

On Scaling I/O for Commodity Clusters
Sandia National Laboratories

Benjamin Allan, Helen Chen, Scott Cranford, Ron Minnich, Don Rudish, and Lee Ward

Abstract

We benchmarked and improved the single-

process streaming write efficiency of the Linux NFS

client. Deeper analyses of the benchmarks and of

various I/O short-circuit schemes establish upper

bounds on the performance of the NFS client even

with an infinitely fast network. The complex

interactions of the Linux Virtual File System and

Virtual Memory Management apparently impose a

limit on further improvement which is substantially

less that the theoretical streaming bandwidth of the

fast interconnects.

1. Overview of the Problem and Idea

Our goal is to enable a high performance parallel

file system that is an integral part of the mainline

Linux kernel [1]. Our initial benchmarks indicate that

only a small fraction of the available bandwidth on

high-speed transports (InfiniBand [2], 10 Gbps

iWARP [3], and TCP) is utilized when streaming

writes are made to a Linux NFS volume. While

specialized distributed parallel filesystems have been

developed outside of the Linux main stream, they

have not proven to be satisfactory from the

standpoint of community support, reliability, and

performance. The Linux community is improving the

kernel-standard NFS file system, but the work is not

aimed at HPC needs [4]. In order to address the HPC

community, a new type of NFS, called Parallel NFS,

or pNFS [5], has been proposed. One obstacle in

scaling pNFS using NFS RDMA for Storage I/O is

the performance bottleneck in NFS streaming-writes,

which stems from Linux’s NFS implementation and

its interaction with the Linux virtual file system

(VFS) [6] and virtual memory management system

(VMM) [7]. Write throughput is strongly affected by

the lack of concurrency between application I/O and

the NFS implementation's flushing of cached data

based on our initial experience [8].

We identified two strategies to optimize

streaming writes on the client side. The first strategy

is to re-implement the Linux NFS client to be

procedure-based, multi-threaded and asynchronous.

This approach is unacceptable by the Linux

community at large as it would be a giant

replacement of a kernel subsystem which most view

as robust and fully functional, and so we decided not

to pursue further. The second strategy is to improve

the behavior of the Linux VFS and VMM as they

interact with NFS to increase overlapping of

application and network I/O.

2. Benchmark Profiles and Rate Results

2.1 Research Tools

We generated performance debugging data with

instrumented source code of the NFS server, the NFS

client, and the Linux file and cache subsystems while

running performance benchmarks. We also collected

large granularity performance profile data with a tool

(collectl) [9] that queries the /proc filesystem [10] on

un-instrumented kernels.

Figure 1 I/O Profile of NFS Streaming Write

We present results collected with iozone [11] and

collectl in the following subsections. The test setup

consists of a single NFS-RDMA server with 8GB of

RAM, 2 AMD Opteron 248 Processors, a DDR

InfiniHost III HCA, with a TYAN S2895

motherboard. Our client node has a similar setup with

the exception of having only 4 GB of RAM. They are

connected through a 24 port SilverStorm IB switch at

Double Data Rate.

2.2. The Linux 2.6.16 Kernel

Our initial benchmark was conducted under the

Linux 2.6.16 kernel with the earliest stable

implementation of NFS RDMA. We plotted the

traffic profile of a streaming-write test over the IB

RDMA transport in Figure 1 and found that NFS

writes were periodically throttled. We used collectl

to gather system statistics during a streaming-write

test at 10 Hertz in an attempt to identify and

understand the bottlenecks in the Linux kernel. We

collated these statistics in Figure 2 to study the

dynamic between the CPU, Memory-cache, NFS-

write, and the InfiniBand Network subsystems.

These plots clearly reflect the stop-and-go I/O profile

demonstrated in Figure 1; when the usage of memory

cache reaches the 34% threshold, Linux’s Virtual

Memory Management throttles the user application

and starts to flush cached data through NFS writes,

resulting in visible increases in network traffic. With

sufficient cache memory reclaimed, the network

SAND2009-2796C

 2

traffic is stopped, and the CPU and memory cache

usage starts to rise, indicating the start of the next

iteration of application I/O; we see no overlapping

between the application and the network I/O.

Time

Figure 2 Collectl Statistics of The 2.6.16 kernel –

CPU, Memory, NFS-write, and IB Traffic

2.3. The 2.6.26 Kernel

We upgraded the Linux kernel from 2.6.16 to

2.6.25, and 2.6.26 in order to synch up with bug fixes

and new features by kernel developers. We repeated

the same streaming-write benchmark and plotted

collectl statistics in Figure 3 to compare their traffic

profiles. As shown, the original stop-and-go

symptom in the 2.6.16 kernel had been fixed in

2.6.25 and 2.6.26; however, the overall network

efficiency remained sub-optimal at only 1/10 of the

available 16 Gbps bandwidth.

Time

Figure 3, a Snap Shots of Collectl Statics

Comparing the Traffic profile of NFS Streaming

Write under Linux Kernel 2.6.16, 2.6.25, and

2.6.26

2.3.1. I/O Short Circuit Schemes

Continuing to locate causes for the low

performance, we developed two kernel patches to

short circuit the data flow as depicted in Figure 4.

The first patch short-circuits the server-side NFS-

write to bypass the server filesystem and disk I/O.

[CPU]Sys%

0

10

20

30

40

50

60

70

80

90

3
2
:
3
0
.
0

3
2
:
3
0
.
3

3
2
:
3
0
.
6

3
2
:
3
0
.
9

3
2
:
3
1
.
2

3
2
:
3
1
.
5

3
2
:
3
1
.
8

3
2
:
3
2
.
1

3
2
:
3
2
.
4

3
2
:
3
2
.
7

3
2
:
3
3
.
0

3
2
:
3
3
.
3

3
2
:
3
3
.
6

3
2
:
3
3
.
9

3
2
:
3
4
.
2

3
2
:
3
4
.
5

3
2
:
3
4
.
8

3
2
:
3
5
.
1

3
2
:
3
5
.
4

3
2
:
3
5
.
7

3
2
:
3
6
.
0

3
2
:
3
6
.
3

3
2
:
3
6
.
6

3
2
:
3
6
.
9

3
2
:
3
7
.
2

3
2
:
3
7
.
5

3
2
:
3
7
.
8

3
2
:
3
8
.
1

3
2
:
3
8
.
4

3
2
:
3
8
.
7

3
2
:
3
9
.
0

3
2
:
3
9
.
3

3
2
:
3
9
.
6

3
2
:
3
9
.
9

3
2
:
4
0
.
2

3
2
:
4
0
.
5

3
2
:
4
0
.
8

3
2
:
4
1
.
1

3
2
:
4
1
.
4

3
2
:
4
1
.
7

3
2
:
4
2
.
0

3
2
:
4
2
.
3

3
2
:
4
2
.
6

3
2
:
4
2
.
9

3
2
:
4
3
.
2

3
2
:
4
3
.
5

3
2
:
4
3
.
8

3
2
:
4
4
.
1

3
2
:
4
4
.
4

3
2
:
4
4
.
7

[MEM]Cached

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

3
2
:
3
0
.
0

3
2
:
3
0
.
3

3
2
:
3
0
.
6

3
2
:
3
0
.
9

3
2
:
3
1
.
2

3
2
:
3
1
.
5

3
2
:
3
1
.
8

3
2
:
3
2
.
1

3
2
:
3
2
.
4

3
2
:
3
2
.
7

3
2
:
3
3
.
0

3
2
:
3
3
.
3

3
2
:
3
3
.
6

3
2
:
3
3
.
9

3
2
:
3
4
.
2

3
2
:
3
4
.
5

3
2
:
3
4
.
8

3
2
:
3
5
.
1

3
2
:
3
5
.
4

3
2
:
3
5
.
7

3
2
:
3
6
.
0

3
2
:
3
6
.
3

3
2
:
3
6
.
6

3
2
:
3
6
.
9

3
2
:
3
7
.
2

3
2
:
3
7
.
5

3
2
:
3
7
.
8

3
2
:
3
8
.
1

3
2
:
3
8
.
4

3
2
:
3
8
.
7

3
2
:
3
9
.
0

3
2
:
3
9
.
3

3
2
:
3
9
.
6

3
2
:
3
9
.
9

3
2
:
4
0
.
2

3
2
:
4
0
.
5

3
2
:
4
0
.
8

3
2
:
4
1
.
1

3
2
:
4
1
.
4

3
2
:
4
1
.
7

3
2
:
4
2
.
0

3
2
:
4
2
.
3

3
2
:
4
2
.
6

3
2
:
4
2
.
9

3
2
:
4
3
.
2

3
2
:
4
3
.
5

3
2
:
4
3
.
8

3
2
:
4
4
.
1

3
2
:
4
4
.
4

3
2
:
4
4
.
7

[MEM]Slab

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

3
2
:
3
0
.
0

3
2
:
3
0
.
3

3
2
:
3
0
.
6

3
2
:
3
0
.
9

3
2
:
3
1
.
2

3
2
:
3
1
.
5

3
2
:
3
1
.
8

3
2
:
3
2
.
1

3
2
:
3
2
.
4

3
2
:
3
2
.
7

3
2
:
3
3
.
0

3
2
:
3
3
.
3

3
2
:
3
3
.
6

3
2
:
3
3
.
9

3
2
:
3
4
.
2

3
2
:
3
4
.
5

3
2
:
3
4
.
8

3
2
:
3
5
.
1

3
2
:
3
5
.
4

3
2
:
3
5
.
7

3
2
:
3
6
.
0

3
2
:
3
6
.
3

3
2
:
3
6
.
6

3
2
:
3
6
.
9

3
2
:
3
7
.
2

3
2
:
3
7
.
5

3
2
:
3
7
.
8

3
2
:
3
8
.
1

3
2
:
3
8
.
4

3
2
:
3
8
.
7

3
2
:
3
9
.
0

3
2
:
3
9
.
3

3
2
:
3
9
.
6

3
2
:
3
9
.
9

3
2
:
4
0
.
2

3
2
:
4
0
.
5

3
2
:
4
0
.
8

3
2
:
4
1
.
1

3
2
:
4
1
.
4

3
2
:
4
1
.
7

3
2
:
4
2
.
0

3
2
:
4
2
.
3

3
2
:
4
2
.
6

3
2
:
4
2
.
9

3
2
:
4
3
.
2

3
2
:
4
3
.
5

3
2
:
4
3
.
8

3
2
:
4
4
.
1

3
2
:
4
4
.
4

3
2
:
4
4
.
7

[NFS3C]Writes

0

20000

40000

60000

80000

100000

120000

3
2
:
3
0
.
0

3
2
:
3
0
.
3

3
2
:
3
0
.
6

3
2
:
3
0
.
9

3
2
:
3
1
.
2

3
2
:
3
1
.
5

3
2
:
3
1
.
8

3
2
:
3
2
.
1

3
2
:
3
2
.
4

3
2
:
3
2
.
7

3
2
:
3
3
.
0

3
2
:
3
3
.
3

3
2
:
3
3
.
6

3
2
:
3
3
.
9

3
2
:
3
4
.
2

3
2
:
3
4
.
5

3
2
:
3
4
.
8

3
2
:
3
5
.
1

3
2
:
3
5
.
4

3
2
:
3
5
.
7

3
2
:
3
6
.
0

3
2
:
3
6
.
3

3
2
:
3
6
.
6

3
2
:
3
6
.
9

3
2
:
3
7
.
2

3
2
:
3
7
.
5

3
2
:
3
7
.
8

3
2
:
3
8
.
1

3
2
:
3
8
.
4

3
2
:
3
8
.
7

3
2
:
3
9
.
0

3
2
:
3
9
.
3

3
2
:
3
9
.
6

3
2
:
3
9
.
9

3
2
:
4
0
.
2

3
2
:
4
0
.
5

3
2
:
4
0
.
8

3
2
:
4
1
.
1

3
2
:
4
1
.
4

3
2
:
4
1
.
7

3
2
:
4
2
.
0

3
2
:
4
2
.
3

3
2
:
4
2
.
6

3
2
:
4
2
.
9

3
2
:
4
3
.
2

3
2
:
4
3
.
5

3
2
:
4
3
.
8

3
2
:
4
4
.
1

3
2
:
4
4
.
4

3
2
:
4
4
.
7

[IB]OutKB

0

50000

100000

150000

200000

250000

3
2
:
3
0
.
0

3
2
:
3
0
.
3

3
2
:
3
0
.
6

3
2
:
3
0
.
9

3
2
:
3
1
.
2

3
2
:
3
1
.
5

3
2
:
3
1
.
8

3
2
:
3
2
.
1

3
2
:
3
2
.
4

3
2
:
3
2
.
7

3
2
:
3
3
.
0

3
2
:
3
3
.
3

3
2
:
3
3
.
6

3
2
:
3
3
.
9

3
2
:
3
4
.
2

3
2
:
3
4
.
5

3
2
:
3
4
.
8

3
2
:
3
5
.
1

3
2
:
3
5
.
4

3
2
:
3
5
.
7

3
2
:
3
6
.
0

3
2
:
3
6
.
3

3
2
:
3
6
.
6

3
2
:
3
6
.
9

3
2
:
3
7
.
2

3
2
:
3
7
.
5

3
2
:
3
7
.
8

3
2
:
3
8
.
1

3
2
:
3
8
.
4

3
2
:
3
8
.
7

3
2
:
3
9
.
0

3
2
:
3
9
.
3

3
2
:
3
9
.
6

3
2
:
3
9
.
9

3
2
:
4
0
.
2

3
2
:
4
0
.
5

3
2
:
4
0
.
8

3
2
:
4
1
.
1

3
2
:
4
1
.
4

3
2
:
4
1
.
7

3
2
:
4
2
.
0

3
2
:
4
2
.
3

3
2
:
4
2
.
6

3
2
:
4
2
.
9

3
2
:
4
3
.
2

3
2
:
4
3
.
5

3
2
:
4
3
.
8

3
2
:
4
4
.
1

3
2
:
4
4
.
4

3
2
:
4
4
.
7

[CPU]Sys

[MEM]Caced

[MEM]Slab

[NFS3C]Write

[IB]OutKB

 3

This patch stubs the vfs_write operations to prevent

the VFS nfsd_write procedure from being fully

executed, which in effect emulates an infinitely fast

file and disk I/O subsystem on the server. The

second patch removes the RDMA transport from

NFS’s write-path to emulate an infinitely fast

network. It short-circuits only the

NFS3PROC_WRITE_RPC operation, and leaves the

rest of the NFS, RPC, and XDR procedures to

function as usual. Both short-circuits can be toggled

on a running system through a switch implemented in

/proc.

Additionally, we applied a kernel patch by James

Schutt to test the effect of NFS RPC transfer-size

(rsize/wsize) on performance. By default, RDMA

transport, iWARP as well as IB, uses a 32 KB RPC

payload size. The only way to implement larger RPC

requests in the 2.6.25 and 2.6.26 kernel is by

increasing the value of

RPCRDMA_MAX_DATA_SEGS and then

recompile. Note that a bug in the RDMA transport

code under the 2.6.25 and 2.6.26 kernel mandates the

patch in http://marc.info/?l=linux-

nfs&m=121936891515202&w=2 to be applied prior

to this patch in order to make this work correctly.

Also because many stack variables in the kernel are

dimensioned by RPCRDMA_MAX_DATA_SEGS,

using larger than 64 KB RPC’s would require

significant work. We only developed a simplified

patch to provide proof of concept.

Figure 4, NFS Write Path Traversing the Protocol

Stack from Client to Server

All patches developed in this study can be found

in [12].

2.3.2 Server–side Short-circuit

Table 1 summarizes our benchmark results with

the server-side short circuit applied, and with varying

record as well as RPC transfer sizes. As shown, both

the 512KB and the 1MB record-size had a negative

impact on throughput, presumably due to the

overhead of segmentation/reassembly to match the

RPC Transfer size on the client and server.

Increasing the RPC [13] transfer size from 32 KB to

512 KB, however, improved the write performance,

but throughput still maxed at 425MB/s, ~20% of the

available IB bandwidth.

Table 1 Streaming Write Throughput with Server

Side Short Circuit and Varying RPC Transport

Sizes

RPC

Payload

(Bytes)

Throughput (MB/s)

32KB

Record

512KB

Record

1MB

Record

32768 245.60 283.40 281.60

65536 377.00 350.50 293.00

131072 387.50 363.50 306.00

262144 401.40 335.80 305.00

524288 425.00 376.50 312.50

2.3.3. Kernel Profiling

We enabled Oprofile [14] on the 2.6.26 kernel

(including VMM, nfs and ib drivers) to search for

bottlenecks that would explain why, with the short of

NFS write on the server in place, we still only

achieved 425MB/s write rates when the available

bandwidth is 2 GB/second on the IB network. It is

well to remember that Oprofile is primarily

measuring CPU usage in a dual core system and that

in x86 derived systems the CPUs may be taken on

and off line by other hardware on the motherboard or

the kernel itself. Thus, accounting for all CPU time

is not equivalent to accounting for all wall clock

time. Our results do not point a finger at any

particular function as a bottleneck in the kernel. In

several areas of the kernel Oprofile collects only

incomplete data; in these areas samples are dropped

reliably, independent of the buffer sizes or sampling

rates used to collect profile data. The call graph

visualization of the profiling data during a write

experiment illustrates the deeply nested and

massively tangled nature of the code paths that

attempt to balance file I/O and other processes on the

commodity multicore Linux machine. The Oprofile

Summary Report, however, did report over 20% of

total elapsed time spent copying data from user to

kernel space.

With the server-side short circuit applied, we ran

iozone using an 8 MB record and toggled between

bypassing (with o_direct) and not bypassing (without

o_direct) data-copying.. Without “o_direct” to

bypass data-copying, Oprofile reported 22% of

elapsed time spent copying data, versus zero time

RPC

RDMA

NFS

XDR

Drive
r

TCP/IP

IB

Application

RPC

RDMA

NFS

XDR

Driver
TCP/IP

IB

NFSD

VFS

VFS
FS

Clien

t
Server

 4

with “o_direct”, with a throughput improvement from

425 to 539 MB/s, a 28% gain.

2.3.4. RPC RDMA Transport

Figure 5 depicts the RDMA mechanism

employed by the NFS RPC transport. As shown,

large data segments are chunked into Linux page size

(4 KB) first. A descriptor consisting of pointers to

these pages is then generated and pre-pended to the

RPC write request before its transmission. Upon

receipt of this request, the server’s RPC layer passes

the client-side chunk descriptor to its IB hardware for

RDMA-reads of page-size data chunks from client to

its buffer cache; RDMA operations on page-size

chunks is not at all optimized considering the RDMA

overhead. In this case, the 32KB RPC data payload

required 8 individual RMDA transfers instead of 1.

Because today’s IB hardware doesn’t support scatter-

and-gather to handle discontinuous physical memory,

RPC is limited to transferring content of page-size

memory locations per RDMA operation. A patch [15]

is available through the NFS kernel community that

implements a software solution before the next

generation IB hardware becomes available. We

didn’t pursue the software solution in our study

because our preliminary result demonstrated very

little performance gain; we believe the RPC RDMA

mechanism, though not efficient, is not the

performance bottleneck in the NFS write-path at the

moment.

.

Figure 5, NFS RPC RDMA Mechanism

2.3.5. Client-side Short-circuit

To further isolate NFS’s performance

bottlenecks, we applied a client-side patch that stubs

the RPC write and removes the RPC RDMA

transport from the write-path. With this patch, we

hope to understand the impact of interactions

between the Linux Virtual File System, Network File

System, and Virtual Memory Management on NFS’s

streaming-write performance. Figure 5 plots the

results of an iozone test suite in 3-D, with the x-axis

reflecting the varying record size in KB, y-axis the

iozone throughput in KB/s, and z-axis the file-size in

KB. This experiment evaluated the effects on

throughput of record-sizes ranging from 4K to 16M

Bytes, and file-size ranging from 64K to 2G Bytes.

As predicted, we found 32KB the optimal record-size

because it matches RPC’s default payload size.

Additionally, we found that file sizes less than 256

Mbytes can yield up to 1.25GB/s of throughput;

however, performance dropped drastically beyond

this point to 700MB/s, and gradually to 500MB/s as

the file-size reaching 2 GB, reflecting the heavy

impact on streaming-write due to the interactions

among Linux’s VFS, NFS, and VMM. These

complex interactions apparently impose a limit on

further improvement, which is substantially less that

the theoretical streaming bandwidth of the fast

interconnects.

Figure 5, Results of IOZONE Test Suite in 3-D

3. Summary Results

The section summarizes the improvements we

achieved on NFS’s streaming-write using

optimization techniques developed throughout this

work. Additionally, we repeated our benchmark

without the server- and client-side short-circuits in

order to verify that these techniques also improve

NFS’s end-to-end performance, from user application

on the client to file and disk I/O on the server. A

summary of our improvement is presented in Figure

6. As shown, we obtained 130 MB/s of end-to-end

throughput from a previous study with the NFS over

RDMA distributed with the 2.6.16 kernel. The kernel

community subsequently improved the performance

to 212 MB/s through bug fixes and advanced features

in the 2.6.26 kernel. We increased the RPC RDMA

payload from 32KB to 512KB for better network

efficiency, which further improved the write rate to

250MB/s. Because Oprofile revealed heavy penalties

copying user data to kernel buffer, we experimented

 5

with o_direct during streaming-write, and were able

to increase the throughput to 315 MB/s.

Figure 6 includes the short-circuit results which

strongly suggest that the bottleneck is not on the

server or the RDMA data transfers. We applied the

server short-circuit to emulate infinitely fast server

file and disk I/O, and achieved 425MB/s with the

default 32KB RPC payload and without o_direct;

with o_direct, on the other hand, our throughput

reached 512 MB/s. With the server patch applied, we

then increased the RPC payload to 512KB, and were

able to achieve 469MB/s without o_direct, and

528MB/s with o_direct. Because 528MB/s is still

only ¼ of the network’s available bandwidth, we

removed the RDMA transport from NFS’s write-path

to investigate whether RPC RDMA is the

performance bottleneck. With the client side short

circuit, we repeated the benchmark without o_direct

and achieved only ~500 MB/s, even though the

memory bandwidth is 2.7 GB/s, reflecting a

performance bottleneck in the interactions on the

NFS client among the Linux VFS, NFS, and VMM

when user data begins to full the VFS buffer cache.

Figure 6, Summary of bandwidth measurements

4. Conclusion and Future Work

The goal of this project was to increase the

efficiency of a high-speed, low-latency network with

offload data transfer technologies such as

NFS/RDMA and pNFS. In this we were successful to

a large degree; the accumulated changes improved

increasing efficiency in excess of 30%. The

experiments that “short-circuited” the actual wire

transfers showed that the bandwidth of the transport

software stack on the client-side, alone, is limited to

something on the order of 500 MB/s and, so, we have

achieved a substantial improvement. However, even

with this significant improvement, it is still only a

meager fraction of the fabric capability.

The lack of a real improvement when employing

RDMA seems reasonably attributed to the IB kernel

stack. Future work could focus on that stack. In user-

space this stack has proven able to garner nearly all

of the wire bandwidth. Why, in kernel space, this

constriction appears should be explained and

remedied. However, it should be noted that our

experiments in this direction do not entirely exclude

the client stack. The fast-path hook for RDMA

happens at a relatively deep point in the stack.

Perhaps pNFS could better leverage the RDMA

capabilities of the hardware as its fast-path hook is

far higher than the RPC transport.

5. Acknowledgement

We’d like to express our appreciation to Tom

Tucker from Open Grid Computing, Tom Talpey

from Network Appliance, and James Schutt from

Sandia National Laboratories for sharing their Kernel

expertise.

 6

6. References

[1] Daniel P. Bovet and Marco Cesati,

“Understanding the Linux Kernel, Third Edition:

The Heart of Linux 2.6--From I/O Ports to

Process Management” O’Reilly, November 22,

2005.

[2] William T. Futral, “InfiniBand Architecture:

Development and Deployment – A Strategic

Guide to Server I/O Solutions”, Intel Press,

August, 2001.

[3] R. Reici, P. Culley, D. Garcia, and J. Hilland,

“An RDMA protocol Specification”, Draft-ietf-

rddp-rdmap-01, April, 2004.

[4] Dean Hildebrand, Lee Ward, and Peter

Honeyman, “Large Files, Small Writes, and

pNFS”, Proceedings of the 20
th

 ACM

International Conference of Supercomputing,

June 2006.

[5] B. Halevy and B. Welch, “Object-based pNFS

Operations”, Draft-ietf-nfsv4-pnfs-obj-12,

December, 2008

[6] Daniel P. Bovet and Marco Cesati,

“Understanding the Linux Kernel, Third Edition:

The Heart of Linux 2.6--From I/O Ports to

Process Management”, O’Reilly, November 22,

2005, Pp. 328-371.

[7] Daniel P. Bovet and Marco Cesati,

“Understanding the Linux Kernel, Third Edition:

The Heart of Linux 2.6--From I/O Ports to

Process Management”, O’Reilly, November 22,

2005, Pp. 158-193.

[8] Helen Y. Chen, et al, “NFS over RDMA – IB

and iWARP”, OpenFabrics Sonoma Workshop

at, May 1, 2007

[9] http://collectl.sourceforge.net/

[10]Daniel P. Bovet and Marco Cesati,

“Understanding the Linux Kernel, Third Edition:

The Heart of Linux 2.6--From I/O Ports to

Process Management”, O’Reilly, November 22,

2005, P. 330.

[11] http://www.iozone.org/

[12] http://sourceforge.net/projects/hpcfs/

[13] R. Srinivasan, RPC: Remote Procedure Call

Protocol Specification Version 2, IETF RFC

1832, August 1995.

[14] http://sourceforge.net/projects/oprofile/

[15] git://git.linux-nfs.org/projects/tomtucker/xprt-

switch-2.6.git.

http://collectl.sourceforge.net/
http://www.iozone.org/
http://sourceforge.net/projects/hpcfs/
http://sourceforge.net/projects/oprofile/

