
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Specification and Automatic Discretization
of ODE and DAE Systems in an AML

Jean-Paul Watson – Sandia National Laboratories

John D. Siirola – Sandia National Laboratories

Victor Zavala – Argonne National Laboratory

Bethany Nicholson – Carnegie Mellon University

April 9, 2014

SAND2014-2784C

Siirola et al. p. 2

A bit of history / context

• Many of the ideas here originated at APMOD 2012

– In particular, discussions with Hans Pirnay (Aachen)

• Optimization of dynamic systems is hard.

– In OR, think “multi-stage” problems

– In “engineered systems”, think differential equations

• High fidelity simulation is difficult and expensive (e.g., HPC)

• How to optimize?

– Simulation-based optimization (single shooting)

– Multiple shooting methods

– Discretization (collocation methods)

• Common theme: significant effort to rework formulation

– Time: first ~6 months of a grad student’s research

– Error prone: many ways to make subtle mistakes

– Inflexible: formulation specific to selected solution approach

• Our idea: separate the declaration of dynamical models from the
solution approach using (nearly) automatic transformations

Siirola et al. p. 3

Example: Disease transmission[1]

• Estimate (seasonal)
transmission parameters
() from historical data

• SIR model:

[1] Word, Cummings, Burke, Iamsirithaworn, and Laird. "A Nonlinear Programming Approach for
Estimation of Transmission Parameters in Childhood Infectious Disease Using a Continuous Time Model",
Journal of the Royal Society Interface. (9). August 2012.

Susceptible
(S)

Infected
(I)

Recovered
(R)





Siirola et al. p. 4

Vision: optimization of DAE systems

• Model dynamical systems in a natural form
– Systems of Differential Algebraic Equations (DAE)

• Transform the DAE model into suitable optimization form
– Retain user control, e.g. for scripting the solution approach

DAE
model

m

n

tx

tx

ttytxg

ttytxftx









)(

)(

)),(),((0

)),(),(()(

Domain
splitting

Discretization NLP

Multiple
Shooting

Single
Shooting

Siirola et al. p. 5

Vision: optimization of DAE systems

• Model dynamical systems in a natural form
– Systems of Differential Algebraic Equations (DAE)

• Transform the DAE model into suitable optimization form
– Retain user control, e.g. for scripting the solution approach

– Initial focus: discretization path

DAE
model

m

n

tx

tx

ttytxg

ttytxftx









)(

)(

)),(),((0

)),(),(()(

Domain
splitting

Discretization NLP

Multiple
Shooting

Single
Shooting

Siirola et al. p. 6

Modeling DAEs in Coopr

Siirola et al. p. 7

General Syntax

DifferentialSet

m.t = DifferentialSet(bounds=(0,10))

m.t = DifferentialSet(initialize=[1,2,3,4])

m.t = DifferentialSet() # Initialize using data

Differential

m.xdot = Differential(

dvar=m.x,

rule=_xdot,

dset=m.t,

bounds=(0,10),

initialize=_init_xdot)

Siirola et al. p. 8

Discretization Transformation

• Transformation Framework
1. Set Discretization Options

2. Discretize Differential Set

3. Update Components

4. Add Discretization Equations

5. Return Discretized Model

• Advanced Functionality
– Differential sets can be discretized differently

– Finite elements can be supplied by the user or generated

– Discretized model can be further manipulated after
transformation

Siirola et al. p. 9

Discretization Schemes

Siirola et al. p. 10

Collocation Transformation

• Using the python library NumPy, collocation points and
coefficients can be calculated for arbitrary order

• Collocation continuity equations implicitly enforced

• User can supply the finite element locations, but not
collocation points

Siirola et al. p. 11

Small example: Model (1/7)

Optimal Control Problem[2]
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)[2] Jacobson and Lele (1969)

Siirola et al. p. 12

Small example: Model (2/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

Siirola et al. p. 13

Small example: Model (3/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t)

Siirola et al. p. 14

Small example: Model (4/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

m.obj = Objective(expr=m.x3[1])

Siirola et al. p. 15

Small example: Model (5/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _x1dot(m,t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, dset=m.t,
rule=_x1dot)

Siirola et al. p. 16

Small example: Model (6/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

Siirola et al. p. 17

Small example: Model (7/7)
import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

m.t = DifferentialSet(bounds=(0,1))
m.x1 = Var(m.t)
m.x2 = Var(m.t)
m.x3 = Var(m.t)
m.u = Var(m.t, initialize=0)

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]

m.x1dot = Differential(dv=m.x1, rule=_x1dot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]

m.x2dot = Differential(dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.x1[t]**2+m.x2[t]**2+0.005*m.u[t]**2

m.x3dot = Differential(dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)

def _init(m):
yield m.x1[0] == 0
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

m.init_conditions = ConstraintList(rule=_init)

Siirola et al. p. 18

Small example: Script
import coopr.environ
from coopr.opt import SolverFactory

Create model from file
from smallExample import model
instance = model.create()

Discretize model using radau collocation
disc_instance = instance.transform(

“dae.collocation_discretization”,
nfe=7, ncp=6)

Solve discrete model
opt = SolverFactory(‘ipopt’)
results = opt.solve(disc_instance)
disc_instance.load(results)

Siirola et al. p. 19

Small example: Results

t t

u

Differential Variables Control Variable

Siirola et al. p. 20

Small example: Script 2
import coopr.environ
from coopr.opt import SolverFactory
from coopr.pyomo import TransformationFactory

Create model from file
from smallExample import model
instance = model.create()

Discretize model using radau collocation
transform =

TransformationFactory(‘dae.collocation_discretization’)
disc_instance = transform.apply(instance, nfe=7, ncp=6)

Control variable u made constant over each finite element
disc_instance = transform.reduce_collocation_points(

var=instance.u, ncp=1,
diffset=instance.t)

opt = SolverFactory(‘ipopt’)
results = opt.solve(disc_instance)
disc_instance.load(results)

Siirola et al. p. 21

Small example: Results 2

t t

Differential Variables Control Variable

u

Siirola et al. p. 22

Disease model parameter estimation

• SIR DAE model shown earlier taken from [1]

• Parameter estimation problem with:
~ 10,500 variables

~ 10,000 constraints

- 3 differential equations

- 520 finite elements

- 3 collocation points

[1] Word, Cummings, Burke, Iamsirithaworn, and Laird, "A Nonlinear Programming Approach for Estimation of
Transmission Parameters in Childhood Infectious Disease Using a Continuous Time Model", Journal of the Royal
Society Interface. vol 9, August 2012, pp. 1983-1997.

Siirola et al. p. 23

Converting the model: Indexing sets

• Integer index to float index

m.x[1,1]  m.x[1.088588]

• Iterating over all time points

Original Model

Implementation with coopr.dae
(simplified, but must be
declared after iscretization)

Siirola et al. p. 24

Converting the model: Scaling

Siirola et al. p. 25

Computational results: Disease model

Radau
Collocation

Implementation
By Hand

Using coopr.dae
Scaling in

DifferentialSet

Using coopr.dae
Scaling in
Differential

Creation Time
(CPU secs)

2.7 136.13 76.25

Solve Time
(CPU secs)

2.468 5.123 6.791

IPOPT Iterations 27 43 50

Objective (x10-5) 1.4716 1.4716 1.4716

Siirola et al. p. 26

Future work

• Extending current modeling components

– Support for general forms (e.g.,)

– Explicit characterization of state / control variables

• New transformations

– Alternative collocation points

– Transformations for multiple shooting methods

• Translating solutions from the discretized / decomposed models
back to the original model space

– Exact

– Approximate

• Cleaner support for auxiliary functionality

– Operations over DifferentialSets (e.g., sums over time)

– Manipulating / reducing the discretized model

))(),(),((0 tytxtxF 

Siirola et al. p. 27

Acknowledgements

• Bethany Nicholson - Carnegie Mellon University

• Carl Laird – Purdue University

• Gabriel Hackebeil – Texas A&M University

• Larry Biegler – Carnegie Mellon University

Sandia National Laboratories' Laboratory-Directed Research and
Development Program and the U.S. Department of Energy's Office of
Science (Advanced Scientific Computing Research program) funded
portions of this work.

