
Stabilized Tied Contact

1010thth US National CongressUS National Congress
on Computational Mechanicson Computational Mechanics

Columbus, OhioColumbus, Ohio
July 16July 16--19, 200919, 2009

Clark R. Dohrmann

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2009-4338C



• Rich Lehoucq (Math/Computer Sciences)

• Dan Segalman (Engineering Sciences)

Acknowledgements



• Background
– classic tied contact
– limitations
– alternatives

• How Stabilized Method Works
– interface springs (penalty method)
– implementation details (parameter-free)
– easy “fix” (just add springs)

• Numerical Results & Theory
– convergence rates
– iterative solver performance
– supporting theory

Outline



• Classic Tied Contact
– constrain nodes on one side of interface to other
– often used for connecting dissimilar meshes
– standard method available in many FE codes
– known by many names: node-on-segment, permanent 

glued contact, node collocation, MPC approach, …

Background



• Pros
– simplicity
– constraints have local support
– elimination of slave dofs efficient

• Cons
– stresses near interface can have large errors
– these errors may not diminish w/ mesh refinement
– non optimal global convergence rates

Classic Tied Contact



• Overview
– constraints based on weak form of interface continuity

– Lagrange multiplier basis spans constants 
– classic tied contact may be viewed as a mortar method, 

but LM basis consists of delta functions

• Pros
– optimal convergence rates
– no spurious oscillations of stresses at interface for 

smooth solutions
– available theory

Mortar Method Alternative
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• Cons
– 3D surface integral calculations are nontrivial*

• need intersections of master and slave element faces
• may require large number of quadrature points
• much more complicated than classic tied contact

– constraint equations local, but eliminating dependent 
dofs may lead to coupling across entire interface **

Mortar Method Alternative

* dual LM basis avoids this problem 

* 3D implementation



• Pros
– optimal convergence rates
– no constraint equations
– “penalty” term scales nicely with mesh refinement
– available theory  

Nitsche Method Alternative



• Cons
– surface integrations required as in mortar methods

– method unstable if penalty parameter γ too small

– too large a value of γ can overly stiffen interfaces

– simple and reliable method needed to determine γ*

Nitsche Method Alternative

*



• Retains classic tied contact constraints
– symmetric form avoids all constraints

• Introduces springs at interface
• Can be viewed as modification of discrete 

bilinear form for theoretical purposes

How Stabilized Method Works



• where are springs located?
– nodes on master surface (linear elements)

• do I need to pick a penalty parameter?
– no, this is automated

• how is penalty parameter determined?
– see next slide

• is theory available, optimal convergence?
– yes, but theory incomplete (see later slides)

• good performance for iterative solvers?
– thus far yes (see later slides)

• convergence rate of standard tied contact?
– h1/2 in energy norm (see later slides)

• what about the patch test?

You May Be Wondering



• nodal stiffness k proportional to E(1/h)2h3 = Eh
• split cube in half and connect coincident nodes 

at interface with springs of stiffness βk = βEh
• cross-sectional stiffness for 1 layer of elements 

Eh(H/h)2 = EH2/h and βEH2/h for spring layer

Spring Stiffness Calculation

length, width, depth = H
Young’s modulus = E
element length = h



• net axial compliance of original mesh 
(H/h)(EH2/h)-1

• net axial compliance of mesh with springs 
(H/h)(EL2/h)-1 (1 + (h/H)/β)

• require relative compliance difference to be 
proportional to (h/H)2 for linear elements
⇒ β = H/h

• in general can choose kspring = knode(HΓ/hnode)
• scaling consistent with theory

Spring Stiffness Calculation



• DG and penalty methods
• Thermal contact resistance algorithm

Some Other Connections



2D Plane Stress Bending Example 



2D Plane Stress Bending Example 



2D Plane Stress Bending Example 



2D Plane Stress Bending Example 



• Various published numerical results support 
convergence rate of h1/2 in energy norm, but 
haven’t found related analysis yet.

• Two experts consulted, but did not know
• Applicable theory not common knowledge

Classic Tied Contact Convergence



• result for connecting standard/spectral elements

• I think I’m on to something!

• Let’s go find reference [20]

Classic Tied Contact Convergence



• result for connecting standard/spectral elements

• I think I’m on to something!

• Let’s go find reference [20]

Classic Tied Contact Convergence



• Discrete Bilinear Form

Some Theory

interpolation 
error

consistency 
error



• Q: How do we avoid integrals in implementation?

• A: springs at master nodes spectrally equivalent 
to term in box for linear elements

• Convergence theory for linear elements only 
thus far

• To do: L2 error estimates and quadratic elements

Some Theory



• Tied contact constraints no longer included

• Symmetric treatment with springs attached to 
both master and slave nodes (pure penalty)

• Implementation, numerical results, and theory 
very similar to stabilized tied contact

• Similar in spirit to two-pass methods, but 
constraints are enforced via a penalty method

Symmetric Variant Without Constraints



• Simple fix to classic tied contact
– discrete springs introduced at interfaces
– simple physical interpretation
– avoids complicated surface integral calculations
– no parameters to choose
– optimal error estimates for linear elements
– non-oscillatory stresses near interfaces for smooth 

solutions
– iterative solver performance not degraded 

significantly in numerical experiments thus far

Summary



• Future Work
– Numerical Studies

• problems with curved surfaces

• problems with material property jumps

• iterative solver performance for larger problems

– Theory Development
• L2 norm estimates

• quadratic elements

Summary


