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# Outline

« Meso-scale Modeling Methods for Nanoparticle
Suspension Flows
—SRD, DPD, FLD, FEM for solvent
—DEM with LAMMPS code for particles (www.lammps.sandia.gov)
« Sample preparation and Rheological Testing
—Charged polystyrene in water. 950 nm
—Shear rheology (steady and oscillatory)

« Equilibrium structure properties, diffusivities, shear
viscosity
—Methods cross compare (performance and agreement)

» VValidation results
e Conclusions and Outlook



esoscale Models of Suspension Dynamics
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‘ Mesoscale Models of Suspension

Structure/Dynamics- Charged Systems

Impressed macroflow
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Overview of Nanoparticle Flow Project

Colloidal (Nano) Particle Mechanics

Methodology (Algorithms, Platforms, Requirements)
*N-body Newton-equation solver (translation/rotation)
*N-body Equilibrium Solver (long time)
+Distributed/parallel or of suitable performance
eInterface to add any effective pair-wise potentials
*LAMMPS or similar, expandable platform
*LAMMPS infrastructure changes (Particle Layers)
*Capable of handling massive contact/aspherics
*10000 Particles, 3D.

Long, Intermediate Range Interaction Models
Effective potential development
*Solvent effects (solvation, brownian)
Particle temperature (thermostat)
*Polymer brush effects (potentials)- attributes
*Coarse graining with aggregates

Colloidal Contact Models
*Minorly aspherical
*Composite Particle structures
*Generally aspherical
*Elastic/Hertzian
*Viscoelastic

Flow Solver

Algorithms, Platforms, Requirements

*High performance (parallel, or whatever)
*ARIA, Goma, other
*Multiphase flow approach (effective Darcy Law, ...)
*Numerically stable at contact/near contact (stress singularities)
*FEM/FDM
*ARIA, Goma (Explicit, Semilmplicit, body-fitted grid/imbedded)
sStoksian Dyn. (Specialized)
*BEM (Specialized)
*SRD (Pe of colloid part O(1). Too expensive otherwise.
*DPD (limited Peformance Depletion forces)
| B (depletion forces)
*FLD - Frame-invariant pair-drag model

Subgrid Models (contact/near contact)

*Dominate viscous modes
Effect of polymer graft
Effect of surface roughnes
*Aspherical

Methodology

Active effort
Eliminated per requirements

Platform

Coupled Multiphase Solver

*CDFEM/DLM/Distributed volumetric source (Glowinski)
*Body fitted grids: remeshing and remapping as needed)
*Hybrid scheme: Imbedded interfaces + one-level adaptivity
to capture surface

eIntrinsic: BEM, Stoksian Dynamic

sImplicit Solvent

*Explicit coarse-grained solvent/colloid collision

*LAMMPS
*ARIA
*Home grown




< (] ©  Slipping Plane

Charged
Particle f Diffuse
e i o  DoubleLayer
Condensed
Countenons |
Stermn i —
Layer :
Distance from surface
. electrostatic i
e.g. Integration to Hamaker’s Structural °golmputa|tlonal standoffs
equation and DLVO . *Polymer layer parameters
representation *Screening layer thickness

«Structural constants (polymer
and hard sphere)

Blobs->SRD/DPD
Dual particle approach

Continuum

are needed to see this picture.

QuickTime™ and a
D > Motion JPEG OpenDML decompressor

*polmer/solvent/particle



www.lammps.sandia.gov

ework + Methods Implemented and Tested

LAMMPS - DEM Solver

“COLLOID” Package for Pairwise Potentials
(e.g. DLVO)

L EXTERNAL HYDRODYNAMICS
SOLVERS

MEZZO (ARIA) - Incompressible
Finite element flow solver

[ —

LAMMPS PACKAGES FOR COARSE-
GRAINED EXPLICIT HYDRODYNAMICS

DPD - Dissipative Particle Dynamics

*Explicit Solvent “particles”. Molecular dynamics
framework. Solvent potentials.

*Advantages: no grid. Full HI,

Disadvantages: relatively more expensive.
Difficult to map to real system (coarse grained)

SRD - Stochastic Rotation Dynamics

*Explicit Solvent “particles”. Molecular dynamics
framework

*Advantages: Full HI. Highly scalable. Intrinsic
Brownian.

*Disadvantages: Difficult to map to real system

*Coupled with LAMMPS through
overset grid CDFEM.

*Advantages: completely general.

Disadvantages: performance?

LAMMPS PACKAGES FOR
IMPLICIT HYDRODYNAMICS

SD - Stokesian Dynamics with FLD
simplification

*Ball-Melrose pair-drag models and
FLD. Implicit, explicit integrator.
Hydro through pairwise interactions
and Long-range isotropic tensor

«Advantages: Scalable.

*Disadvantages: spherical, needs
tuning




SRD - Stochastic Rotation Dynamics
MPCD - Multi-Particle Collision Dynamics

*SRD is a point particle based S T~ T
fluid (mass, velocity), wherein [ N ,\; VN /
the fluid interacts through L - " f )
collision operations N et
*Conserves linear momentum \ 7: RVANR J
*Produces fluctuating S —~ |
hydrodynamic behavior \: 7t | N\
*Computational efficient w SN N A

-No pair wise potential o L

-SRD rotation does not limit

time step

-103 improvement over
explicit Lennard-Jones
solvent

390 nm charged polystyrene

In water being sheared (500 colloids+
A. Mal ts, R. Kapral, J. Chem. Phys. 110, 8605 (1999 .
alevanets, apral, J. Chem. Phys. 110, ( ) 400000 srd particles)
A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000)




DPD - Dissipative Particle Dynamics

¢ Approach similar to Non-equilibrium Molecular Dynamics

— Apply driving force
— Measure response
. i i i QuickTime™ and a
For suspension viscosity use Couette flow TIFF (Uncompressed) decompressor
— Apply known shear rate are needed to see this picture.

— Measure system stresses
» Use Lees-Edwards BC and DPD thermostat
» Two types of particles
— Solid (larger)
— Fluid (smaller)
* Interaction forces
— Solid-solid
* DLVO theory for colloids o
. . QuickTime™ and a
— Solid-fluid TIFF (Uncompressed) decompressor
» Standard DPD forces from literature are needed fo see this picture.
* Currently working on highly viscous fluid
— Fluid-fluid interactions
» Standard from literature (Groot-Warren)
J.M. V. A. Koelman and P. J. Hoogerbrugge, NDynamics Simulations of hard-sphere
suspensions under steady shearO, Europhys. Lett., 21, 363-368 (1993).

R. D. Groot and P. B. Warren, NDissipative particle dynamics: Bridging the gap between
atomistic and mesoscopic simulationO,J. Chem. Phys. 107, 4423-4435 (1997).



i FLD - Fast Lubrication Dynamics

Higdon, Kumar et al. UIUC

Hydrodynamic Interaction

PME Stokesian Dynamics O(N log N)

= (I — R)*IRLB + Riub

nm charged polystyrene

In water being sheared into phase

Fast Lubrication Dynamics O(N) F"

R — RU _I_ R§ J eparation

Isotropic Constant OFLD~1/0 O O

5-logd FLD ~ 1/ & + In(1/ 8)

Wednesday, 21 October, 10:10 AM. Paper Number - SC32 0

Session Suspensions and Colloids. A. Kumar and J. Higdon
Charge effects on microstructure, rheology and order-disorder transitions for sheared colloidal crystals and suspensions



‘ CDFEM and Fluctuating Hydro

and Colloidal Dynamics with Sierra/Mezzo

» Coupled Aria and LAMMPS in Mezzo
Monodisperse spheres

p;=10.6
kyT = 1.0
v =1.67

« Can do 3D, no problem
» Parallel, no problem
* Currently

— Quasi-static fluid (creeping Stokes) - novel
velocity/pressure decoupling solver

— Explicit time integration of colloid dynamics
At
vV = v L RV + YT
m

B

At

QuickTime™ and a
Motion JPEG OpenDML decompressor
are needed to see this picture.

QuickTime™ and a
Motion JPEG OpenDML decompressor
are needed to see this picture.



“Validation Tests, Experimental Program

« System Characteristics

Bangs Labs. Nominally 950 nm monodisperse. Required 0.003M SDS surfactant
for stability. Zeta potentials measured with Malvern Zetasizer ZS (Light-scattering
velocimetry)

Salt Concentration K Yz T
le-4 M 3.25¢7m’ 112.4 mV 114 mV
le-3M 1.03e8 m™ 116.6 mV 118mV
le-2 M 3.25¢8 m’ 124.2 mV 125 mV

0 = e kT sinh(~ 0, t - ZEKT [sinh(
e

eV, 2 e, l: egkT
2KT)+K_atanh(2KT)J x 1000e’N ¢,
« Particle Diffusivities

BASF: Measurements forthcoming.

* Dynamic Tests
—Shear/Oscillatory. RFS Rheometer (TA Instruments).

—Viscosity is reproducible, though data is very scattered at low shear rates (No indication of
settling or aggregation)

—Preshear at steady shear rate 10 s™! for 300 seconds.
—Run a shear rate step test for 60s each at 1 s, 10 s, 100 s', and 10 s
—Run a shear rate step test for 60s each at 100 s™', 200 s*1, 300 s*', and 500 s™.



Viscosity Measurements

/40 vol %

0
QuickTime™ and a /30 vol %

TIFF (Uncompressed) decompressor
are needed to see this picture.
P - 20vol%



get Physical Parameters and Simulation

Parameters
 Particle diameter — 950 nm i o
« Particle density — 1050 kg/m? A I — o
« Surface potential — 0.112-0.124 V " ' \\\ — - -voomn
 Solvent viscosity — 0.001 Pa-sec ] ll ‘\
« Solvent density — 1000 kg/m? 0 :

1'|l.05 1‘.1 1.‘1 ‘ 1.‘25 113 1.55 1.4 1.45 1
Temperature — 298 K 051
Hamaker constant — 1.37E-20 ] 1

Nominal Particle volume fraction — 0.30-151

-2

Relative separation (r / 2a)

2 2 2 42
UVdW,M (r): B Agj} 2a N 2a N ln(r da ]J

er—4a2 7 r’

37800 7 | (r—2a) (r+2a) r

4 kT :
Ue,(r)z 64 ik levzgz(oo)al//o o (20)

A, of|r’=l4ar+54a’> r’*+4ar+54a° _r’-30a’
Uvdw, rep(r ):




get Colloidal Dispersion Properties for V&V

Equilibrium Structure Properties

Pair distribution function, Coordination number, Cluster size
distribution, Nearest neighbor distance, System energy per colloid, Cell
density distribution, Order parameter

Particle Mobility - Short-time and long-time diffusivity
Measure mean-square displacement

[ ]
Mean Square Displacement (X(t) — X(0))*2
o - © @

Shear viscosity (steady)
TriClinic Deforming Box,
Muller-Plathe for bulk shear

mmmmmmmmmmmmmmmmmmmmmmmmmm

G, G
Triclinic deforming box - FLD only



\

Equilibration

* Monte Carlo Simulations - System Energy per Colloid. Volume Fraction 0.3

2.5
—Cluster
- FCC 5
~Random
1.5
=
&
] 0.5
&
= 0
| 0.0001 S, 0.001 0.01
iy 0.5
T-"-\.\_ o
=
1
SaJt concentration (n1) -1.5

Under 5 x10* M salt concentrat ion, the systems can arrest at
a lo cal equ ilibrium.



Simulation Parameters

*Method ) p U[r] T No. Colloids [ Pe/Cld*
*FLD 0.001 Pa-s 1000 kg/m*3 As Shown 298K  256-1370 196/3
FEM 0.001 Pa-s 1000 kg/m*3  As Shown 298K  256-77? 196/3
*SRD 1e-8 Pa-s 1000 kg/m”"3 A=1.4e-25J 2.8e-3K 256 196/2.9
DPD <0.001 Pa-s 1000 kg/m”3 As Shown 298K 216 196*%/2.9
2
L E @Eif
_ ColloidAdvectiontime _ 8’ Cld = ColloidalForces _ A,
Colloiddiffusiontime kT Hydrodynamicforces kT

*Based on 100 s, 298K

**Achieved by adjusting the effective shear rate



Sample Results (SRD)

Shear-Rate 85 s

» Volume fraction 0.30; Surface potential 33 mV and 300 mV;

«300 mV, Electrolyte concentration 0.0001 M

Velocity Profile - MP Method



s-Comparison: Equilbrium Structure Properties
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4.00E+00
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ross Comparison for Rheology. Experimental comparison

30% PS Suspensio

20 - ——1e-1 M
18 -
1e-2 M
16, —— e
14 - \ —*—1e-5M
12 -
10 O Experiment
8 |
6 . O Athonu's Data
41 5 T~ — Sandia SRD 1e-2M, 33
2 M S 6 mV
0 ‘ ‘ | Sandia SRD 1.e-3M, 33
0 50 100 150 MV

Sandia SRD, 0.01 M, 30
shear rate (Hz mavn a ’ ’




i Performance Comparison

0.3 Vol. % PS in Water, 0.001M NaCL, ~220-256 Colloids

« Time reported for 1000 time steps for equilibration/diffusion measurement run. Timings
on 8000-node T-Bird Machine: Dual 3.6 GHz Intel EM64T Processors.

1000 HE 1 DPD
\
\\ + 0.9
S —— FLD-Implicit
\\.z— + 0.8
100
)\ I 0.7 FLD-Explicit
\ | 0.6
10 - 0.5 SRD
Y "~ 1% s Efficiency FD
- Iclenc
; ~— ~03 4
Y 4 0.2 Efficiency SRD
0.1
0.1 ‘ ‘ ‘ ) —+=— Efficiency
0 5 4 6 3 FLD_explicit
Efficiency DPD
Number of Processors




rformance Comparison - The Real Story
0.3 Vol. % PS in Water, 0.001M NaCL, ~220-256 Colloids

» Parallel Performance of FLD-Implicit:

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

« Wall-Clock Time to Integrate to 1 s real time (4 Proc):

FLD FLD_expl SRD DPD

124s  49,961s (13.8 hrs) 69,000 s (~19 hrs) ~300 hrs
~2 hrs on 32 proc

*So why no simply go with implicit FLD? Accuracy and Stokes...



Retrospective and Outlook

Implemented/Developed and demonstrated four solver-methods for dynamics of meso-
scale simulations of colloidal suspensions -- Our work is aimed at the nanopatticle
scale.

Presented verification and validation results (cross-compare and comparisons with
experimental test data)

-Radial distribution functions compare well across all methods, verifying potentials

-Diffusivities predicted by FLD and SRD agree at 0.2 and 0.3 volume fraction.
DPD-predicted diffusivities suspect at all volume fractions.

-Viscosity at moderate shear rates (1-100 s-1) predicted well vs. volume fraction.

SRD shows the best parallel scalability. FLD-Impl the most cost-effective despite its
limitations.

Considering the overall criteria of “Better, faster”:
-Winner: Give to FLD_impl for overall efficiency.
-Loser: Give to DPD for lack of efficiency and accuracy.

SDS confounding our validation effort and in some sense spoiling it. Suspected that a
coating is influencing the effecting Hamaker constant and influencing the effective
potential.

DPD is just too compute-intensive for this class of problem to be practical, notwithstanding
its issues with accuracy. Reasons are primarily time-step limitations, and inefficient
solvent respresentation.
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