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« Background
— classic tied contact
— limitations
— alternatives

e How Stabilized Method Works

— interface springs (penalty method)
— implementation details (parameter-free)
— easy “fix” (just add springs)

Outline

 Numerical Results & Theory
— convergence rates
— iterative solver performance
— supporting theory
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 Classic Tied Contact
— constrain nodes on one side of interface to other
— often used for connecting dissimilar meshes
— standard method available in many FE codes

— known by many names: node-on-segment, permanent
glued contact, node collocation, MPC approach, ...
1O

Background

Sandia
National
Laboratories



1"

* Pros
— simplicity
— constraints have local support
— elimination of slave dofs efficient

Classic Tied Contact

« Cons
— stresses near interface can have large errors
— these errors may not diminish w/ mesh refinement
— non optimal global convergence rates
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Mortar Method Alternative

« Overview
— constraints based on weak form of interface continuity

j A[u]ldx =0

— Lagrange multiplier basis spans constants

— classic tied contact may be viewed as a mortar method,
but LM basis consists of delta functions

e Pros
— optimal convergence rates

— no spurious oscillations of stresses at interface for
smooth solutions

— available theory
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Mortar Method Alternative

e Cons

— 3D surface integral calculations are nontrivial®
 need intersections of master and slave element faces
 may require large number of quadrature points
« much more complicated than classic tied contact

— constraint equations local, but eliminating dependent
dofs may lead to coupling across entire interface **

* H I INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
3D |mp|ementat|0n Int. J. Numer. Meth. Engng 2004; 59:315-336 (DOIL: 10.1002/nme.865)

SIAM J. NUMER. ANAL.

* dual LM basis avoids this problem ", "7 " “asd 010
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Nitsche Method Alternative

2
ap(w,v) = > [ (Vw;, Vvi)a, + (7v/h) /r [w][v] ds]

=1

- /r (Qw/On)[v] ds — { /r (Qv/on)|w|ds

e Pros

— optimal convergence rates
— no constraint equations

— “penalty” term scales nicely with mesh refinement

— available theory
ESAIM: M2AN
M2AN., Vol. 37, N° 2, 2003, pp. 209-225
DOI: 10.1051/m2an:2003023 @ Sandia
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Nitsche Method Alternative

e Cons
— surface integrations required as in mortar methods

— method unstable if penalty parameter Y too small
— too large a value of Y can overly stiffen interfaces

— simple and reliable method needed to determine Y*

* INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2009:; 78:1009-1036
Published online 11 December 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2514
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How Stabilized Method Works

e Retains classic tied contact constraints
— symmetric form avoids all constraints

* Introduces springs at interface

e Can be viewed as modification of discrete
bilinear form for theoretical purposes
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 where are springs located?

— nodes on master surface (linear elements)
do | need to pick a penalty parameter?

— no, this is automated

 how is penalty parameter determined?
— see next slide

* is theory available, optimal convergence?

— yes, but theory incomplete (see later slides)
good performance for iterative solvers?

— thus far yes (see later slides)

 convergence rate of standard tied contact?
h'2 in energy norm (see later slides)

what about the patch test? @ Sandia
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Spring Stiffness Calculation

length, width, depth = H

Young’s modulus = E
element length = h

nodal stiffness k proportional to E(1/h)?2h3® = Eh

split cube in half and connect coincident nodes
at interface with springs of stiffness fk = BEh

cross-sectional stiffness for 1 layer of elements
Eh(H/h)? = EH?/h and BEH?/h for spring layer
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Spring Stiffness Calculation

 net axial compliance of original mesh
(H/h)(EH?/h)-

« net axial compliance of mesh with springs
(H/h)(EL2/h)-1 (1 + (h/H)/B)

* require relative compliance difference to be
proportional to (h/H)? for linear elements
= B =H/h

« ingeneral can choose k ;. = K 4.(H/h  4.)

« scaling consistent with theory
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Some Other Connections

« DG and penalty methods
« Thermal contact resistance algorithm

TABLE 3.2
Primal forms for the DG methods in Table 3.1.

Method By, (w,v)

Bassi Rebay (10 g~ ({Vawh [0]) — ([w] {¥ne}) + (-([w ], ([ 0])

Brezzi et al. [22] g— {Vrwht [v]) = [w].{Vrv}) + (r([w]),r([v])) + o*(w,v)

LDG [41] see (3.27)

P [50) o — ((Vnw}, [v]) = (L] AVRo}) + o (w,0)

Bassi et al. [13] g— {Vwh[v]) = (Jw]. {Vxrv}) + a"(w,v)

Baumann-Oden [15]  ¢g— {Vyw} [o]) + {w]. {Vrv})

NIPG [64 g= (V) oD+ @l Vo) + i)
BabuskaZldmal [7] g+ aJ(w, ) Vol. 39, No. 5, pp. 17491779
Brezzi et al. [23] g+ o' (w,v)
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2D Plane Stress Bending Example

2
—8— energy error (classic)
or —— energy error (stabilized) )
—&=— displacement error (classic)
ol - displacement error (stabilized) |

log(error)

A
o
I
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log(h) Laboratories



2D Plane Stress Bending Example

Exact Oy and Gy both zero and ||G11||00=1
-3 T | | | T
_4 — c c |
_57 |

—— |cs22|max (classic)
. |c522|max (stabilized)
M S —— |G12|max (classic)

—— |G12|max (stabilized)

log(|stress|)

-9 | \ ! | I ‘ ' i
-5 -45 -4 -35 -3 -25 -2 -1.5 -1 @ ﬁg?igﬁal
log(h) Laboratories



2D Plane Stress Bending Example

3

2r —©— energy error (classic) .

n —#— energy error (stabilized) |
—&— displacement error (classic)

O —— displacement error (stabilized) .

log(error)
w
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2D Plane Stress Bending Example

Exact Oy and G5 both zero and ||G11||00=1
T
¢~ ~——
05+ -
04r .
M S
7 o |022|max (classic)
O 03+ - =
= = |(522|max (stabilized)
o [¢; 1 2|max (classic)
0.2 - |G12|max (stabilized) 7
01 _ —-3 —
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Classic Tied Contact Convergence

Various published numerical results support
convergence rate of h'2 in energy norm, but
haven’t found related analysis yet.

Two experts consulted, but did not know
Applicable theory not common knowledge

in elasticity. In standard commercial codes for computing contact between
two elastic bodies, the contact condition is only checked at the nodes either on
one or on both of the bodies. This corresponds to choosing discrete Lagrange
multipliers which is not natural from the perspective of the variational for-
mulation of the problem. The stability and convergence properties of these
approaches are in general not known, and the results have to be carefully
interpreted, which requires some experience. Furthermore, in our experience,

Numer. Math. (2005) 100: 91-115
Digital Object Identifier (DOI) 10.1007/s00211-005-0587-4
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Classic Tied Contact Convergence

* result for connecting standard/spectral elements

MATHEMATICS OF COMPUTATION
VOLUME 54, NUMBER 189
JANUARY 1990, PAGES 21-39

e | think I’'m on to something!

discretized by a consistent interpolation method, for example using Eq. (17) where the fluid interface
displacement field is interpolated from the values of the structural interface displacement field, it can be proved
[20] that the discretization error of the coupled fluid/structure model problem grows asymptotically as
g’iﬁn;gm = O(x.ﬁé). In other words, interpolating the fluid displacement field at the fluid/structure boundary

Comput. Methods Appl. Mech. Engrg. 157 (1998) 95-114

 Let’s go find reference [20]

Sandia
National
Laboratories



Classic Tied Contact Convergence

* result for connecting standard/spectral elements

MATHEMATICS OF COMPUTATION
VOLUME 54, NUMBER 189
JANUARY 1990, PAGES 21-39

e | think I’'m on to something!

discretized by a consistent interpolation method, for example using Eq. (17) where the fluid interface
displacement field is interpolated from the values of the structural interface displacement field, it can be proved
[20] that the discretization error of the coupled fluid/structure model problem grows asymptotically as
g’iﬁn;gm = O(x.ﬁé). In other words, interpolating the fluid displacement field at the fluid/structure boundary

Comput. Methods Appl. Mech. Engrg. 157 (1998) 95-114

 Let’s go find reference [20]

[20] Y. Maday, Private communication.
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Some Theory

e Discrete Bilinear Form

N
an(u,v) = /O Vu-Vudr + s;(u,v),
i—1 /%

S?:(u.? U ) = Z H 2.31

JES;

interpolation
error

Pij

/113 lu][v] ds.

consistency
error
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Q: How do we avoid integrals in implementation?

Some Theory

si(u,v) =y > HZ py; / [ul[v] ds.
r

JES; .

A: springs at master nodes spectrally equivalent
to term in box for linear elements

« Convergence theory for linear elements only

thus far
[w — up|r < Chljul| g2

« To do: L? error estimates and quadratic elements
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Symmetric Variant Without Constraints

 Tied contact constraints no longer included

« Symmetric treatment with springs attached to
both master and slave nodes (pure penality)

 Implementation, numerical results, and theory
very similar to stabilized tied contact

« Similar in spirit to two-pass methods, but
constraints are enforced via a penalty method
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Summary

 Simple fix to classic tied contact

— discrete springs introduced at interfaces

— simple physical interpretation

— avoids complicated surface integral calculations
— no parameters to choose

— optimal error estimates for linear elements

— non-oscillatory stresses near interfaces for smooth
solutions

— iterative solver performance not degraded
significantly in numerical experiments thus far
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e Future Work

Summary

— Numerical Studies

« problems with curved surfaces

 problems with material property jumps

« iterative solver performance for larger problems
— Theory Development

L2 norm estimates

e quadratic elements
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