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Abstract 

We benchmarked and improved the single-

process streaming write efficiency of the Linux NFS 

client. Deeper analyses of the benchmarks and of 

various I/O short-circuit schemes establish upper 

bounds on the performance of the NFS client even 

with an infinitely fast network. The complex 

interactions of the Linux Virtual File System and 

Virtual Memory Management apparently impose a 

limit on further improvement which is substantially 

less that the theoretical streaming bandwidth of the 

fast interconnects. 
 

1. Overview of the Problem and Idea  

Our goal is to enable a high performance parallel 

file system that is an integral part of the mainline 

Linux kernel [1]. Our initial benchmarks indicate that 

only a small fraction of the available bandwidth on 

high-speed transports (InfiniBand [2], 10 Gbps 

iWARP [3], and TCP) is utilized when streaming 

writes are made to a Linux NFS volume. While 

specialized distributed parallel filesystems have been 

developed outside of the Linux main stream, they 

have not proven to be satisfactory from the 

standpoint of community support, reliability, and 

performance. The Linux community is improving the 

kernel-standard NFS file system, but the work is not 

aimed at HPC needs [4].  In order to address the HPC 

community, a new type of NFS, called Parallel NFS, 

or pNFS [5], has been proposed. One obstacle in 

scaling pNFS using NFS RDMA for Storage I/O is 

the performance bottleneck in NFS streaming-writes, 

which stems from Linux’s NFS implementation and 

its interaction with the Linux virtual file system 

(VFS) [6] and virtual memory management system 

(VMM) [7].  Write throughput is strongly affected by 

the lack of concurrency between application I/O and 

the NFS implementation's flushing of cached data 

based on our initial experience [8].   
 

We identified two strategies to optimize 

streaming writes on the client side. The first strategy 

is to re-implement the Linux NFS client to be 

procedure-based, multi-threaded and asynchronous. 

This approach is unacceptable by the Linux 

community at large as it would be a giant 

replacement of a kernel subsystem which most view 

as robust and fully functional, and so we decided not 

to pursue further.  The second strategy is to improve 

the behavior of the Linux VFS and VMM as they 

interact with NFS to increase overlapping of 

application and network I/O.   

 

2. Benchmark Profiles and Rate Results 

2.1 Research Tools 

We generated performance debugging data with 

instrumented source code of the NFS server, the NFS 

client, and the Linux file and cache subsystems while 

running performance benchmarks.  We also collected 

large granularity performance profile data with a tool 

(collectl) [9] that queries the /proc filesystem [10] on 

un-instrumented kernels. 

 
Figure 1 I/O Profile of NFS Streaming Write 

 

We present results collected with iozone [11] and 

collectl in the following subsections. The test setup 

consists of a single NFS-RDMA server with 8GB of 

RAM, 2 AMD Opteron 248 Processors, a DDR 

InfiniHost III HCA, with a TYAN S2895 

motherboard. Our client node has a similar setup with 

the exception of having only 4 GB of RAM. They are 

connected through a 24 port SilverStorm IB switch at 

Double Data Rate. 
 

2.2. The Linux 2.6.16 Kernel 

Our initial benchmark was conducted under the 

Linux 2.6.16 kernel with the earliest stable 

implementation of NFS RDMA.  We plotted the 

traffic profile of a streaming-write test over the IB 

RDMA transport in Figure 1 and found that NFS 

writes were periodically throttled.  We used collectl 

to gather system statistics during a streaming-write 

test at 10 Hertz in an attempt to identify and 

understand the bottlenecks in the Linux kernel. We 

collated these statistics in Figure 2 to study the 

dynamic between the CPU, Memory-cache, NFS-

write, and the InfiniBand Network subsystems.  

These plots clearly reflect the stop-and-go I/O profile 

demonstrated in Figure 1; when the usage of memory 

cache reaches the 34% threshold, Linux’s Virtual 

Memory Management throttles the user application 

and starts to flush cached data through NFS writes, 

resulting in visible increases in network traffic. With 

sufficient cache memory reclaimed, the network 
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traffic is stopped, and the CPU and memory cache 

usage starts to rise, indicating the start of the next 

iteration of application I/O; we see no overlapping 

between the application and the network I/O. 
 

 
Time 

Figure 2 Collectl Statistics of The 2.6.16 kernel – 

CPU, Memory, NFS-write, and IB Traffic 

 

2.3. The 2.6.26 Kernel 

 

We upgraded the Linux kernel from 2.6.16 to 

2.6.25, and 2.6.26 in order to synch up with bug fixes 

and new features by kernel developers.  We repeated 

the same streaming-write benchmark and plotted 

collectl statistics in Figure 3 to compare their traffic 

profiles.  As shown, the original stop-and-go 

symptom in the 2.6.16 kernel had been fixed in 

2.6.25 and 2.6.26; however, the overall network 

efficiency remained sub-optimal at only 1/10 of the 

available 16 Gbps bandwidth. 

 

 
 

 
 

 
 

 

Time 

 

Figure 3, a Snap Shots of Collectl Statics 

Comparing the Traffic profile of NFS Streaming 

Write under Linux Kernel 2.6.16, 2.6.25, and 

2.6.26 

 

2.3.1. I/O Short Circuit Schemes 

Continuing to locate causes for the low 

performance, we developed two kernel patches to 

short circuit the data flow as depicted in Figure 4.  

The first patch short-circuits the server-side NFS-

write to bypass the server filesystem and disk I/O. 
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This patch stubs the vfs_write operations to prevent 

the VFS nfsd_write procedure from being fully 

executed, which in effect emulates an infinitely fast 

file and disk I/O subsystem on the server.  The 

second patch removes the RDMA transport from 

NFS’s write-path to emulate an infinitely fast 

network.  It short-circuits only the 

NFS3PROC_WRITE_RPC operation, and leaves the 

rest of the NFS, RPC, and XDR procedures to 

function as usual.  Both short-circuits can be toggled 

on a running system through a switch implemented in 

/proc.   
 

Additionally, we applied a kernel patch by James 

Schutt to test the effect of NFS RPC transfer-size 

(rsize/wsize) on performance.  By default, RDMA 

transport, iWARP as well as IB, uses a 32 KB RPC 

payload size.  The only way to implement larger RPC 

requests in the 2.6.25 and 2.6.26 kernel is by 

increasing the value of 

RPCRDMA_MAX_DATA_SEGS and then 

recompile.  Note that a bug in the RDMA transport 

code under the 2.6.25 and 2.6.26 kernel mandates the 

patch in http://marc.info/?l=linux-

nfs&m=121936891515202&w=2 to be applied prior 

to this patch in order to make this work correctly.  

Also because many stack variables in the kernel are 

dimensioned by RPCRDMA_MAX_DATA_SEGS, 

using larger than 64 KB RPC’s would require 

significant work.  We only developed a simplified 

patch to provide proof of concept. 
 

 

 
Figure 4, NFS Write Path Traversing the Protocol 

Stack from Client to Server 
 

All patches developed in this study can be found 

in [12]. 
 

2.3.2 Server–side Short-circuit 

Table 1 summarizes our benchmark results with 

the server-side short circuit applied, and with varying 

record as well as RPC transfer sizes.  As shown, both 

the 512KB and the 1MB record-size had a negative 

impact on throughput, presumably due to the 

overhead of segmentation/reassembly to match the 

RPC Transfer size on the client and server.  

Increasing the RPC [13] transfer size from 32 KB to 

512 KB, however, improved the write performance, 

but throughput still maxed at 425MB/s, ~20% of the 

available IB bandwidth. 
 

Table 1 Streaming Write Throughput with Server 

Side Short Circuit and Varying RPC Transport 

Sizes 
 

RPC 

Payload 

(Bytes) 

Throughput (MB/s) 

32KB 

Record 

512KB 

Record 

1MB 

Record 

32768 245.60 283.40 281.60 

65536 377.00 350.50 293.00 

131072 387.50 363.50 306.00 

262144 401.40 335.80 305.00 

524288 425.00 376.50 312.50 
 

 

2.3.3. Kernel Profiling 

We enabled Oprofile [14] on the 2.6.26 kernel 

(including VMM, nfs and ib drivers) to search for 

bottlenecks that would explain why, with the short of 

NFS write on the server in place, we still only 

achieved 425MB/s write rates when the available 

bandwidth is 2 GB/second on the IB network.  It is 

well to remember that Oprofile is primarily 

measuring CPU usage in a dual core system and that 

in x86 derived systems the CPUs may be taken on 

and off line by other hardware on the motherboard or 

the kernel itself.  Thus, accounting for all CPU time 

is not equivalent to accounting for all wall clock 

time.  Our results do not point a finger at any 

particular function as a bottleneck in the kernel.  In 

several areas of the kernel Oprofile collects only 

incomplete data; in these areas samples are dropped 

reliably, independent of the buffer sizes or sampling 

rates used to collect profile data. The call graph 

visualization of the profiling data during a write 

experiment illustrates the deeply nested and 

massively tangled nature of the code paths that 

attempt to balance file I/O and other processes on the 

commodity multicore Linux machine.  The Oprofile 

Summary Report, however, did report over 20% of 

total elapsed time spent copying data from user to 

kernel space.   
 

With the server-side short circuit applied, we ran 

iozone using an 8 MB record and toggled between 

bypassing (with o_direct) and not bypassing (without 

o_direct) data-copying..  Without “o_direct” to 

bypass data-copying, Oprofile reported 22% of 

elapsed time spent copying data, versus zero time 
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with “o_direct”, with a throughput improvement from 

425 to 539 MB/s, a 28% gain. 
 

2.3.4. RPC RDMA Transport 

Figure 5 depicts the RDMA mechanism 

employed by the NFS RPC transport.  As shown, 

large data segments are chunked into Linux page size 

(4 KB) first.   A descriptor consisting of pointers to 

these pages is then generated and pre-pended to the 

RPC write request before its transmission.  Upon 

receipt of this request, the server’s RPC layer passes 

the client-side chunk descriptor to its IB hardware for 

RDMA-reads of page-size data chunks from client to 

its buffer cache; RDMA operations on page-size 

chunks is not at all optimized considering the RDMA 

overhead.  In this case, the 32KB RPC data payload 

required 8 individual RMDA transfers instead of 1. 

Because today’s IB hardware doesn’t support scatter-

and-gather to handle discontinuous physical memory, 

RPC is limited to transferring content of page-size 

memory locations per RDMA operation. A patch [15] 

is available through the NFS kernel community that 

implements a software solution before the next 

generation IB hardware becomes available.  We 

didn’t pursue the software solution in our study 

because our preliminary result demonstrated very 

little performance gain; we believe the RPC RDMA 

mechanism, though not efficient, is not the 

performance bottleneck in the NFS write-path at the 

moment.  

 
. 

 

Figure 5, NFS RPC RDMA Mechanism   
 

2.3.5. Client-side Short-circuit 

To further isolate NFS’s performance 

bottlenecks, we applied a client-side patch that stubs 

the RPC write and removes the RPC RDMA 

transport from the write-path.  With this patch, we 

hope to understand the impact of interactions 

between the Linux Virtual File System, Network File 

System, and Virtual Memory Management on NFS’s 

streaming-write performance.  Figure 5 plots the 

results of an iozone test suite in 3-D, with the x-axis 

reflecting the varying record size in KB, y-axis the 

iozone throughput in KB/s, and z-axis the file-size in 

KB.  This experiment evaluated the effects on 

throughput of record-sizes ranging from 4K to 16M 

Bytes, and file-size ranging from 64K to 2G Bytes.  

As predicted, we found 32KB the optimal record-size 

because it matches RPC’s default payload size.  

Additionally, we found that file sizes less than 256 

Mbytes can yield up to 1.25GB/s of throughput; 

however, performance dropped drastically beyond 

this point to 700MB/s, and gradually to 500MB/s as 

the file-size reaching 2 GB, reflecting the heavy 

impact on streaming-write due to the interactions 

among Linux’s VFS, NFS, and VMM.  These 

complex interactions apparently impose a limit on 

further improvement, which is substantially less that 

the theoretical streaming bandwidth of the fast 

interconnects. 

 
 

Figure 5, Results of IOZONE Test Suite in 3-D 
 

3. Summary Results 

The section summarizes the improvements we 

achieved on NFS’s streaming-write using 

optimization techniques developed throughout this 

work.  Additionally, we repeated our benchmark 

without the server- and client-side short-circuits in 

order to verify that these techniques also improve 

NFS’s end-to-end performance, from user application 

on the client to file and disk I/O on the server.  A 

summary of our improvement is presented in Figure 

6.  As shown, we obtained 130 MB/s of end-to-end 

throughput from a previous study with the NFS over 

RDMA distributed with the 2.6.16 kernel.  The kernel 

community subsequently improved the performance 

to 212 MB/s through bug fixes and advanced features 

in the 2.6.26 kernel.   We increased the RPC RDMA 

payload from 32KB to 512KB for better network 

efficiency, which further improved the write rate to 

250MB/s.  Because Oprofile revealed heavy penalties 

copying user data to kernel buffer, we experimented 
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with o_direct during streaming-write, and were able 

to increase the throughput to 315 MB/s.  
  

Figure 6 includes the short-circuit results which 

strongly suggest that the bottleneck is not on the 

server or the RDMA data transfers. We applied the 

server short-circuit to emulate infinitely fast server  

file and disk I/O, and achieved 425MB/s with the 

default 32KB RPC payload and without o_direct; 

with o_direct, on the other hand, our throughput 

reached 512 MB/s.  With the server patch applied, we 

then increased the RPC payload to 512KB, and were 

able to achieve 469MB/s without o_direct, and 

528MB/s with o_direct.  Because 528MB/s is still 

only ¼ of the network’s available bandwidth, we 

removed the RDMA transport from NFS’s write-path 

to investigate whether RPC RDMA is the 

performance bottleneck.  With the client side short 

circuit, we repeated the benchmark without o_direct 

and achieved only ~500 MB/s, even though the 

memory bandwidth is 2.7 GB/s, reflecting a 

performance bottleneck in the interactions on the 

NFS client among the Linux VFS, NFS, and VMM 

when user data begins to full the VFS buffer cache.

 

Figure 6, Summary of bandwidth measurements 

 

 

4. Conclusion and Future Work 

The goal of this project was to increase the 

efficiency of a high-speed, low-latency network with 

offload data transfer technologies such as 

NFS/RDMA and pNFS. In this we were successful to 

a large degree; the accumulated changes improved 

increasing efficiency in excess of 30%. The 

experiments that “short-circuited” the actual wire 

transfers showed that the bandwidth of the transport 

software stack on the client-side, alone, is limited to 

something on the order of 500 MB/s and, so, we have 

achieved a substantial improvement. However, even 

with this significant improvement, it is still only a 

meager fraction of the fabric capability. 

 

The lack of a real improvement when employing 

RDMA seems reasonably attributed to the IB kernel 

stack.  Future work could focus on that stack. In user-

space this stack has proven able to garner nearly all 

of the wire bandwidth. Why, in kernel space, this 

constriction appears should be explained and 

remedied. However, it should be noted that our 

experiments in this direction do not entirely exclude 

the client stack. The fast-path hook for RDMA 

happens at a relatively deep point in the stack. 

Perhaps pNFS could better leverage the RDMA 

capabilities of the hardware as its fast-path hook is 

far higher than the RPC transport. 
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