
Combining System Characterization and
Novel Execution Models to Achieve
Scalable Robust Computing

H. Adalsteinsson, J. Brandt, B. Debusschere,
A. Gentile, J. Mayo, P. Pebay, D. Thompson, M.

Wong

Sandia National Laboratories

http://ovis.ca.sandia.gov

SAND2009-3182C

Motivation

•Platform growth in size and complexity
– ~ 100 cores per CPU
– Heterogeneous CPUs
– Multiple CPUs per node

• Hierarchical access to memory, communications, etc.

– Thousands of nodes
– Millions of cores

•Expected system wide decrease in mean time
to component failure (~constant per
component)

•Many current MPI applications are not robust
to component failure and don’t take platform
non-uniformity into account

– Hangs if one process fails to reach a barrier (can happen if underlying
component failure occurs)

– Decompositions don’t take resources/hierarchies into account  imbalance

Big Goal

• Infinitely scalable and 100% efficient applications and
platforms

Moderate but attainable Goals

• Understand current and future architectures

– Failure modes and root causes

– Associated failure and pre-failure symptoms

• Detect

• Predict

– Monitor and communicate system state and state change
(Granularity?)

• System/Resource manager

• Application

– Implications of hierarchical and heterogeneous resources on
application performance

• Propagation of faults

Moderate but attainable Goals Cont.

• Monitoring and analysis infrastructure that can work hand in
hand with the system and application to facilitate high
performance and resilience to faults

• Novel execution models that are able to take advantage of
new and future platform architectures and leverage
advanced monitoring and analysis capabilities

Current interrelated Projects
aligned with goals

• OVIS: A tool for scalable real time monitoring and analysis

• Quantification of ability to predict failures

• Novel execution models to enable scalable, reliable, and
self-balancing applications

OVIS Goals

• Scalable exploration of measurable attributes via both visual
and quantitative analysis

• Run time anomaly detection
– Hypothesize that statistical outliers can be an indication of impending failure

• Component health evaluation
– Relative

– Degradation

• Inference based root cause analysis

• Probability based failure prediction

• Interaction with
– Resource management

– Applications

– System administrators

Features of current release (2.0)

• Visual analysis

– Realistic rendering of physical system

– Components colored by relative magnitude of measurements

– Play live feeds or historic data to see temporal variation

• Analysis engines

– Descriptive statistics

– Multi-variate correlative statistics

– Bayesian inference

• Learn and Monitor modes of operation

OVIS (TLCC)

OVIS (Red Storm)

Examples of Interesting Component
Related Features

Power supply voltage
histogram over single component

Node OV

(outlier) Node SV

(large std)

Temperature Histogram (log scale)

Node OVNode SV

Node LT

(low
probability)

Two Variable Temperature Plot
with Contours of Relative Probability

Challenges

• Long term high frequency (sample every ~seconds)
collection of component related data

– On Whitney ~one million data points per minute with a 5 second sampling interval  ~10GB/day

• Collection of detailed failure data

• Establishing causal relationships between failures and
perhaps inter-related behaviors of 10s of variables

• Defining attributes not currently measured that if attainable
would significantly contribute to failure prediction

• Quantifying ability to use component characteristic
behaviors to predict failures

• Timely feedback to system and application

Quantify Ability to Predict Failures

• Characterization of multivariate distributions

• Time series analysis

• Classifier for identifying events of interest

• Attribute selection

• Root cause analysis via Inference techniques

• Effectiveness scoring algorithms and metrics

Novel execution models to enable scalable,
reliable, and self-balancing applications

HW
Monitoring

and
Analysis
System

Application

Resource
Manager

HPC System
HPC System and
Application
State Information

2) Resource
requirements

3) Resource evaluation
(e.g., resource reliability,
topology)

4) Preferential
placement of
application tasks
and resources1) Resource

requirements

Preferential
Resource Allocation

Resource Reallocation
Upon Failure Prediction

HW
Monitoring

and
Analysis
System

Resource
Manager

HPC System
HPC System and
Application
State Information

1) Resource
degradation
notification

2) Application task
or resource reallocation

Application

Novel Execution Models

HW
Monitoring

and
Analysis
System HPC System

HPC System and
Application
State Information

1) Subset of application tasks complete
or require additional resources (Red)

2) Application queries
for remaining task
(Orange)
or system state

3) Analysis
system
responds
with state
information

4) Application
self-balances
(e.g.,
redistribution
(Gold) or
Stealing
(Orange tasks
to Red)

Application

Architecture

• Hybrid model for analysis

- external: memory and state

heavy analyses - generate
models, generate distributions

- local: model comparisons,
small peer group,
allow reasonable uncertainty
based on limited world view

Challenges

• Determining criteria for task-to-resource mapping
– Heterogeneous and hierarchical environment
– Characterization of relevant information

• Availability of resource state information

• Infrastructure for timely analysis + resource manager +
application interaction

Future/Ongoing Work

• Quantification of ability to predict failures
– Hardware numerical data collection
– Failure modes, symptoms
– Analysis
– Missing information identification

• Infrastructure to support up to date resource state
knowledge with ability to share that information with both
system and application in a useable time frame
– Small memory footprint agent based

• Low latency interaction
• Time vs. global accuracy tradeoff

– Description of resource state/requirements
• Total memory, memory bandwidth, compute intensity, etc.

– Duration of relevancy of historical data

Questions?

http://ovis.ca.sandia.gov

Demo in ASC booth at SC08

