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< _'. My Question: Can you talk about
‘ Energy and HPC?

V

m What has been the role of HPC in energy research and
development?

m What is driving the use (or lack of use) of HPC in energy
research and development?

m What does the future look like?
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Sandia Energy Program Areas

Nuclear

— Nuclear Regulatory Commission Safety Analysis

— Burner Reactor Integrated Safety Code

— Nuclear Energy Advanced Modeling and Simulation Program

National Infrastructure Simulation and Analysis
Center

Concepts for Designing and Controlling the Energy
Grid dominated by Intermittent, Non-Dispatchable
Sources

Concentrating Solar Power
Photovoltaic’s Analysis
Geologic Storage of Waste and CO,
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MELCOR Severe Accident Analysis Code

|

Modeling and Analysis of
Severe Accidents in
Nuclear Power Plants

Severe acmdent codes are the Rep05|tory of

phenomenological understanding gained through NRC u"-E

and International research performed since the
TMI-2 accident in 1979

Integrated models required for self consistent analysis
Important Severe Accident Phenomena § < g %
£3gag
Accident initiation IIIIIIEIEGzGNd@EEEEN | IEmi!
e Reactor coolant thermal hydraulics I BOOE
e Loss of core coolant N EOON
—e Core meltdown and fission product release NN N[ |47
e Reactor vessel failure I NN
+ Transport of fission products in RCS and Containment I N[
* Fission product aerosol dynamics N HENE
+ Molten core/basemat interactions N EEC
+ Containment thermal hydraulics N BRI
» Fission product removal processes I EENE
——=* Release of fission products to environment I EEN[]
+ Engineered safety systems - sprays, fan coolers, etc N[ ][]
lodine chemistry, and more N W]

MELCOR Development began in 1983

- Targeted for HPC systems at that time (Cray vector machines) ) Sandia
- Now runs on single-processor workstations & PCs August2008 1) ﬂfﬁgﬁéms




MELCOR Has A Worldwide Usership
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P ). Advanced Modeling & Simulation for Nuclear Energy

Requires Addressing Four Fundamental Challenges

m The “multi-scale” issue
m Length-scales
m Time-scales
m Energy groups

m The “coupled multi-physics” issue
m Fluid flow and heat transfer
m Neutronics
m Thermal mechanics

m The “complex geometry” issue
m Nuclear reactors are not simple devices

m  The “uncertainty quantification” issue

m “without UQ (with requires V&V), results are no better than
speculation, and often worse”
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- “BRISC (Burner Reactor Integrated Safety Code)

3-Tiered Multi-Scale Modeling Strategy

Structures and physics
whose features are too small
for resolution on 3D grid

“Meso-scale” resolved by 3D grid

Fuel-pins and control rods
- 0.5 - 10 mm-scale features

In-vessel Reactor Components
-10 cm to 10 m scale geomtry
- Neutronics, Turb flow & heat transfer,
thermal-mechanics, conduction, ...
- 3D Modeling Framework

Balance of Plant Reactor System

Components (& Containment)
-1-50 m scale
- Pipes, pumps, valves, heat
exchangers, turbines, rooms,
- 0D MELCOR models

- conduction, fission heating ...

- 2D or 3D representative models

end plug
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Plug
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- 3D Fire Modeling with RIO

+—

Structures and

Primary
Vessel

DRACS

Reactor Core
Region

physics whose
pump features are
too large for
resolution on
3D grid
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mo 3D Model Simulation - Fluid Temperature
Initial 30 sec. start-up transient

3D mesh with
Color-coded
Element blocks

Sandia
National
Laboratories



~—,

uclear Energy Advanced Modeling and Simulation (NEAMS) FY -

10 Proposed Program Overview

« 3D, 2D, 1D
 Science Based Physical
Behaviors

Science Based

* High Resolution _ Nucéeé;l;eE,g:rgy
* Integrated Systems - L4 4
+ Advanced Computing 7 -
7 . =
y Vision

/

Rapidly.é‘reate, and deploy next generation,
- Toxt Baoed Pryaicd ver_lfled and _valldaj[ed nuclea}r. energy
e o modeling and simulation capabilities for the
design, implementation, and operation

* Uncoupled Systems
+ Workstation Computing | -

200 future nuclear.energy systems to improve
the U.S. energy security future

Strategies

B Integrated Performance & Safety Codes (IPSC) -

High resolution, 3D, integrated systems codes to predict performance

B Fundamental Methods and Models (FMM) — Lower

length scale performance understanding

B Verification, Validation & Uncertainty

Quantification (VU) — Understanding the “believability” of
simulation results

B Capability Transfer (CT) — Moving modeling and simulation

tools out of the research environment

B Enabling Computational Technologies (ECT) —

Computer science resources needed to make the vision a reality

Major Milestones

B Year1
— Create product requirement documents for integrated codes
— Initiate robust interaction with NRC on V&V and UQ
— Establish overall plans and processes for FMM, CT and ECT el
B Year 3
— Deliverinitial versions of integrated codes and modeling and
simulation interoperability framework
B Year 5
— Deliverintegrated codes with proper V&V and UQ pedigrees
H Year 7
— Deliver codes with empirical “knobs” removed
H Year 10
— Deliver predictive, science based modeling and simulation
capabilities for new nuclear energy systems

Approach

B Built on a robust experimental program for
model development and V&V

B Appropriate flexibility so that the simulation tools
are applicable to a variety of nuclear energy
system options and fuel cycles

B Continuously deliver improved modeling and
simulation capabilities relevant to existing and
future nuclear systems (in the near, mid, and long
term)

Sandia
August 2008y National )
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NEAMS Program Strategy —

Integrated Performance and Safety Codes

Strategy Goal

Deliverables

Nuclear Fuels — predict the performance of fuels in a
reactor environment in steady state, transient and accident
conditions

Reactor Core and Safety Systems — end to end
performance predictions for the life of the reactor

Safeguards and Separations — understand the quantity
and location of materials in an operational separations
environment

Waste Forms and Systems — predict the performance of a
waste form in a repository environment

Approach

B Create large code teams with a centrally located “critical
mass”
B Use additional individual or small teams to focus on
particular code aspects
B Rough Composition
— 1/3 Application specific expertise
— 1/3 Advanced computing expertise
— 1/3 Team support (V&V, SE and SQA, Support)
B Interface with application users and if not available
create teams of “ghost users” to assess usability of
applications

Risks & Issues

B Challenging and very aggressive milestones.

B Need to quickly create integrated code teams at
laboratories that may not have experience with large
code development.

B Finding the right talent to populate teams.

B Dependence on other NEAMS strategies (FMM, VU, CT,
ECT) for success.

B Dependability of funding.

Sandia
August 209, National )
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NEAMS Program Strategy —
Waste Forms & Systems IPSC

b “
Material Performance

TNA L Strategy Vision

e
rrrrrrrrrr
DELIGUESCENGE

If through the entire
surrounding engineered environment and
representing the range of important multi-
scale effects.

Approach
THCM* ‘ UQ. THCM*
Sub-continuum Hi-Fi Analysis | +sa Assessment
Scale Code Code
Investigations \ & g
Constitutive Models Surrogate Models
Discovery . ]
Experiments Upscaling vav Model Reduction
Infrastructure Tools (Software Engineering — Viz — V&V — Data Analysis)

* THCM: Thermal/Hydrological/Chemical/Mechanical

Milestones
B Years 0-3:

— IPSC Design Specifications

— PIRT & V&V Plan

— THCM Architecture and Prototype

— High priority sub-continuum studies

— Generation of constitutive models

— Initial Demonstration to WF/Environment Reference Case
B Years 4-10

— High-fidelity continuum and surrogate models

— Initial release of THCM and Assessment Codes

— Full application to WF/repository environment

Risks & Issues

B Success depends on support from other NEAMS
Strategies (FMM, VU, CT & ECT)

B Need to coordinate modeling activities with RW and
AFCI Separations and Waste Forms Campaign

B Need to include waste form consideration as part of
fuels, reactors, separations

B Availability of appropriate experimental data

B Lack of existing performance codes in this area (unlike
other areas where existing codes are insufficient, but
exist)
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WF IPSC Relationships

Design of (25%)

. Iterative
Experiments P S
< >

PA/DA

Validation
(25%) Hi-Fi THCM* & Surrogate THCM*
~ Code uQ | Model [—> Assessment
Sub-continuum Scale (25%) +SA Dev. Code
Investigations Q7
>’ Col\r;lit(;teultslve Surrogate Models
Discovery Upscaling
Experiments —

Feedback

Feedback * THCM:

Thermal

Hydrological
Chemical
Mechanical
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Infrastructure Tools (software engineering -- Viz — Data Analysis — ECT) (25%)




Office of Infrastructure Protection (I1P)
National Infrastructure Simulation and Analysis Center (NISAC)

Complex Adaptive Systems of Systems (CASoS) Engineering
March 21, 2009
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Outline — Bob Glass, lead

= CASoS Definition and Sandia’s CASoS Engineering Initiative

= CASoS Engineering Framework

= CASoS Workbench

* Model Example: Global Energy System
= Past and Current CASoS Applications

LA Homeland
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Complex Adaptive System of Systems (CASoS)

= CASoS:

— Vastly complex physical-socio-technical-systems

— Ubiquitous systems that include people, organizations, cities, infrastructures, government,
ecosystems and the Planet

— Must be understood to design a secure future for the nation
— Examples encompass humanity’s largest problems including Global Climate Change

— Theories, technologies, tools, and approaches to enable effective solutions to CASoS problems are
the same across all contexts

= Sandia’s CASoS Engineering Initiative:

— Harnesses the tools and understanding of Complex
Systems, Complex Adaptive Systems, and Systems of
Systems to engineer solutions for some of the worlds
biggest, toughest problems

LA Homeland
y Security



CASoS Engineering Framework
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Tool Boxes
Data Analysis Visualization Modeling
Uncertainty quantification High performance computing resources

Situational awareness to policy definition

WORK BENCH

Tools

THEORY -<

ystem Definition
Threats / Aspirations Definition

Conceptual Modeling focused on
Threats/Aspirations

— Analogy, CA, SD, Networks

— Networked Adaptive Entities
Solution Design (Poli
Solution Ev.

New Theory,
Methods and
Approaches
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CASo0S Workbench

= A platform for describing networks and processes in a consistent way
= [ntegrates existing network tools and agent-based models

= Allows models and tools to be chained together

= Provides large scale simulations on HPC machines

= Provides visualization and analysis tools

= Allows analysts to investigate adaptations and emergent behavior

» Understand how interactions among many agents might generate system-level
behavior

= Understand how changes in agent’s rules and interactions can shape system-
level behavior

o Homeland

y Security
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Global Energy System Example

= Goal : understand the possible reactions of the global energy
production system to a set of policies designed to reduce
carbon emissions:

— Creation of carbon markets in individual nations or treaty blocs
— Creation of a global carbon market
— Imposition of a national/treaty bloc carbon tax

— Imposition of a global carbon tax

= Structure:

— Entities: Individual instances of basic macro-economic types (households,
government, industries of various sorts)

— State variables: Material resources of various kinds

— Dynamics: First-order transformations modeled on chemical reactions

22 Homeland

=¥ Security



Global Energy System Example: Core Economy
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Within a sector type...
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CASoS Engineering Modeling and Analysis Applications

= Past Applications:
— Pandemic Influenza Containment Strategy (NISAC, 2005)

. . , : Infectious Disease
o Eight containment strategies and numerous disease Spread

manifestations were analyzed

Extended Family

o NISAC proposed strategy incorporated in National policy by Example R
Center for Disease Control Teen e /;;’;' .
— Congestion and Cascades in Payment Systems (NISAC, 2004 - 8) é‘\nft‘:,[ii'ks/&% e
o Results identified unexpected interdependencies arising from 4 >f--.“
foreign exchange transactions ?F\ 8 o 8
o Collaboration with the Federal Reserve, European Central Bank, nkor’ .‘.?. ‘9.“

and international researchers

— Critical National Infrastructures (NISAC — 2008, 2009)
o Natural Gas Model (applied in New Madrid Earthquake Study)

o Petrochemical Model findings used in chemical supply chain
analysis

o Global Financial System (goal is to identify origin of instabilities
and determine how to control or mitigate them)

A Homeland

y Security



Application of Networked Agent Method

Extended Family
Example or Neighborhood
Teen

Disease manifestation
(node and link behavior)
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New Madrid Earthquake Study: Relative Change

in End User Consumption of Natural Gas
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National “Green” Power Grid

National Energy and Water Grid
Infrastructure Development “Newgrid”

PROGRAMS

SCADA
Al
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Fossil
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)
Storage/DG
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< Challenge for Reducing Fossil Fuels in
Electricity Production

m Problem: Accelerated Climate Change and a

desire to reduce dependence on foreign oil

m Electricity is the largest contributor and the easiest one to do
something about.

m Answer: Incorporate renewable energy sources
(Nuclear?)

m Goal: 20% of electrical power by 2020

m Question: Is this fast enough? Is this deep
enough?

Sandia
National
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L Inadequate Grid is a Barrier

m Intermittent Renewable Sources destabilize

current Grid
m Dominated by Stabile Large Generation (Coal, Gas, Nuclear)
m No Storage to Damp System

m Little Active Control and Sensing in System

m Bi-directional power flow control almost non-
existent

= Vulnerable to attack (cyber, physical,
weather)

Sandia
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2 > Future Grid

m Information-centric, actively controlled dynamic grid,
information centric

m High penetration of renewables and storage

m Predictive scalable models of physical, economic, and policy
scopes

m Integration with national energy and water resource planning

Sandia
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< }. My Question: Can you talk about
Energy and HPC?

m What has been the role of HPC in energy research and

development?
m Substantial in NE during the eighties, but low refresh rate from

the point-of-view of keeping up with HPC capability
m Low in Renewables (at least at Sandia)
m Low in infrastructural impacts and socio-economic modeling
(until recently)
m What is driving the use (or lack of use) of HPC in energy
research and development?
m Funding/commitment to energy research and development
m Readiness to address more complex problems

m What does the future look like?
m Energy/Climate interest is increasing dramatically
m The communities are more ready and able to address issues

that require HPC
m Future barriers are primarily lack of experience with HPC
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