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A bit of history / context

« Many of the ideas here originated at APMOD 2012
— In particular, discussions with Hans Pirnay (Aachen)

» Optimization of dynamic systems is hard.
— In OR, think “multi-stage” problems

— In “engineered systems”, think differential equations
 High fidelity simulation is difficult and expensive (e.g., HPC)
* How to optimize?
— Simulation-based optimization (single shooting)

— Multiple shooting methods
— Discretization (collocation methods)

« Common theme: significant effort to rework formulation
— Time: first ~6 months of a grad student’s research
— Error prone: many ways to make subtle mistakes
— Inflexible: formulation specific to selected solution approach

« Our idea: separate the declaration of dynamical models from the
solution approach using (nearly) automatic transformations i
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Example: Disease transmission!’]

- Estimate (seasonal) win eu ) (nfew)) +og 2, (sa)
transmission parameters . _gyusonn
(B) from historical data oW T T N o B,

_ A By)SWIL
« SIR model: T v eu( — (),
Susceptible d@ _ Bly(1)S(t)I(t) eu()
(S) dt N(t)
ﬁ R?: = M Qi — Qig—1) + £¢;;
Z Si
[ Infected §= l’e}? =
(I) en _
. LB
‘i‘ P= len(7)’
[ Recovered ] 0 < I(t), S(t) < N(t)
R) and 0 < B(y(1)), Q(1),
[1] Word, Cummings, Burke, Iamsirithaworn, and Laird. "A Nonlinear Programming Approach for Sandia
Siirolaet al. .3 Estimation of Transmission Parameters in Childhood Infectious Disease Using a Continuous Time Model", @ National
P Journal of the Royal Society Interface. (9). August 2012. Laboratories
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Vision: optimization of DAE systems

* Model dynamical systems in a natural form
— Systems of Differential Algebraic Equations (DAE)

» Transform the DAE model into suitable optimization form
— Retain user control, e.g. for scripting the solution approach
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A
¥ Vision: optimization of DAE systems

* Model dynamical systems in a natural form
— Systems of Differential Algebraic Equations (DAE)

» Transform the DAE model into suitable optimization form
— Retain user control, e.g. for scripting the solution approach
— Initial focus: discretization path

)( Single )
4 : \ L Shooting )
x(1) = f(x(0), y(2),1)
DAE 0= g(x(?), y(2),?) Domain ( Multiple )
model x(z) e R” splitting | Shooting
x(t) e R”
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i Modeling DAEs in Coopr

« Extend the Pyomo object model
— DifferentialSet: represent a continuous set that will be discretized
— Differential: represent a differential equation of the form:

dx_
I = f(x,¢t,..)

« General Model transformations
— Standardized approach for transforming DAE to (N)LP

— Implemented two example transformations
» Implicit Euler Method (Backward Euler)
» Radau Orthogonal Collocation

@ ﬁa"dial
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i General Syntax

DifferentialSet

m.t = DifferentialSet(bounds=(0,10))

m.t = DifferentialSet(initialize=[1,2,3,4])

m.t = DifferentialSet() # Initialize using data

Differential
m.xdot = Differential(
dvar=m.Xx,

rule=_xdot,

dset=m.t,
bounds=(0,10),
initialize=_1nit_xdot)

@ ﬁandial
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Discretization Transformation

 Transformation Framework

1.

a s~ b

Set Discretization Options
Discretize Differential Set
Update Components

Add Discretization Equations
Return Discretized Model

« Advanced Functionality

Siirolaetal. p. 8

Differential sets can be discretized differently
Finite elements can be supplied by the user or generated

Discretized model can be further manipulated after
transformation
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Discretization Schemes

* Implicit Euler

dz
— = f(z,t), zp =2z(ty+kh), zZyy1=2zr +hf(Zrk+1 tis1)

. CoIIocatlon

Given: dz/dt =1(z,t), z(0)

Approximate: dz/dt by Lagrange interpolation polynomials with
K mterpolatlon poimts, t,, in each finite element I

(t— )

L(1j—7p)’

t _t£1+rjh

zm—z;-l,o+hzzrzj(rk)zu. 0,0 = [gaar,  4o= ]_[
0
k;t]

j=1

Zig = Zi—10 + hy Z (1) 2, Zf = Zy_10 + hNZ Qi (1) zy;
= j:l
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| Collocation Transformation

« Using the python library NumPYy, collocation points and
coefficients can be calculated for arbitrary order

 Collocation continuity equations implicitly enforced

« User can supply the finite element locations, but not
collocation points

@)
Siirolaet al. p.10 ational
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Small example: Model

(1/7)

Optimal Control Problem!?

min x3(tf)
s. t. le = Xy
x.z = —X + Uu

X3 = xf + x5 + 0.005 * u?
x,—8*(t—0.5)2+05<0

x,(0)=0

x,(0) = -1

x3(0) =0
tf =1

[2] Jacobson and Lele (1969)

Siirolaet al. p. 11

import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

.t = DifferentialSet(bounds=(0,1))
var(m.t)

var(m.t)

var(m.t)

.u = var(m.t, initialize=0)

SSSSS
X
N
nin

m.obj = Objective(expr=m.x3[1])

def _init(m):

yield m.x1[0] == O

yield m.x2[0] == -1

yield m.x3[0] == 0

yield ConstraintList.End o
m.init_conditions = ConstraintList(rule=_init)

def _x1dot(m, t):
return m.x2[t]
m.x1ldot = Differential (dv=m.x1l, rule=_xldot)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]
m.x2dot = Differential (dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.X1[t]**2+m.x2[t]**2+0.005*m.u[t]**2
m.x3dot = Differential (dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)
Sandia
National
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Small example: Model (2/7)

import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

min x5 () import coopr.environ
s.t. X{ = Xy from coopr.pyomo import *

Xy = —Xy + U from coopr.dae import *
X3 = xf + x5 + 0.005 * u? T ST d mxL[0] == 0
yield m.x2[0] == -1

x, — 8% (t—0.5)*+05<0 vield m.x3[0] == 0

yield ConstraintList.End o
_ m.init_conditions = ConstraintList(rule=_init)
x,(0)=0

def _x1dot(m, t):

= — return m.x2[t]
xz (0) 1 m.xldot = Differential(dv=m.x1, rule=_xldot)

X3 (0) — 0 def _x2dot(m, t):

_ return -m.x2[t]+m.u[t]
tf — 1 m.x2dot = Differential (dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.X1[t]**2+m.x2[t]**2+0.005*m.u[t]**2
m.x3dot = Differential (dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

@ ﬁandial
) ationa
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Small example: Model (3/7)

import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel )
i m.t1= Diff%ren§1a1Set(bounds=(0,1))
m.x1 = var(m.t
min x3(tf) m.x2 = var(m.t)
. m.x3 = var(m.t)
s.t. X1 = X9 m.u = var(m.t, initialize=0)
x'z ==X, +U m.obj = Objective(expr=m.x3[1])

y Aa.C L 2 2 £\

= ConcreteModel ()

X3 = x¥ + x5 + 0.00
x, — 8 (t —0.5)% +

=]

x1(0)=0 m.t = Differential Set(bounds
x,(0)=—-1 | m.x1 = var(m.t)

m.x2 = var(m.t)

m.x3 = var(m.t)

m.u = var(m.t)

return m. xI[t]**2+m. x2[t]**2+0.005*m.u[t]*%2
m.x3dot = Differential (dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

@ ﬁandial
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Small example: Model

(4/7)

min x3(tf)
s. t. le = Xy
x.z = —X + Uu

X3 = xf + x5 + 0.005 * u?
x,—8*(t—0.5)2+05<0

import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

.t = DifferentialSet(bounds=(0,1))
var(m.t)

var(m.t)

var(m.t)

.u = var(m.t, initialize=0)

SSSSS
X
N
nin

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == O
yield m.x2[0] == -1
yield m.x3[0] == 0

vinld CcAanctradntldict+ End

m.obj = Objective(expr=m.x3[1])

x,(0)=0

x,(0) = -1

x3(0) =0
tf =1

Siirolaet al. p. 14

M. X1AdOoT = DitTTerential(av=m.X1l, rure=_X1doT)

def _x2dot(m, t):
return -m.x2[t]+m.u[t]
m.x2dot = Differential (dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.X1[t]**2+m.x2[t]**2+0.005*m.u[t]**2
m.x3dot = Differential (dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0

m.con = Constraint(m.t, rule=_con)
Sandia
National
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Small example: Model

(5/7)

min x;(ty)
s.t. le — xZ
x.z — _xZ + U

X3 = xf + x5 + 0.005 * u?
x,—8*(t—0.5)2+05<0

import coopr.environ
from coopr.pyomo import *
from coopr.dae import *

m = ConcreteModel()

.t = DifferentialSet(bounds=(0,1))
var(m.t)

var(m.t)

var(m.t)

.u = var(m.t, initialize=0)

SSSSS
X
N
nin

m.obj = Objective(expr=m.x3[1])

def _init(m):
yield m.x1[0] == O
yield m.x2[0] == -1
yield m.x3[0] == 0
yield ConstraintList.End

xl (0) — 0 m.init_conditions = ConstraintList(rule=_init)
(0) 1 def _x%dot(m, E%t]
= — return m.x
x2 m.x1ldot = Differential (dv=m.x1l, rule=_xldot)
X3 (0) — 0 def _x2dot(m, t):
N 4 return -m.x2[t]+m.u[t]

def _x1dot(m,t):

return m.x2[t]
m.x1ldot = Differential (dv=m.x1, dset=m.t,
rule=_x1ldot)

Siirolaetal. p. 15
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Small example: Model (6/7)

def _con(m,t):
return m.x2[t]-8*(t-0.5)**%2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

min
. :_ m.x3 = Vartm.tj_ .
s.t. X1 = X9 m.u = var(m.t, initialize=0)
x'z ==X, +U m.obj = Objective(expr=m.x3[1])
N2 2 2 def _init(m):
X3 =x7 +x5 +0.005*u vield'mxifo) == o,
yield m.x == -
— _ 2 ield m.x3[0] == 0
X2 8 (t 05) +05=<0 _ §'ie'ld ConstraintList.End o
% (0) — 0 m.init_conditions = ConstraintList(rule=_init)
1(0) 1 def _x1dot(m, 5%:]
= — return m.x2[t
:xz m.x1ldot = Differential (dv=m.x1l, rule=_xldot)
X3 (0) — 0 def _x2dot(m, t):
_ return -m.x2[t]+m.u[t]
tf — 1 m.x2dot = Differential (dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.X1[t]**2+m.x2[t]**2+0.005*m.u[t]**2
m.x3dot = Differential (dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

: ndiaI
) ationa
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Small example: Model (717)

def _init(m):
yield m.x1[0] ==
yield m.x2[0] == -1
y1e1d m.x3[0] == 0
yield ConstraintList.End
m.init_conditions = ConstraintList(rule=_init)

Z

- 2 2 2 def _init(m):
X3 =x7 +x5 +0.005*u vieldm o] = 0,
yield m.x == -
— — 2 ield m.x3[0] == 0
X2 8 * (t 05) + 0.5 =0 §1e1d ConstraintList.End -
% (0) — 0 m.init_conditions = ConstraintList(rule=_init)
1(0) 1 def _x1dot(m, 5%:]
— — return m.x2[t
:xz m.x1ldot = Differential (dv=m.x1l, rule=_xldot)
X3 (0) — 0 def _x2dot(m, t):
— return -m.x2[t]+m.u[t]
tf =1 m.x2dot = Differential (dv=m.x2, rule=_x2dot)

def _x3dot(m, t):
return m.X1[t]**2+m.x2[t]**2+0.005*m.u[t]**2
m.x3dot = Differential (dv=m.x3, rule=_x3dot)

def _con(m, t):
return m.x2[t]-8*(t-0.5)**2+0.5 <= 0
m.con = Constraint(m.t, rule=_con)

@ ﬁandial
) ationa
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Small example: Script

Siirolaetal. p. 18

import coopr.environ
from coopr.opt import SolverFactory

# Create model from file
from smallExample import model
instance = model.create()

# Discretize model using radau collocation

disc_instance = instance.transform(
“dae.collocation_discretization”,
nfe=7, ncp=6)

# Solve discrete model

opt = SolverFactory(‘ipopt’)
results = opt.solve(disc_instance)
disc_instance.load(results)

Sandia
National
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Small example: Results

Differential Variables

Control Variable

0.2

145

@ ﬁandial
) ationa
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¥ Small example: Script 2

=)

Siirolaetal. p. 20

import coopr.environ
from coopr.opt import SolverFactory
from coopr.pyomo import TransformationFactory

# Create model from file
from smallExample import model
instance = model.create()

# Discretize model using radau collocation

transform =
TransformationFactory(‘dae.collocation_discretization’)

disc_instance = transform.apply(instance, nfe=7, ncp=6)

# control variable u made constant over each finite element

disc_instance = transform.reduce_collocation_points(
var=instance.u, ncp=1,
diffset=instance.t)

opt = SolverFactory(‘ipopt’)
results = opt.solve(disc_instance)
disc_instance.load(results) @ Sandia

National
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Small example: Results 2

0.2

Differential Variables

—0.6

-0.8} T Kl
— X2

=135 0.2 0.4 0.6 0.8 1.0

Siirolaet al. p. 21

Control Variable

0.2 0.4 0.6 0.8 1.0
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| Disease model parameter estimation

« SIR DAE model shown earlier taken from [1]

« Parameter estimation problem with:
~ 10,500 variables
~ 10,000 constraints
- 3 differential equations
- 520 finite elements
- 3 collocation points

[1] Word, Cummings, Burke, lamsirithaworn, and Laird, "A Nonlinear Programming Approach for Estimation of
Transmission Parameters in Childhood Infectious Disease Using a Continuous Time Model", Journal of the Royal
Society Interface. vol 9, August 2012, pp. 1983-1997.

@ ﬁandial
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Converting the model: Indexing sets

* Integer index to float index
m.x[1,1] = m.x[1.088588]

* Iterating over all time points

z z Xi,j  Original Model

i € FE j €CP
z Xt, Implementation with coopr.dae
t; €t (simplified, but must be

declared after iscretization)

@ ﬁandial
) ationa
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Converting the model: Scaling
K
Zik = Zi-1 Q(T1) 25
DX

]:
- Enforce scaling in Differential Set

K
Zik = Zi—1 + hi Z 'Q](Tk)zlj
\J'=1 ’

- Enforce scaling in Differential

@ ﬁandial
) ationa
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Radau Using coopr.dae Using coopr.dae
Collocation By Hand Scaling in Scaling in
Implementation DifferentialSet Differential

Creation Time

Solve Time

Objective (x10°) 1.4716 1.4716 1.4716

@ ﬁandial
) ationa
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Future work

« Extending current modeling components
— Support for general forms (e.g., 0= F(x(¢), x(¢), v(¢)) )
— Explicit characterization of state / control variables
* New transformations
— Alternative collocation points
— Transformations for multiple shooting methods
« Translating solutions from the discretized / decomposed models
back to the original model space

— Exact
— Approximate

» Cleaner support for auxiliary functionality
— Operations over DifferentialSets (e.g., sums over time)
— Manipulating / reducing the discretized model

Siirolaet al. p. 26 @
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