented



with o_direct during streaming-write, and were able
to increase the throughput to 315 MB/s.

Figure 6 includes the short-circuit results which
strongly suggest that the bottleneck is not on the
server or the RDMA data transfers. We applied the
server short-circuit to emulate infinitely fast server
file and disk 1/0O, and achieved 425MB/s with the
default 32KB RPC payload and without o_direct;
with o_direct, on the other hand, our throughput
reached 512 MB/s. With the server patch applied, we
then increased the RPC payload to 512KB, and were
able to achieve 469MB/s without o_direct, and

528MB/s with o_direct. Because 528MBY/s is still
only % of the network’s available bandwidth, we
removed the RDMA transport from NFS’s write-path
to investigate whether RPC RDMA is the
performance bottleneck. With the client side short
circuit, we repeated the benchmark without o_direct
and achieved only ~500 MB/s, even though the
memory bandwidth is 2.7 GB/s, reflecting a
performance bottleneck in the interactions on the
NFS client among the Linux VFS, NFS, and VMM
when user data begins to full the VFS buffer cache.
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Figure 6, Summary of bandwidth measurements

4. Conclusion and Future Work

The goal of this project was to increase the
efficiency of a high-speed, low-latency network with
offload data transfer technologies such as
NFS/RDMA and pNFS. In this we were successful to
a large degree; the accumulated changes improved
increasing efficiency in excess of 30%. The
experiments that “short-circuited” the actual wire
transfers showed that the bandwidth of the transport
software stack on the client-side, alone, is limited to
something on the order of 500 MB/s and, so, we have
achieved a substantial improvement. However, even
with this significant improvement, it is still only a
meager fraction of the fabric capability.

The lack of a real improvement when employing
RDMA seems reasonably attributed to the IB kernel
stack. Future work could focus on that stack. In user-

space this stack has proven able to garner nearly all
of the wire bandwidth. Why, in kernel space, this
constriction appears should be explained and
remedied. However, it should be noted that our
experiments in this direction do not entirely exclude
the client stack. The fast-path hook for RDMA
happens at a relatively deep point in the stack.
Perhaps pNFS could better leverage the RDMA
capabilities of the hardware as its fast-path hook is
far higher than the RPC transport.
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