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Measuring soil moisture and snow pack with 
cosmic-ray neutrons Darin Desilets (6312)

Project Purpose, Goals and 
Approach

To develop a cosmic-ray soil 
moisture/snow monitoring technique 
that operates at a scale intermediate
between satellite remote sensing and 

point measurements

Significance of Results
The cosmic-ray probe can do 

something that nothing else can: 
average moisture/snow over tens 

of hectares

R&D Goals
• Quantify the sensitivity, sample area, 

penetration depth and correction 
factors

• Demonstrate the technique in the field
• Develop new techniques

Key Accomplishments
• Development of theory describing sample 

area, penetration depth and calibration 
• Installation of probes at Valles Caldera, 

Santa Fe paired watersheds

SAND2009-5729C
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Why measure soil moisture?

• Modeling weather/climate
E.g., drought in central europe, North American 

monsoon

• Forecasting streamflow
NOAA/NWS, USDA/NRCS

• Agriculture
especially important for irrigation scheduling

• Calibration of satellite sensors
SMAP (NASA) and SMOS (ESA)
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Soil moisture and the problem of scale

Passive microwave
(e.g. NASA SMAP, 
ESA SMOS)
• global coverage
• poor resolution
• many complications
• shallow penetration (2-5 cm)

Invasive probes
(e.g. TDR, 
capacitance, neutron)
• sparse coverage
• highly accurate
• disturbs medium

big scale (10s of km)small scale (cm)

USDA SCAN network
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Significance of snow pack

• 50-80% of water consumed in western U.S. is from 
snow-fed rivers

• Seasonal snow pack critical to 
– Irrigated agriculture
– Hydropower
– Municipal water supplies
– Flood forecasting
– Ecology/recreation

• Columbia, Colorado rivers and Rio Grande are good 
examples of snow-fed rivers in the west
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Measuring snow pack

• Snow pillow
SWE at a point

• Satellite
snow extent

• Active gamma attenuation
attenuation of gammas from pt 
source

• Aerial gamma surveys
(eg. NOAA) – passive, but only up 
to 30 cm of SWE

USDA SNOTEL network
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Cosmic-ray technique in a nutshell

• Passive
utilizes cosmic-ray neutrons

• Non-invasive
does not disturb soil

• Moderately expensive
$10-20k

• Moderate power consumption
<0.25 W

• Small data sets
KB per day

• Can monitor both soil moisture 
and snow
…but not simultaneously

• Large footprint
340 m radius (86% of counts)
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Cosmic rays

Particle cascade simulated in MCNPX
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Sensitivity to soil moisture
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Sensitivity to soil moisture

Relative neutron intensity
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Slowing down length of a neutron
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Radius of influence: MCNPX
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Radius of influence: field data

Waikoloa, Hawaii
January, 2008

neutron detectors
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Radius of influence: field data
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Radius of influence: field data

Distance from sea (m)
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Center pivot irrigation

• Cosmic-ray probe covers about one “quarter 
section”

200m

Center pivot irrigation over the 
Ogallala Aquifer (west Texas)
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Summary of characteristics

• Radius of influence
– Proportional to slowing down length 
– ~170m at sea level
– Inversely proportional to barometric pressure
– Independent of moisture content
– Increases with distance above ground

• Penetration depth
– Proportional to neutron mean free path in soil
– 10-40 cm depending on water content

• Precision
– Depends strongly on land elevation and detector dimensions
– Counting statistics: Poissonian, i.e.  N1/2

– Precision: typically ~3% with integration time of ~1 hour
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Neutron detection system: 3He tubes

7
6

+V

- +

Preamp
Amp

Shaping

1 2

Counter

C

Pulse height 
discrimination

High 
voltage

These detectors are “dumb”, 
i.e. no directional of spectral or 
directional information

Detector

3He + n 3H+p    
Q=0.2 MeV



18

Field instrument

• Two counters: one bare, 
one moderated with 1”
HDPE

• Solar powered
• Ancillary measurements: 

barometric pressure, 
temperature
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Field sites

Valles Caldera 
National Preserve Santa Fe Municipal

Watershed
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Valles Caldera

Selected for:
• Elevation (>3000 m) 
• Presence of nearby meteorological equipment
• Gauged streams
• Good location for snow pillow
• Accessibility and convenience

Field site

Eddy covariance tower
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Ground truthing: snow pillow

Richard Armijo, USDA/NRCS
NM State Snow Surveyer
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Instrument trailer
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Submerged detectors
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Buried probe vs. snow pillow
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Buried probe vs. snow pillow
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Winter time series
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Snow event at Valles Caldera

2008-2009

26-Dec  30-Dec  03-Jan  07-Jan  11-Jan  

SW
E 

(c
m

)

12

14

16

18

20

N
eu

tro
n 

co
un

ts
 p

er
 1

5 
m

in
ut

es

1300

1400

1500

1600

1700

1800

Snow Pillow

Cosmic-ray probe



28

Snow on the roof

2009
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How sensitive to local effects?

Similar responses from 
submerged and trailer 
probes

Trailer probe

submerged probe
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Diurnal cycle?
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Spring-summer transition

• How do you distinguish rain 
events from snow?
– Air temperature
– Ultrasonic depth gauge
– Thermal neutron 

enhancement
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Conclusions from VCNP

• Subaerial probe
– Bare counter especially sensitive to snow overhead, but…
– Otherwise, fairly insensitive to presence of non-hydrogenous materials

• Buried probe
– Excellent for point measurements of SWE

• low cost (<$6k)
• portable
• easy to install

– Bare/moderated counter setup discriminates snow from soil moisture
• Optimal configuration for snowy environments: one buried 

counter (bare), one subaerial counter
• Next year:

– Does the signal saturate after 10-15 cm of SWE?
– Will we get thermal neutron peak w/o roof effect?



33

Santa Fe paired basin study

Treated basin Control basin
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Measurements

Darin Desilets (Sandia):
• Moisture/snow pack with cosmic-ray probe
• Campaign style snow and soil moisture surveys for 

calibration/ground truthing

Amy Lewis/John Kay (DBS&A):
• Hourly discharge
• Daily chloride load
• Precipitation
• Stream discharge

Also nearby: Elk Cabin SNOTEL, USDA RAWS
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Santa Fe data: SF1, May-July 2009
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The future: neutron scatter camera

• 60 degree field of view
• Ability to “image” neutron fields
• Potential to measure canopy intercepted water
• Potential for measuring soil moisture at scale 

of tens of meters Nick’s neutron scatter 
camera

TEAMS Facility, KAFB Flux map
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Permafrost and global warming

Field measurements in the arctic?
• Facilities and contacts: DOE ARM facility (Barrow, 

Alaska)
• Technology leadership at Sandia in radiation 

monitoring technology
• New DOE priorities in climate change/carbon cycle
• Advanced modeling capabilities at Sandia
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Summary

• Cosmic-ray method operates at a scale covering 
tens of hectares

• Calibration is robust across different soil types
• Field data support the use of cosmic-ray neutrons 

for soil moisture and snow measurements
• Buried probes are a viable alternative to snow pillow 

for point measurements
• Method is ready for research applications—

especially those where dynamics are important 
• Other neutron detection methods will open new 

possibilities


