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Bond-Based Peridynamics

Peridynamic “Bond-based” Model (2000) Body B

pli[x,t] = /H f(ulx',t] — ulx, t],x’ —x)dVy + b[x, ]

H
Shortcomings:

e Must recast constitutive model in terms of pair-wise force
functional (as opposed to stress-strain)

* Poisson ratio 1/4 (not entirely true)

e Inelastic behavior a result of volumetric strain (not always
physical, think J, metal)
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Ref: SA Silling. Reformulation of Elasticity Theory for Discontinuities and Long-Range Rorces. Journal of San_dia
the Mechanics and Physics of Solids, 48(1):175-209, 2000. National
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State-Based Peridynamics

Peridynamic “State-based” Model (2007)

Body B

pii[x, f] = /H (T, f)(x — x) — T, ] (x — x)}dVie + blx,
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Non-ordinary state based
Ordinary state based
Ref: S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic States and Constitutive Sandia
//#‘ V"A"/s)'cgé‘x Modeling. Journal of Elasticity, 88:151-184 (2007). National
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Constitutive Models

Provide Force-Vector State Field in Terms of Deformation Vector State

Where, Y = (x"+u(x’,t)) — (x+u(x,t))

Examples:
Linear Peridynamic Fluid Linear Peridynamic Solid
3k 6 3k 6 15
t= —wz t="""wz+ el
m m m

Ref: S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic States and Constitutive
Modeling. Journal of Elasticity, 88:151-184 (2007).

Given Y can we define a deformation gradient, F ?
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Def. Gradient vs. Def. State
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Kinematics

Shape Tensor

Kx, t] = /H w (1€]) (€ ® €) Ve

Deformation Gradient Tensor

Fix, {] — [ [ (D (e o €) ave|

Ref: S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic States and Constitutive
Modeling. Journal of Elasticity, 88:151-184 (2007).

How well does this work?
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Y=F,¢§ Calculate

Assume,

i

= Fip

Fou’c

For all tests cases:
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Proof

Let Xz‘ = Fip é.p

Fy - [ /H w (€) Fip & Ve | K}
_F [ /H w (€) & ErdVe | K,
= Fz‘pKPkKk_jl
— Ez 6p'

Ref: S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic States and Constitutive
Modeling. Journal of Elasticity, 88:151-184 (2007).
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Conversion of Classical Models to State
Based Material Models

Therefore, T = T(F)
Given the Cauchy stress 7 we can find the first Piola-Kirchoff stress
o=det(F)TF 1

And the Force-vector State

T(€) =w(€))o K¢

Ref: S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic States and Constitutive

- Modeling. Journal of Elasticity, 88:151-184 (2007). Sandl a
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Viscoplasticity

Yield Surface
o = -
g Eg
P 1/n " 9
Where, g=Y (1 + ?6) and " =4/3 €]

Associated Flow Rule
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Uniaxial Tension

)

w
<
i i)

e

<
(

i'
§

450

400

350

True Stress (MPa)
[~ [~} w
S & &
o o o

p—t
(VA
o

100 |

50 |

Data ref: B. Song, W.W. Chen, and D.J. Frew. Split-Hopkinson Bar Testing of an Aluminum with Pulse Shaping.
In Proceedings of the JSSME/ASME International Conference on Materials and Processing, Honolulu,
HI, October 2002. ASME.

Emu Simulation
6061-T6 Data (Song 2002)

0.1
True Strain (m/m)

Data was taken from SHPB tests of 6061-T6 Aluminum at a
nominal engineering strain rate of 8300/s
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Taylor Impact Test
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Taylor Impact - Length
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Data ref: C.E. Anderson Jr, A.E. Nicholls, I.S. Chocron, and R.A. Ryckman. Taylor Anvil Impact. In AIP
Conference Proceedings, volume 845, page 1367. AIP, 2006.
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Taylor Impact - Diameter
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Data ref: C.E. Anderson Jr, A.E. Nicholls, I.S. Chocron, and R.A. Ryckman. Taylor Anvil Impact. In AIP
Conference Proceedings, volume 845, page 1367. AIP, 2006.
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Taylor Impact - DSL Image

DSL Image

Emu Simulation

Comparison at 289 m/s impact speed (6061-T6 Aluminum)

PR P Data ref: C.E. Anderson Jr, A.E. Nicholls, I.S. Chocron, and R.A. Ryckman. Taylor Anvil Impact. In AIP
VAN M Conference Proceedings, volume 845, page 1367. AIP, 2006.

nal Nuclear Security Administration

Sandia
National
Laboratories



Taylor Impact Simulation

Eq. Plastic Strain
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Significance

* Not “curve-fitting” bond models
* Use any constitutive model
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Can still do material failure...

damage
1.00
0.75
0.50
0.25
0.00

Sandia
n 'A" b.c;o’.‘ National
AR Laboratories




