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A bit of history / context

• Many of the ideas here originated at APMOD 2012

– In particular, discussions with Hans Pirnay (Aachen)

• Optimization of dynamic systems is hard.

– In OR, think “multi-stage” problems

– In “engineered systems”, think differential equations

• High fidelity simulation is difficult  and expensive (e.g., HPC)

• How to optimize?

– Simulation-based optimization (single shooting)

– Multiple shooting methods

– Discretization (collocation methods)

• Common theme: significant effort to rework formulation

– Time: first ~6 months of a grad student’s research

– Error prone: many ways to make subtle mistakes

– Inflexible: formulation specific to selected solution approach

• Our idea: separate the declaration of dynamical models from the 
solution approach using (nearly) automatic transformations
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Example: Disease transmission[1]

• Estimate (seasonal) 
transmission parameters 
() from historical data

• SIR model:

[1] Word, Cummings, Burke, Iamsirithaworn, and Laird. "A Nonlinear Programming Approach for 
Estimation of Transmission Parameters in Childhood Infectious Disease Using a Continuous Time Model", 
Journal of the Royal Society Interface. (9). August 2012.

Susceptible
(S)

Infected
(I)

Recovered 
(R)







Siirola et al.  p. 4

Vision: optimization of DAE systems

• Model dynamical systems in a natural form
– Systems of Differential Algebraic Equations (DAE)

• Transform the DAE model into suitable optimization form
– Retain user control, e.g. for scripting the solution approach
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Vision: optimization of DAE systems

• Model dynamical systems in a natural form
– Systems of Differential Algebraic Equations (DAE)

• Transform the DAE model into suitable optimization form
– Retain user control, e.g. for scripting the solution approach

– Initial focus: discretization path
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Modeling DAEs in Coopr
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General Syntax 

DifferentialSet

m.t = DifferentialSet(bounds=(0,10))

m.t = DifferentialSet(initialize=[1,2,3,4])

m.t = DifferentialSet() # Initialize using data

Differential

m.xdot = Differential(

dvar=m.x,

rule=_xdot,

dset=m.t,

bounds=(0,10),

initialize=_init_xdot)
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Discretization Transformation

• Transformation Framework
1. Set Discretization Options

2. Discretize Differential Set

3. Update Components

4. Add Discretization Equations

5. Return Discretized Model

• Advanced Functionality
– Differential sets can be discretized differently

– Finite elements can be supplied by the user or generated

– Discretized model can be further manipulated after 
transformation
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Discretization Schemes
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Collocation Transformation

• Using the python library NumPy, collocation points and 
coefficients can be calculated for arbitrary order 

• Collocation continuity equations implicitly enforced

• User can supply the finite element locations, but not 
collocation points
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Small example:  Model (1/7)

Optimal Control Problem[2]
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)[2] Jacobson and Lele (1969)
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Small example:  Model (2/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

import coopr.environ
from coopr.pyomo import *
from coopr.dae import *
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Small example:  Model (3/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)
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Small example:  Model (4/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

m.obj = Objective(expr=m.x3[1])
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Small example:  Model (5/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, dset=m.t, 
rule=_x1dot)
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Small example:  Model (6/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)
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Small example:  Model (7/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)
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Small example: Script
import coopr.environ
from coopr.opt import SolverFactory

# Create model from file
from smallExample import model
instance = model.create()

# Discretize model using radau collocation
disc_instance = instance.transform(

“dae.collocation_discretization”,
nfe=7, ncp=6)

# Solve discrete model
opt = SolverFactory(‘ipopt’)
results = opt.solve(disc_instance)
disc_instance.load(results)
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Small example: Results

t t

u

Differential Variables Control Variable
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Small example: Script 2
import coopr.environ
from coopr.opt import SolverFactory
from coopr.pyomo import TransformationFactory

# Create model from file
from smallExample import model
instance = model.create()

# Discretize model using radau collocation
transform =   

TransformationFactory(‘dae.collocation_discretization’)
disc_instance = transform.apply(instance, nfe=7, ncp=6)

# Control variable u made constant over each finite element
disc_instance = transform.reduce_collocation_points(

var=instance.u, ncp=1, 
diffset=instance.t)

opt = SolverFactory(‘ipopt’)
results = opt.solve(disc_instance)
disc_instance.load(results)
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Small example: Results 2
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Disease model parameter estimation

• SIR DAE model shown earlier taken from [1]

• Parameter estimation problem with:
~ 10,500 variables

~ 10,000 constraints

- 3 differential equations

- 520 finite elements

- 3 collocation points

[1] Word, Cummings, Burke, Iamsirithaworn, and Laird, "A Nonlinear Programming Approach for Estimation of 
Transmission Parameters in Childhood Infectious Disease Using a Continuous Time Model", Journal of the Royal 
Society Interface. vol 9, August 2012, pp. 1983-1997.
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Converting the model: Indexing sets

• Integer index to float index

m.x[1,1]  m.x[1.088588]

• Iterating over all time points 

Original Model

Implementation with coopr.dae
(simplified, but must be 
declared after iscretization)
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Converting the model:  Scaling
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Computational results: Disease model

Radau
Collocation 

Implementation
By Hand

Using coopr.dae
Scaling in 

DifferentialSet

Using coopr.dae
Scaling in 
Differential

Creation Time 
(CPU secs)

2.7 136.13 76.25

Solve Time 
(CPU secs)

2.468 5.123 6.791

IPOPT Iterations 27 43 50

Objective (x10-5) 1.4716 1.4716 1.4716 
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Future work

• Extending current modeling components

– Support for general forms (e.g.,                                        )

– Explicit characterization of state / control variables

• New transformations

– Alternative collocation points

– Transformations for multiple shooting methods

• Translating solutions from the discretized / decomposed models 
back to the original model space

– Exact

– Approximate

• Cleaner support for auxiliary functionality 

– Operations over DifferentialSets (e.g., sums over time)

– Manipulating / reducing the discretized model

))(),(),((0 tytxtxF 
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