

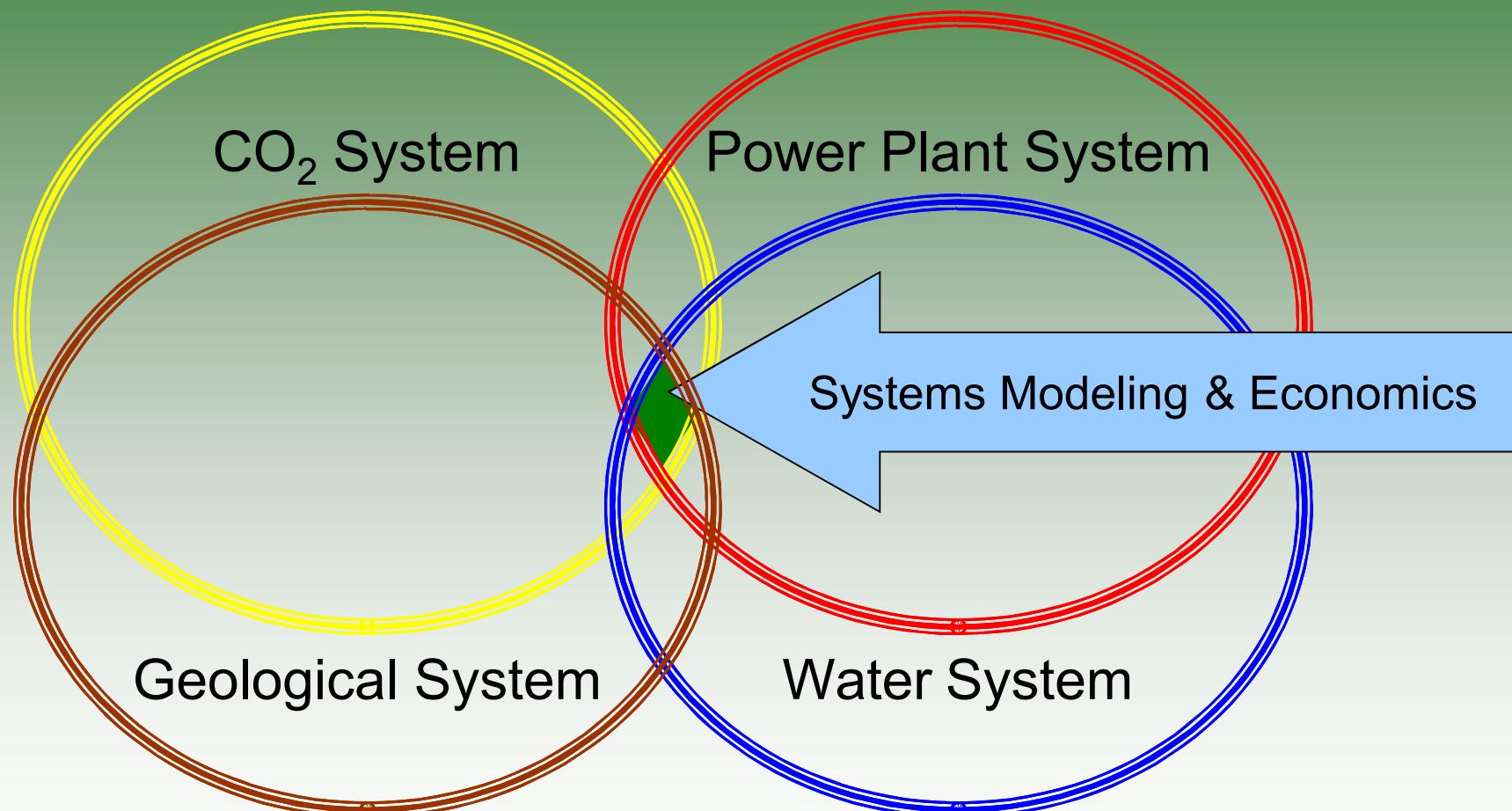
Eighth Annual Conference on Carbon Capture & Sequestration

SAND2009-2507C

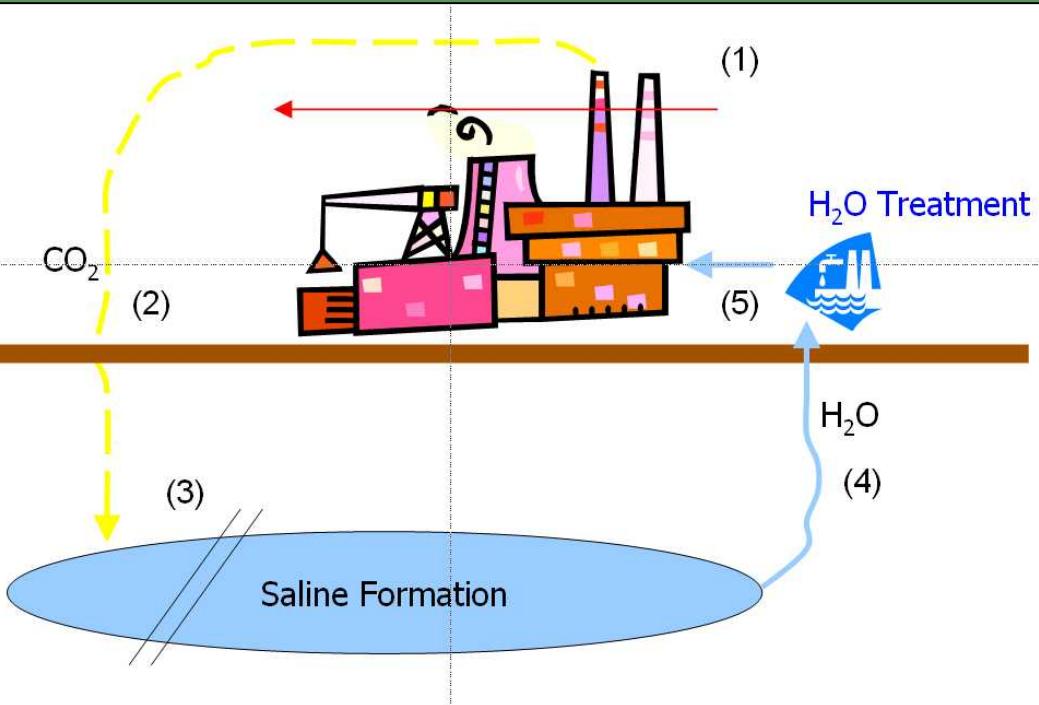
Geologic Storage - Saline

Combining Power Plant Water Needs and Carbon Storage using Saline Formations: An Assessment Tool

Peter H. Kobos, Jim L. Krumhansl, Thomas A. Dewers,
Jason E. Heath, Malynda A. Cappelle, David J. Borns,
Geoffrey T. Klise, Brian P. Dwyer and Andrea McNemar


May 4 -7, 2009 • Sheraton Station Square • Pittsburgh, Pennsylvania

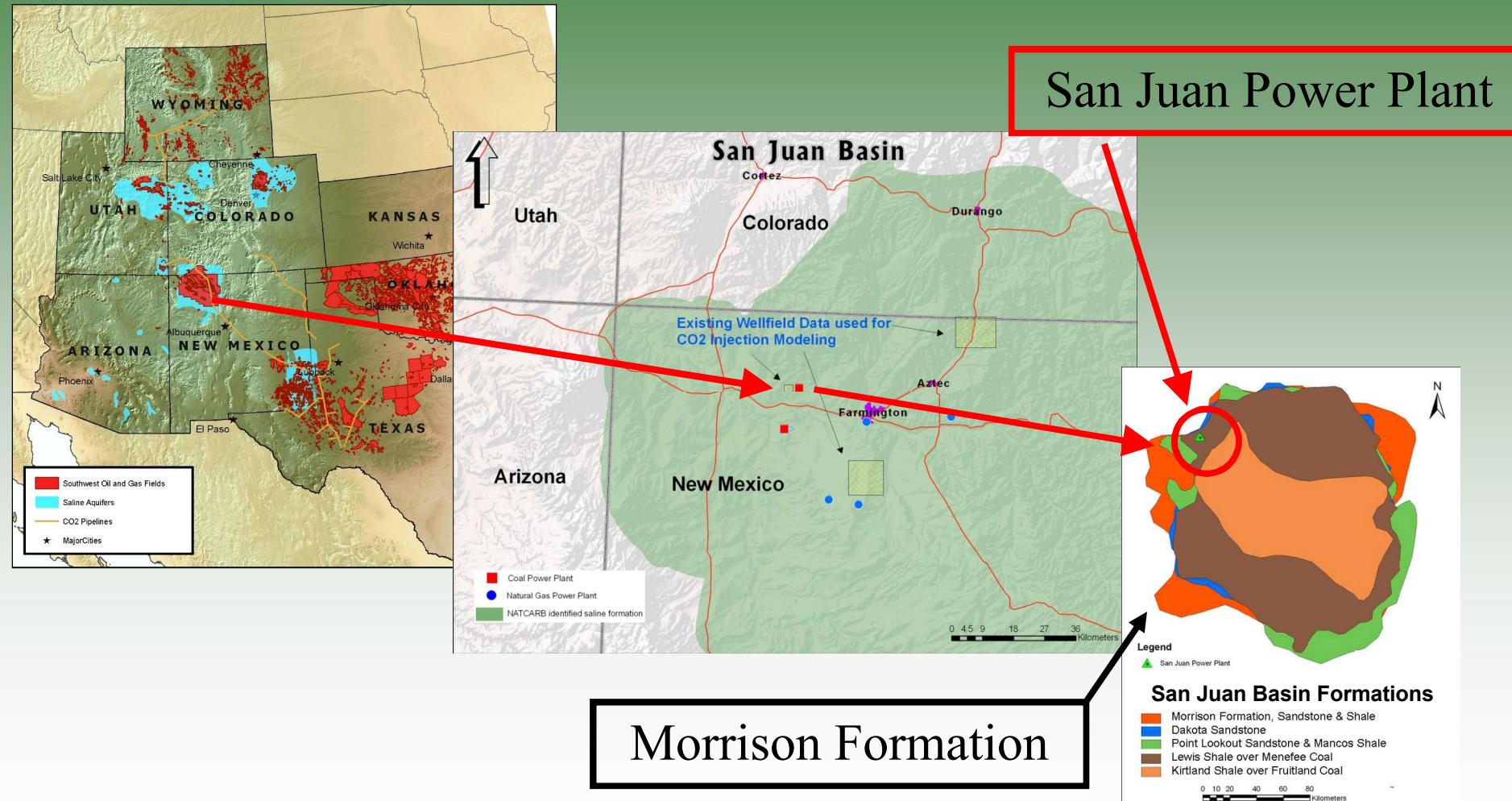
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.


Eighth Annual Conference on Carbon Capture & Sequestration

Energy-Economic Modeling Conceptual Layout of the Project

Can a power plant sequester Carbon Dioxide in a geological saline formation, while also utilizing treated water for cooling or other uses?

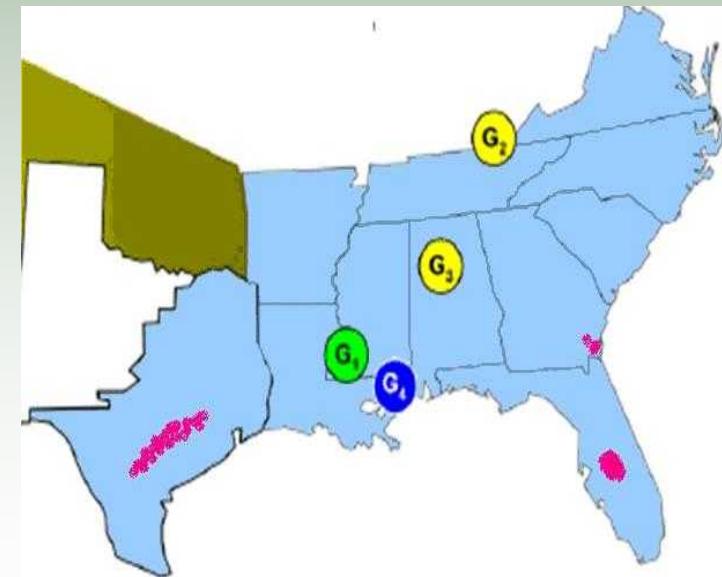
Developing the Interactive Model & Methodology



- A) Geochemical & Hydrologic Assessment of Geology**
- B) Geomodeling Assessment of Selected Formation**
- C) Water Treatment Module**
- D) Interactive Model:**
 - 1: CO₂ power plant emissions**
 - 2: CCS Potential**
 - 3: Saline Formation CO₂ sequestration potential**
 - 4: Pump Saline Formation for use at the power plant**
 - 5: Desalinate water for use at the power plant**

Note: Carbon Capture and Sequestration (CCS)

Eighth Annual Conference on Carbon Capture & Sequestration


San Juan Basin Assessment

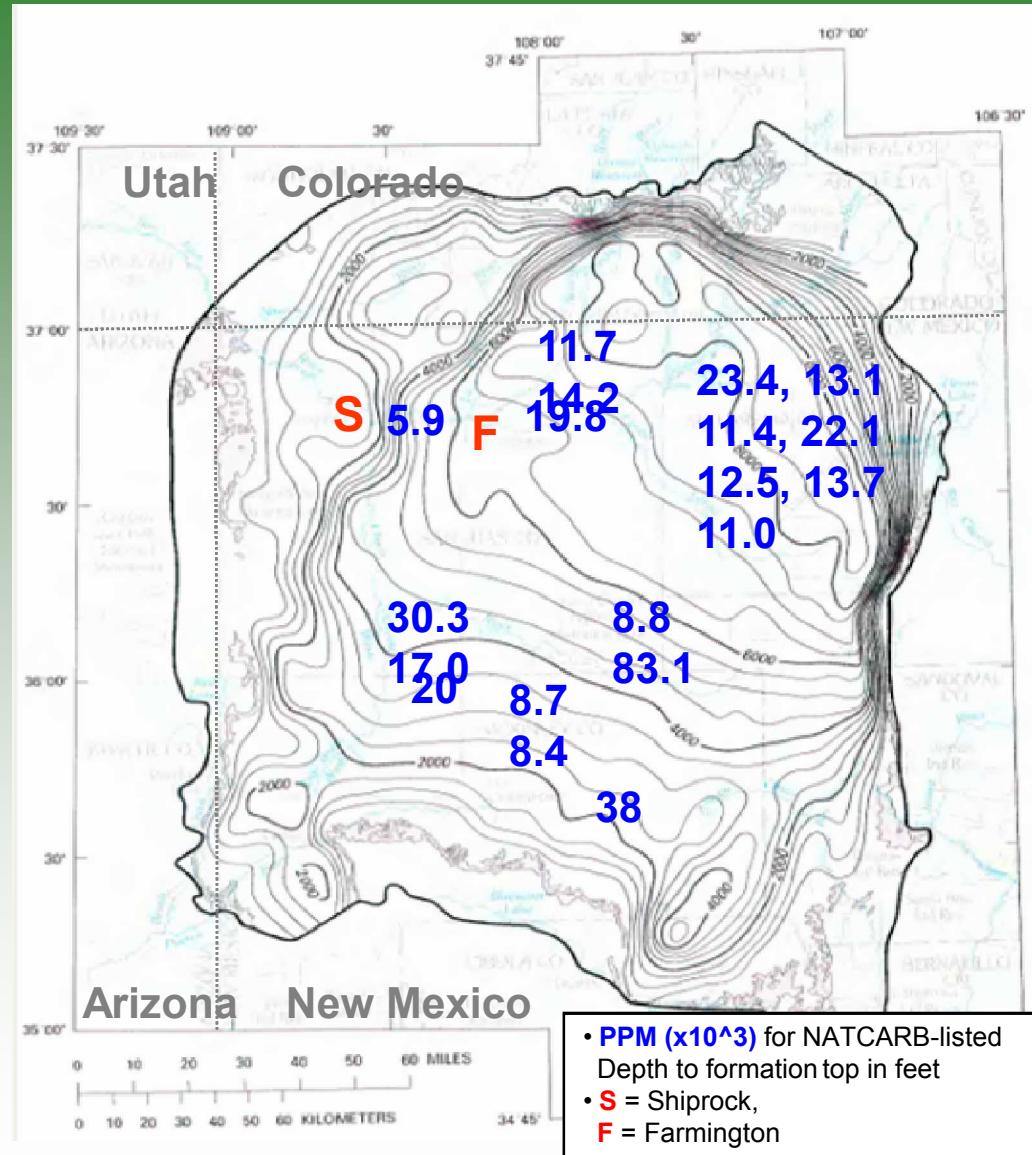
Site Selection Results:

Expanding the Scope

- Finding suitable formations in the SECARB area was more difficult than in the San Juan Basin.
 - Through much of the Gulf Coast region high salinities at shallow depths are common due to the regional occurrence of rock-salt beds in the geologic section.
- Four areas were identified as having potential:
 - South-Central Texas (Wilcox-Carrizo Fm.)
 - Central Florida
 - Southeast Georgia Basin
 - Black Warrior Basin (“G3”)
- Other areas lacking permeable formations at the required depths or the saline Formations are very/too salty

SECARB Regional designation with four NETL pilot test sites locations (Map adapted from NETL, 2008)

Geostudies (Geochemistry):


Formation CO₂ REACT ‘box model’ studies

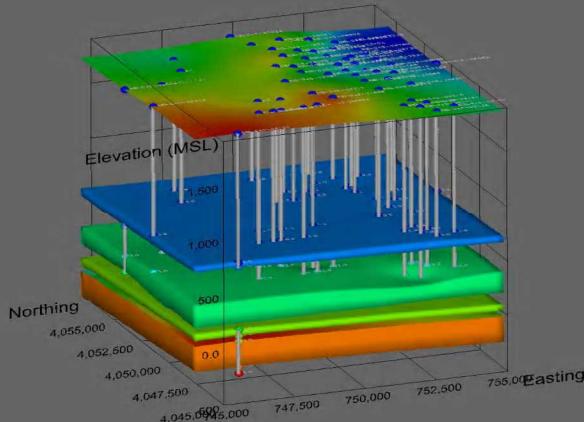
- Several Formations were studied in these formations:
 - Mesa Verde / Point Lookout
 - Dakota
 - Hermosa / Paradox
 - Morrison
- Site Search Criteria
 - Depth greater than 2,500 feet
 - Salinity between 10,000 and 20,000 ppm
 - Lower salinity water is protected as a potential drinking water source
 - Above 20,000 — 30, 000 ppm, brackish water treatment economics become unfavorable
- Insights:
 - Morrison may have the more favorable geochemical/geospatial conditions for CCS & water treatment and use
 - Reactive transport (“REACT”) modeling showed that only limited groundwater-CO₂-rock interactions would occur in the first few centuries; with little CO₂ mineralization likely.
 - Morrison has a broad regional occurrence and relatively low salinity

Salinity Profile for the Morrison Formation

- Has been recognized for its CO₂ sequestration potential
- Meets much of the assessment's criteria by having a relatively low salinity throughout
- Morrison wells in the San Juan Basin

(Sources: Map and data adapted from the following; NATCARB Database approximation; Craig, 2000; Other Information available through Hovorka et al., 2000, Sequestration of Greenhouse Gases in Brine Formations; Texas Bureau of Economic Geology)

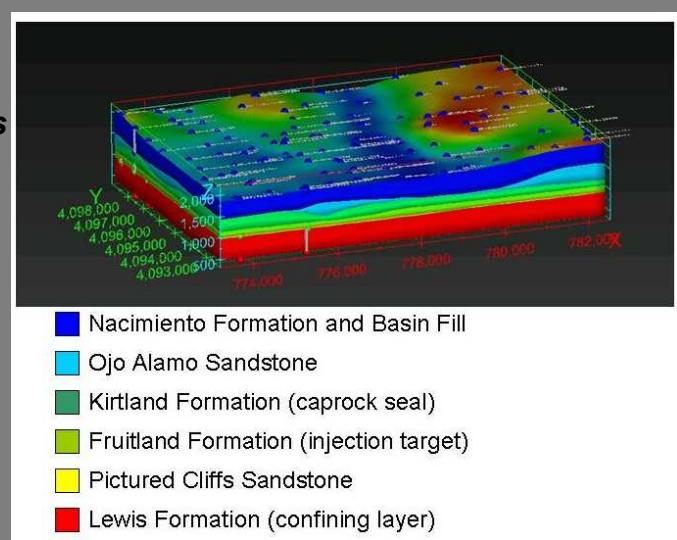
Geochemistry


- Geochemical “Box Models” using REACT
 - Purpose: Determine when CO₂ injection occurs, what are the resultant down hole geochemistry conditions (e.g., change pH, mineral interaction, etc.)
 - REACT determines the most chemically stable arrangement given formation parameters listed below

Formation	pH	Na	Ca	Mg	Cl	SO ₄	HCO ₃	TDS
		ppm	ppm	ppm	ppm	ppm	ppm	ppm
Fruitland - initial, 2402'	8.4	4050	44	27	1460	5.6	8015	13,620
Fruitland - second, 2795'	8.6	5,798	48	12	922	6.8	11,800	18,587
Point Lookout - Mesa Verde	7.9	1572	87	28	2,500	4.2	256	4,447
Gallop Sandstone in Mancos	8.4	3,378	8	7	4,060	7.7	1,684	9,145
Dakota	8.6	741	16	10	356	1.4	959	2,083
Morrison - initial, 4115'	7.9	1,491	313	49	58	3,764	272	5,947
Morrison - second, 6359'	7.2	5,372	286	34	2,529	7,915	882	17,018
Hermosa/Paradox	8	2,654	368	49	425	5,500	708	9,704

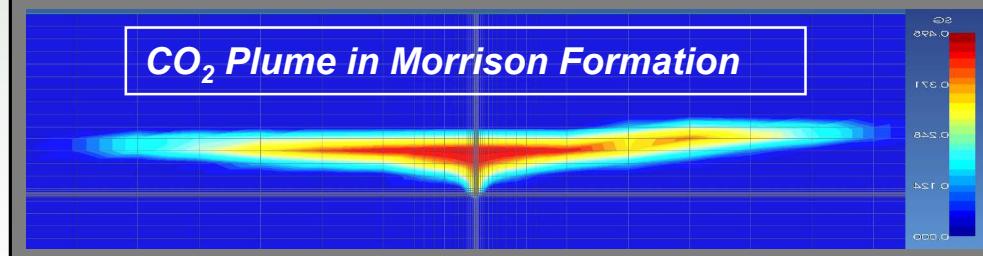
Geostudies (Geomodeling):

Modeling Supercritical CO₂ injection into San Juan Basin Saline Formations (Morrison & Fruitland Formations)


Geologic Framework Models

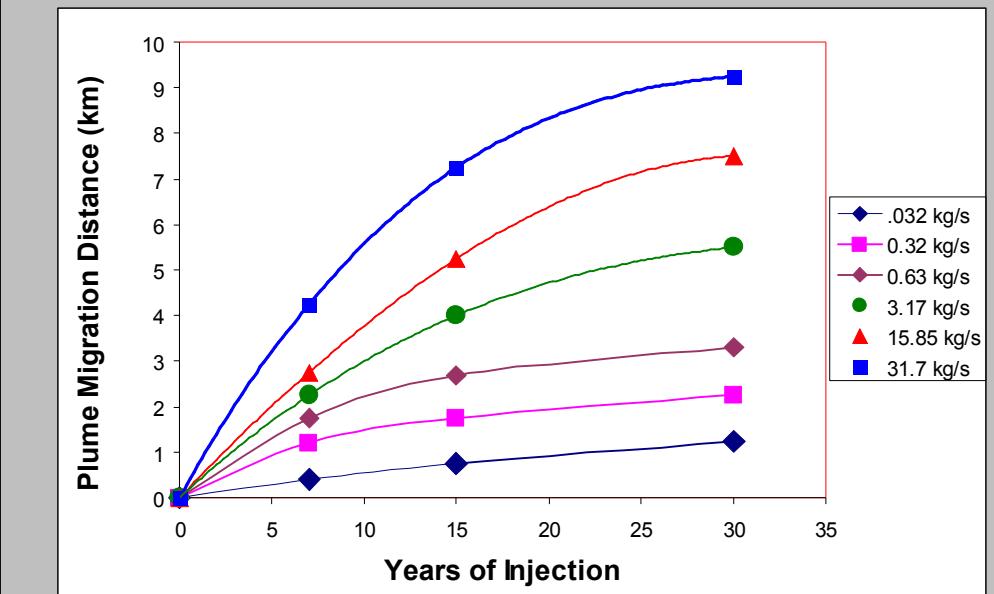
- Point Lookout Ss
- Gallup Ss
- Dakota Ss
- Morrison Formation

Sandstone reservoirs above and including Morrison Fm; also showing well control


Fruitland Formation as injection target and Kirtland Shale as proposed caprock, plus strata above and below

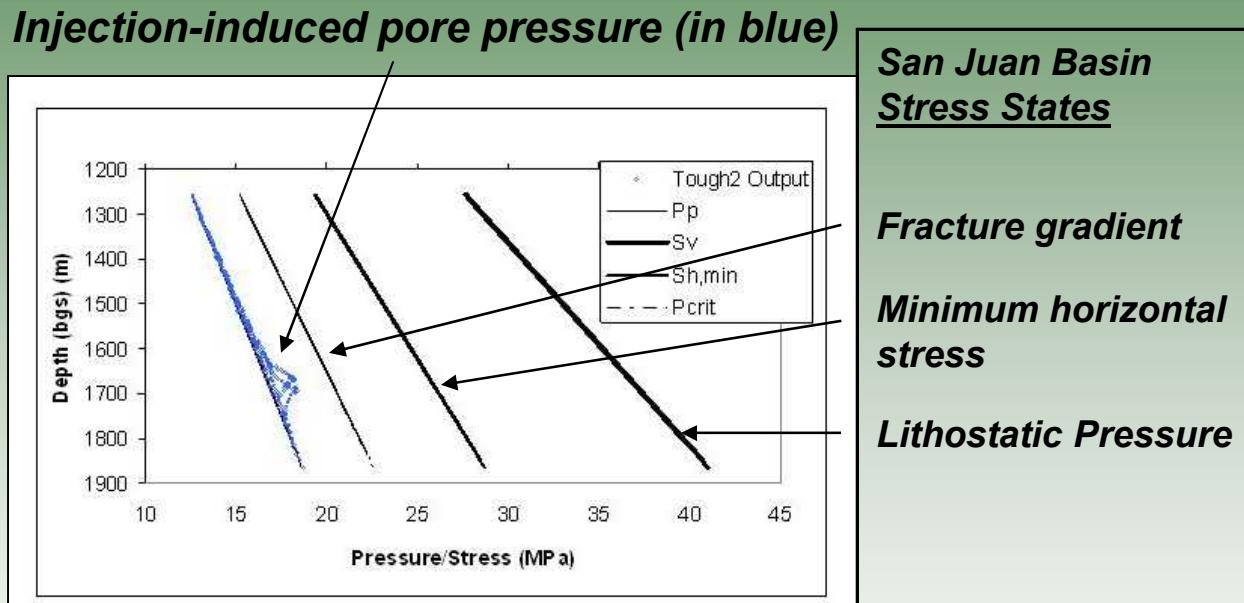
- Nacimiento Formation and Basin Fill
- Ojo Alamo Sandstone
- Kirtland Formation (caprock seal)
- Fruitland Formation (injection target)
- Pictured Cliffs Sandstone
- Lewis Formation (confining layer)

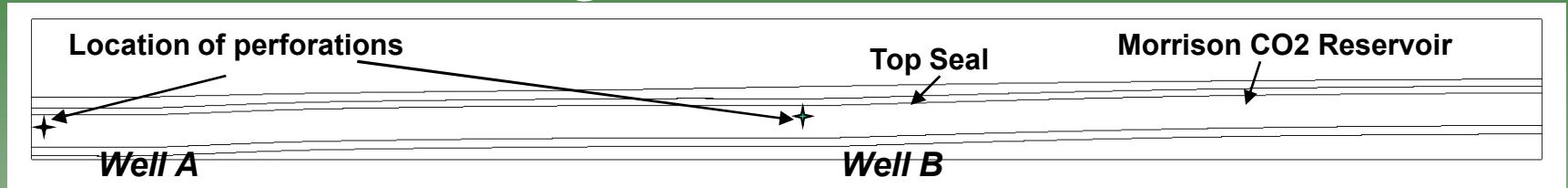
Updip and upsection migration of CO₂ in Morrison Fm. This TOUGH2 model assumes isotropic hydrologic properties


CO₂ Plume in Morrison Formation

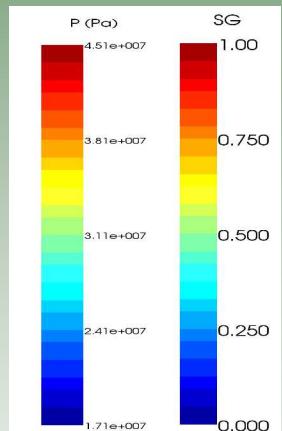
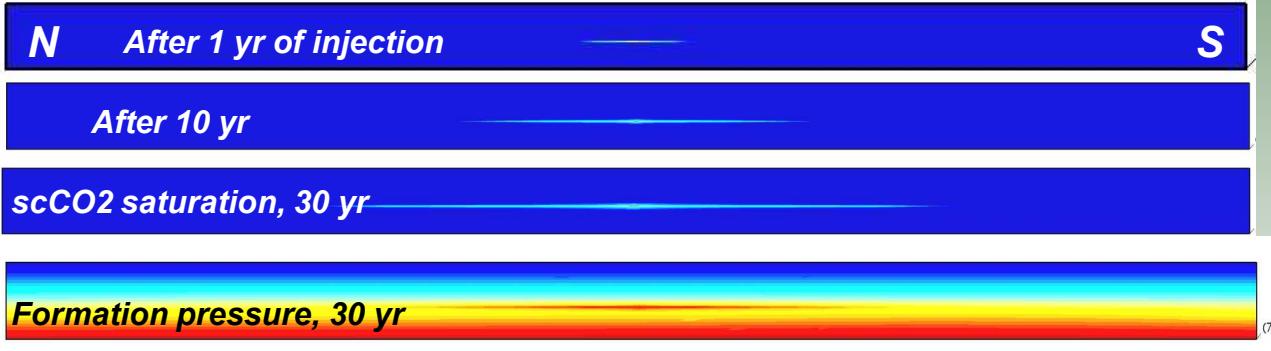
Modeling CO₂ Injection in San Juan Basin: Calculating Storage Capacity & Manageable CO₂ Injection Rates

- Morrison Formation
 - TOUGH2 simulations constrain the amount of storage capacity and the CO₂ plume migration distance
 - Calculated Storage Capacity for the Morrison 1 Site, ~3,300 million metric tons


Plume Migration, function of injection rate


References: Pruess et al., 1999, LBNL-43134; Pruess, 2005, LBNL-57952

Modeling CO₂ Injection in San Juan Basin: Calculating Storage Capacity & Manageable CO₂ Injection Rates

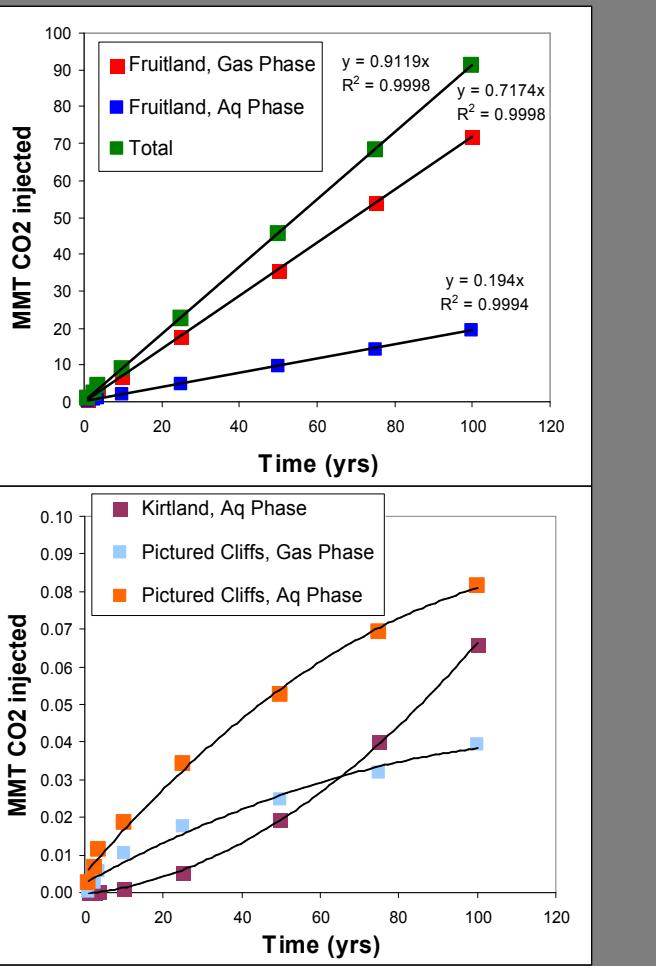


- Injection rate of 2,500 *metric tons/day* can be achieved without near-wellbore damage
- Representative injection rates / pressures far below fracture gradient

CO₂ Plume Migration Rates and Reservoir Pressure Mitigation: Morrison Reservoir

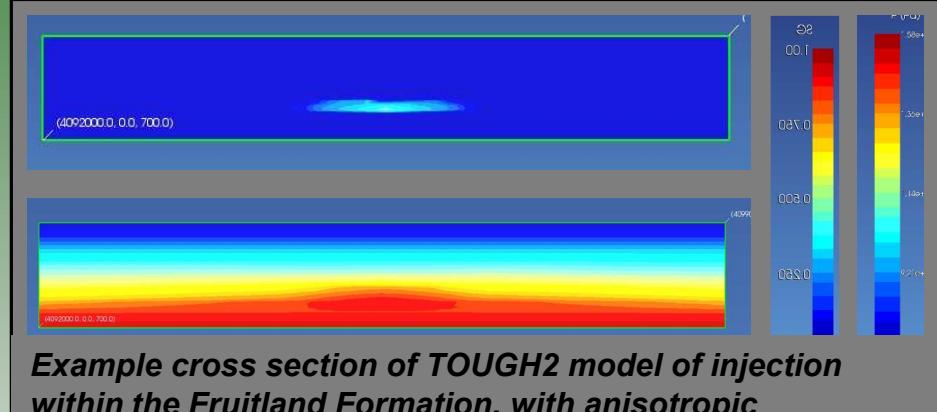
Injection of CO₂ in Well B at 100 tonnes/day

Injection of CO₂ in Well A at 1000 tonnes/day

Large pressure increase sufficient to frac wellbore?

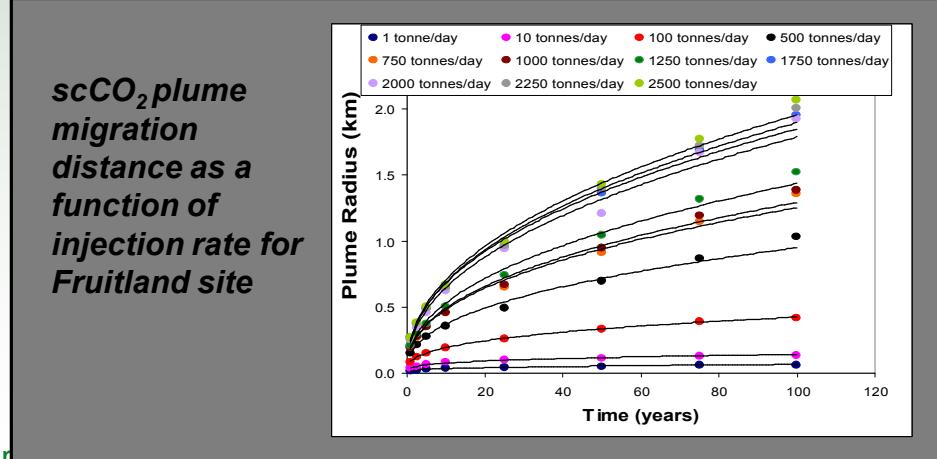


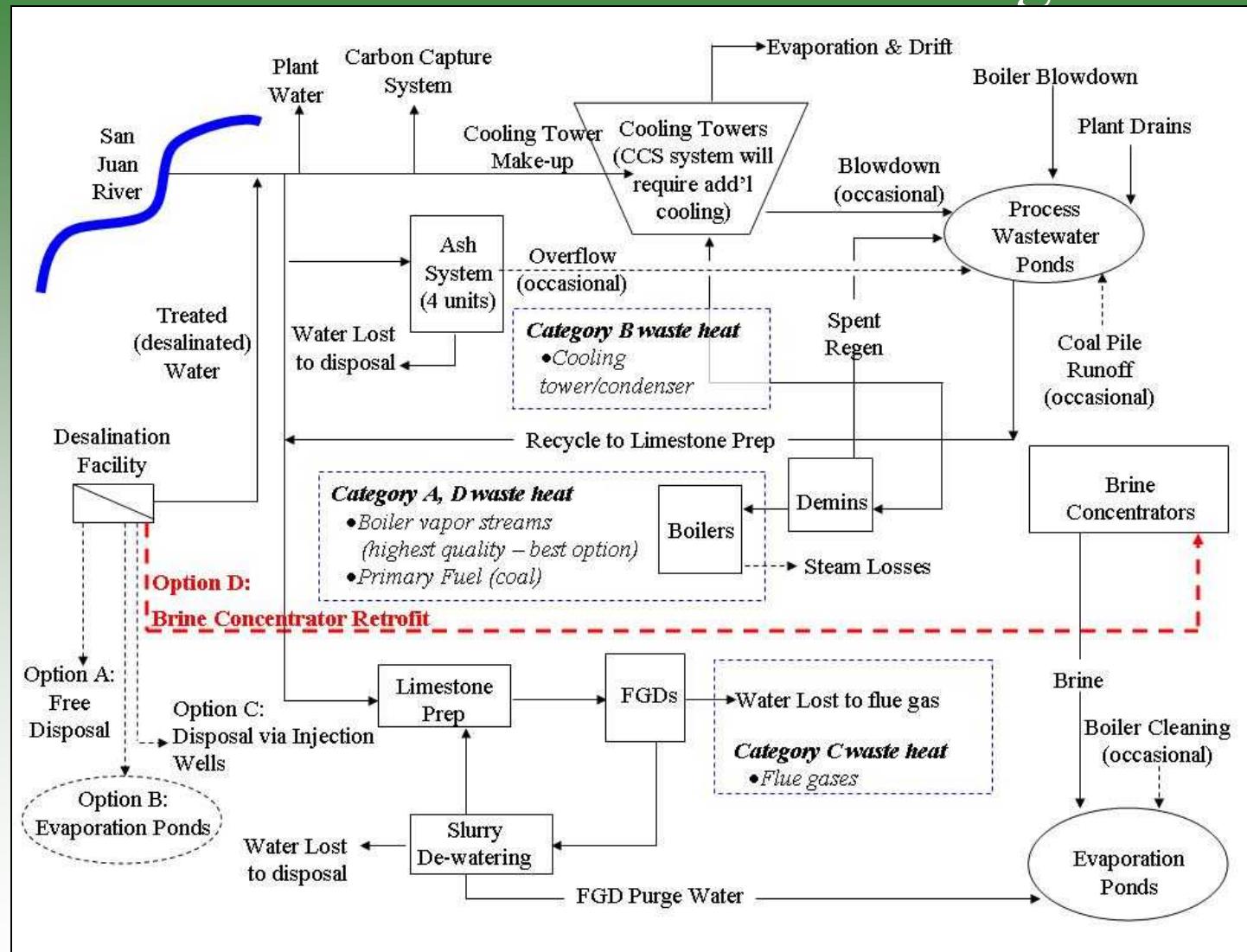
Pressure after equi-volume withdrawal of formation water at well B, 30 yr



Geostudies (Geomodeling):

Modeling Supercritical CO₂ injection into San Juan Basin Saline Formations (Fruitland Formation)


Mass conservation during injection at 2,500 tonnes /day into Fruitland Fm (shows partitioning into dissolved and scCO₂)


Example cross section of TOUGH2 model of injection within the Fruitland Formation, with anisotropic hydrologic properties.

Plume spreads laterally and up against the Kirtland Shale caprock (top) and induces a “mound” of overpressure (bottom).

scCO₂ plume migration distance as a function of injection rate for Fruitland site

Simplified San Juan Generating Station Water Flow & Waste Heat Diagram

Adapted from DeFilippo, M. "Semi-Annual Technical Progress Report, October 1, 2005 to March 31, 2006: Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities." EPRI. 2006. October 23, 2007 <http://www.netl.doe.gov/technologies/coalpower/ewr/water/pp-mgmt/epri.html>

Water Treatment Cost Estimations

(all using Initial Morrison Formation)

	Option A BWRO-no conc disposal \$/1000 gal	Option B BWRO-evap ponds \$/1000 gal	Option C BWRO- injection well \$/1000 gal	Option D HERO + BC retrofit \$/1000 gal
Total Cost - includes equipment & O&M for desalination and concentrate disposal (e.g. ponds)				
Annualized Total Capital	\$ 2.90	\$ 5.04	\$ 3.24	\$ 2.59
Annual O&M	\$ 2.31	\$ 2.35	\$ 2.32	\$ 2.73
Electrical	\$ 0.42	\$ 0.42	\$ 0.42	
Membrane Replacement	\$ 0.00	\$ 0.00	\$ 0.00	
Other	\$ 0.54	\$ 0.54	\$ 0.54	
Total Cost (O&M+cap)	\$ 5.21	\$ 7.39	\$ 5.56	\$ 5.31
Cost of Desalination only - includes only equipment & O&M for desalination (i.e. no ponds, no GW pumping)	Option A BWRO-no conc disposal \$/1000 gal	Option B BWRO-evap ponds \$/1000 gal	Option C BWRO- injection well \$/1000 gal	Option D HERO+BC retrofit \$/1000 gal
Annualized Total Capital	\$ 1.59	\$ 1.59	\$ 1.59	\$ 1.28
Annual O&M	\$ 1.34	\$ 1.34	\$ 1.34	\$ 1.43
Electrical	\$ 0.42	\$ 0.42	\$ 0.42	\$ 0.86
Membrane Replacement	\$ 0.08	\$ 0.08	\$ 0.08	\$ -
Other	\$ 0.59	\$ 0.62	\$ 0.59	\$ 0.64
Total Cost (O&M+cap)	\$ 2.93	\$ 2.93	\$ 2.93	\$ 2.72

Water Treatment Cost Estimations

(all using Initial Morrison Formation)

	Base Case	Value
Water TDS (mg/L)	Used Morrison formation based on 24/7 pumping of brackish aquifer, and % CO ₂ capture	6,000*
Design Flow rate (gpm)		1,807
Design Flow rate (MGD)	Used 2.0 MGD desalination output (treated water)	
Design Annual flow (Mgal/yr)	based on 0.85 plant capacity factor (USBR recommendation)	400
Electrical Cost (\$/kwh)		0.1
Pipeline distance from brackish well to desal plant (mi)	based on radial distance, Morrison formation	3
Well Depth (ft)	based on Morrison formation	4,725
Capital Costs:		
Pump & Pipe - Produced Water Gathering Capital	Used USBR Desalting Handbook, Fig. 9-18	\$2,000/ft
Piping from gathering station to desal plant	Used USBR Desalting Handbook, Fig. 9-11	\$126,810/mi
Concentrate Disposal pipeline & well	Used USBR Desalting Handbook, Fig. 9-11&9-13	
Evaporation ponds	Used USBR Desalting Handbook, Fig. 9-12	
Desalination Total Construction Cost	Used USBR Desalting Handbook, Fig. 9-7	\$2000/mg/L TDS for options A-C NETL/EPRI (2006) value for option D
O&M		
Labor (for 2 MGD)	Used USBR Desalting Handbook, Fig. 9-37	
Electrical-BWRO (for 6,000 mg/L TDS, 2 MGD)	Used USBR Desalting Handbook, Fig. 7-8&9-45	
Electrical-GW pumping (for 1807 gpm/2 MGD)	Used equations to estimate pump power	
Membrane Replacement	Used USBR Desalting Handbook, BWRO	\$0.08/1000 gal plant capacity
Chemicals (used surface water)	Used USBR Desalting Handbook, Fig. 9-41	
Other Maintenance	Used USBR Desalting Handbook	1.5% of capital

* Initial value for working framework

Exploring Waste Heat Sources:

Objective, use waste heat to produce clean water

Category A – steam to condenser units (highest energy)

- Diffusion Driven Desalination (DDD), Univ. of Florida
- Membrane Distillation (MD), Arrakis/New Jersey Institute of Tech.
- Wet Surface Air Cooler (WSAC), EPRI
- Carrier Gas Enhanced Atmospheric Pressure Desalination, ASU
- Low Temperature Evaporation (LTE), Bhabha Atomic Research Centre, India

Category B – cooling tower hot water side (low energy)

- No substantial development in this area at present

Category C – flue gas stream/ water recovery

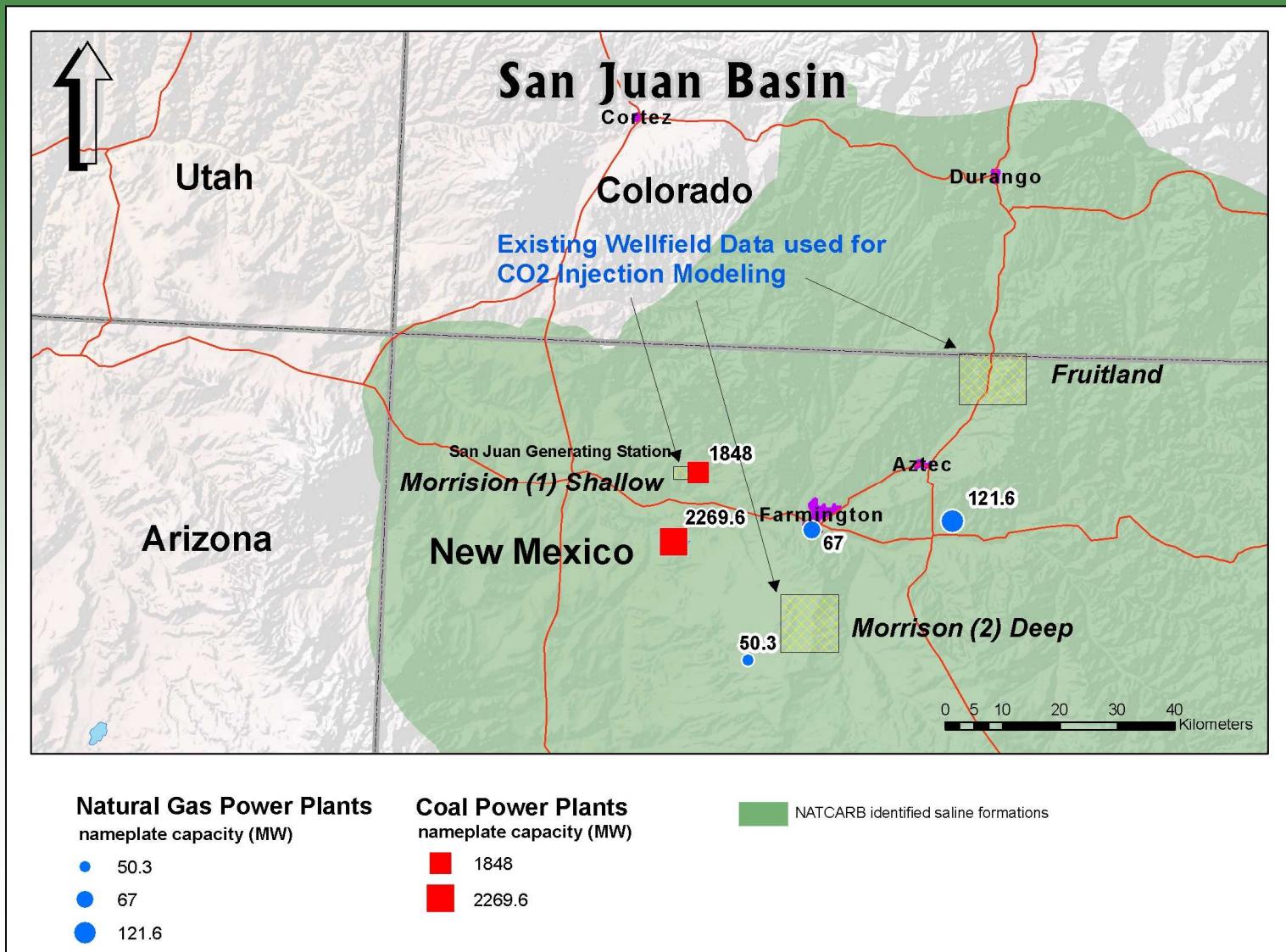
- WETEX (Liquid Desiccant Process), University of North Dakota's Energy & Environmental Research Center, Siemens Power Generation

Category D – coal drying

- Coal Drying, Energy Research Center/Lehigh University

Exploring Waste Heat Sources:

Cost Data relatively limited at present, water chemistry dependent,
information from laboratory & pilot scale studies


Technology	Description	Development State	Cost (\$/1000 gal)
Reverse Osmosis	Baseline Technology in Water Treatment High pressure forces water across membrane.	Fully developed	2.5 – 5
DDD (Diffusion Driven Desalination)	Low temp & pressure, utilizes natural thermal energy storage in large water bodies (ocean)	Lab scale, Univ. of Florida	0.2 – 1 (a) Theoretically derived
MD (Membrane Distillation)	Heated water vapor crosses hydrophobic membrane at low pressure	Pilot scale, New Jersey Institute of Tech/Arrakis	2.97 (b)
CGP (Carrier Gas Enhanced Process)	Dewvaporation (Humidification dehumidification process)	Lab-scale, Arizona State Univ.	1.7 – 3.7 (c)

(a) Annual Report, "Innovative Fresh Water Production Process for Fossil Fuel Plants, September 2005, University of Florida, Klausner, James F. and Mei, Renwei

(b) "Novel Membrane and Device For Direct Contact Membrane Distillation-Based Desalination Process: Phase II, New Jersey Institute Of Technology, Newark, NJ, July 2003, U.S. Department of the Interior Bureau of Reclamation Denver Office

(c) Final Report, "Carrier-Gas Enhanced Atmospheric Pressure Desalination", Arizona State University, Tempe, Arizona, U.S. Dept Of the Interior Bureau of Reclamation, October 2002, pg. 1.

Systems Integrated Assessment Model: The Water, Energy and Carbon Sequestration Model (WECS)

Systems Integrated Assessment Model:

The Water, Energy and Carbon Sequestration Model (WECS)

Evaluating Saline Formations for Combined Carbon Sequestration and Power Plant Cooling Water Needs

Main Page CCS Assumptions CO2 Sink Water Treatment Sandia National Laboratories

i Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional-Scale

Input Variable

Power Plant Emissions (CO2)	14,512,417 ton/yr
% CO2 Sequestered	50 %
Formation Depth	5,741 ft
Formation Size	3,344 mmt
Power Plant Water Demand	6.90 cubic ft/s 6,421,612,530 gallon/yr 17.84 MGD

High-Level Results

CO2 Sink Longevity	508 yr
Potential Displaced Water	792,984,148 gallon/yr 2.20 MGD
% of Annual Plant Demand Met	12 %
Years Worth of H2O in Formation for Plant	63 yr
Years Worth of H2O based on CO2 disp.	508 yr
Electricity Cost	4.50 cents/kWh
Water Treatment Costs	\$6.11 per 1000 gallons
Electricity Cost, CO2 Seq & H2O Treatment	8.81 cents/kWh

Parameters

Results

Base Cost

Carbon Capture and Sequestration (CCS)	Red
Water Treatment (WT)	Blue

CO2 per year
ton/yr
20,000,000
10,000,000
0

% CO2 Captured
90%
70%
50%
30%
0%

Geological Formation
Morrison 1

Wells
6

% H2O Recovery
100%
0%

San Juan MGD
MGD
15
0

Base Cost of Electricity
cents/kWh
20
0

14,512,417 ton/yr 50 % 1.52 cubic cm/gram 8 30 % 17.84 MGD 4.50 cents/kWh

Working results as of early 4/09

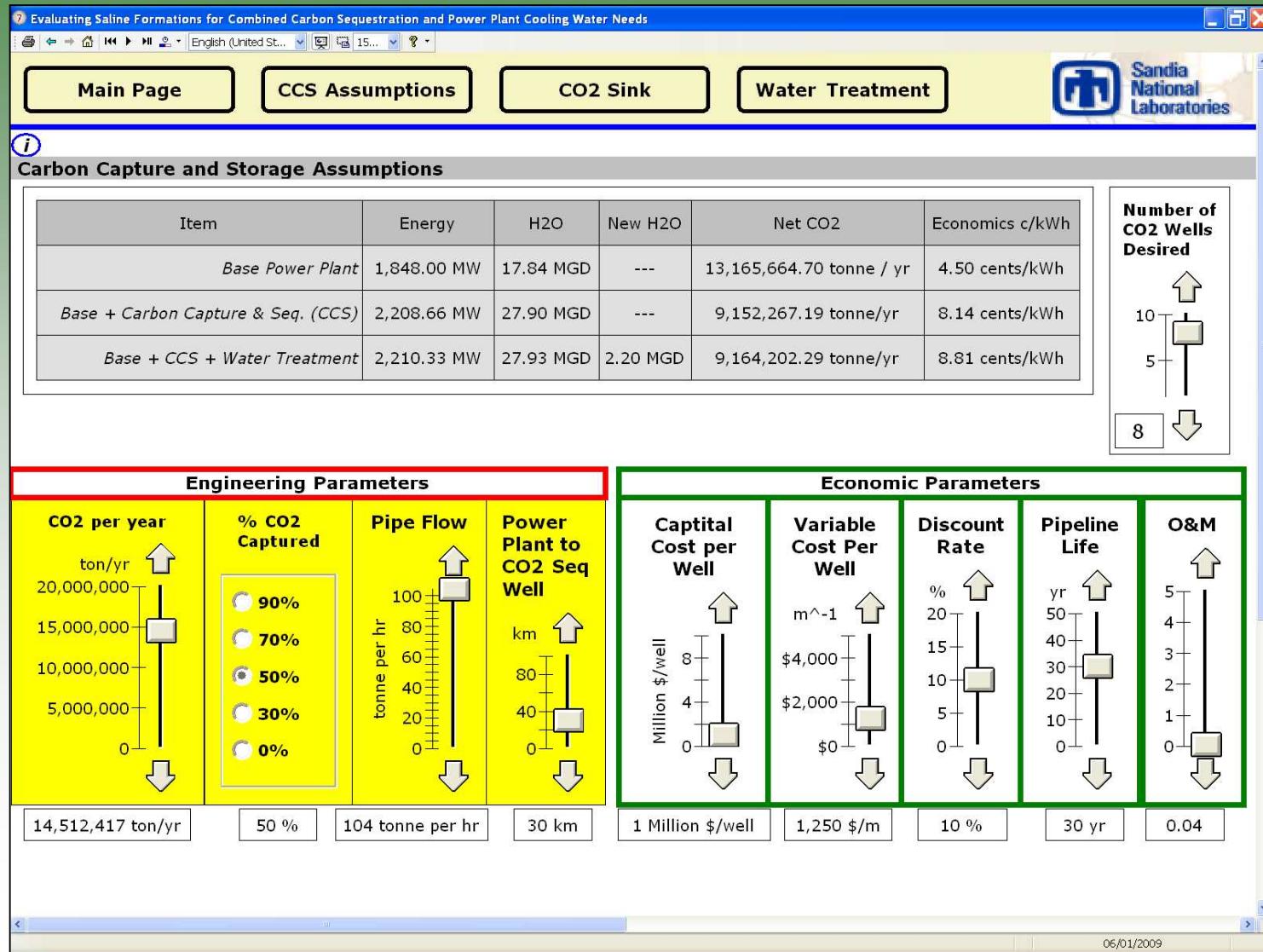
06/01/2009

Systems Integrated Assessment Model, The Water, Energy and Carbon Sequestration Model (WECS)

Evaluating Saline Formations for Combined Carbon Sequestration and Power Plant Cooling Water Needs

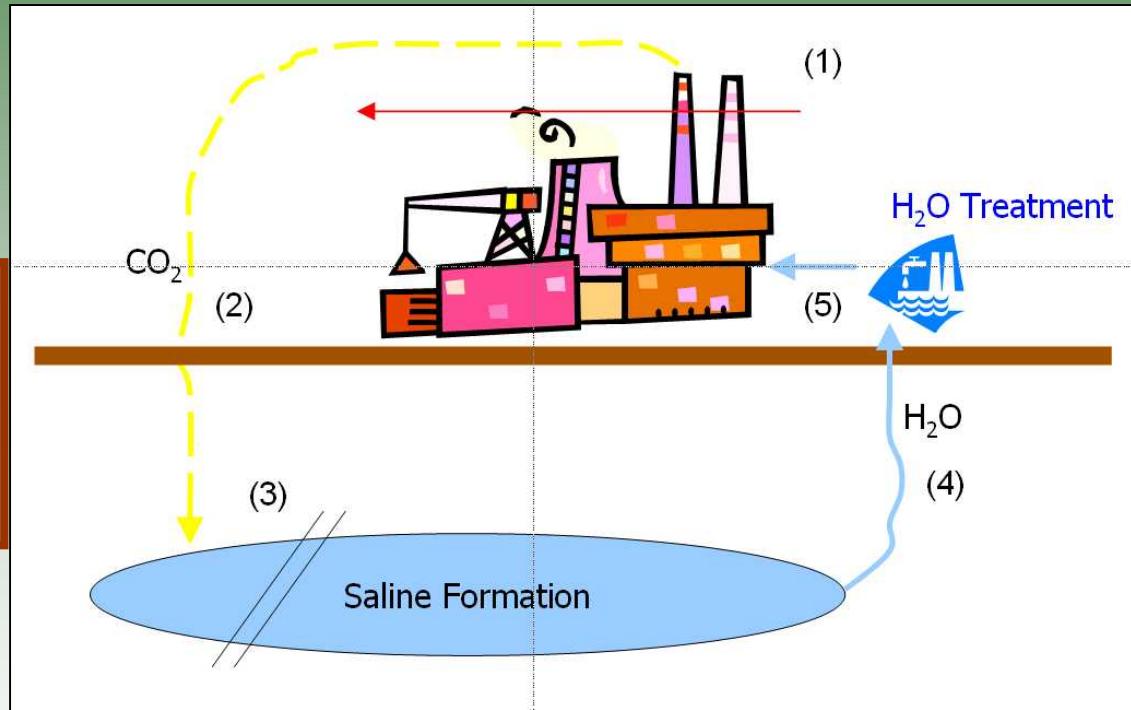
Main Page CCS Assumptions CO2 Sink Water Treatment

 Water Treatment Options


	Option A BWRO-no conc disposal	Option B BWRO-evap ponds	Option C BWRO-injection well	Option D HERO+BC retrofit
Annual O&M	\$1,751,541.21 per yr	\$3,052,072.94 per yr	\$1,963,023.28 per yr	\$1,564,575.98 per yr
Total Capital Cost	\$1,523,367.76	\$1,523,367.76	\$1,523,367.76	\$1,523,367.76
\$/1000 gallons	\$6.48 per 1000 gallons	\$9.05 per 1000 gallons	\$6.90 per 1000 gallons	\$6.11 per 1000 gallons

Engineering Parameters		Economic Parameters		
Water Well Depth	RO Efficiency for Desal Slider	Water Treatment Options	Year of Payments	Interest Rate %
<input max="7000" min="3000" type="range" value="4725"/> ft 7,000 6,000 5,000 4,000 3,000	<input max="85" min="50" type="range" value="75"/> % 80 70 60	<input type="radio"/> BWRO - no conc. disposal <input type="radio"/> BWRO - evaporation ponds <input type="radio"/> BWRO - injection wells <input checked="" type="radio"/> HERO BC retrofit	<input type="range" value="20"/> yr 30 20 10 0	<input type="range" value="5"/> %/yr 10 8 6 4 2 0
4,725.00 ft	75.00 %		20.00 yr	5.00 %/yr
				4.50 cents/kWh

06/01/2009


Systems Integrated Assessment Model:

The Water, Energy and Carbon Sequestration Model (WECS)

Integrated Assessment Highlights

(1) Carbon Capture and Sequestration (CCS),
20%+ Energy Penalty ↑ costs ~100%, ↑H₂O demands

(2) CCS, 50% capture and sequestration, ~4 mmt/yr

(3) Morrison Formation, 3,000+ mmt, 100s yrs. worth of CO₂ sequestration capacity

(5) Produced Water Treatment, ↑ costs ~10%, meet potentially a portion of Power Plant's annual H₂O demand

(4) <1 - 4 Million Gallons per Day for ~50-100s yrs., Assuming 30% recoverable water potential

Integrated Assessment:

Initial Test Case and Working Model Methodology

Section	Description	Assumption	Units
1	Power Plant	1848	MW
	Capacity Factor	72	%
	Carbon Dioxide Capture	50	%
	CO ₂ Emissions	14,512,417.50	tons/year (EPA, eGRID)
	CO ₂ Sequestered	6,582,722	tonnes/year (2,500 tonnes/day/well)
2	Saline Formation	3,343	mmt
	Representative Depth	5,700	feet
	Years' worth of CO ₂ storage resource	500+	Years
3	Saline Water displaced	170	bar
	CO ₂ displacing H ₂ O	1.52	Cubic centimeters of H ₂ O per gram of CO ₂
4	H₂O displaced and Demand	402	Billion gallons total
	Annual H ₂ O displaced	792	Million gallons / year
	Power Plant cooling towers' H ₂ O demand	6.4	Billion gallons / year
	Years' worth of H ₂ O supply	500+	Years (based on water displaced)
	Years' worth of H ₂ O supply	60+	Years (based on plant demand)
5	Desalination Costs – Base Case	5.32	\$ / thousand gallons

Integrated Assessment:

Initial Test Case and Working Model Methodology

Carbon Capture, Water Treatment and Electricity Cost Scenarios.

Percent of CO₂ Captured	0	30	50	70	90
CO ₂ Sink Longevity (years)	n/a	850	500	360	280
Displaced Water (million gallons /year)	n/a	480	790	1,110	1,430
Annual Plant Cooling Towers' Demand Met (%)	n/a	7	12	17	22
Years Worth of H ₂ O in Formation (years based on the Plant's demand)	n/a	63	63	63	63
Water Treatment Costs (\$ per thousand gallons)	n/a	9.20	6.10	4.80	4.00
Electricity Cost, CO ₂ Seq., Pipelines, injection wells & H ₂ O Treatment (cents/kWh)**	n/a	8	9	10	12

n/a: not applicable, *Rounded where appropriate for illustration, ** Preliminary cost calculations, assuming a 100 km pipeline.

Anticipated Benefits

- Developing the analytical framework may provide a step-by-step methodology to assess additional power plants and saline formation CO₂ sequestration and water use cases in other regions
- The Earth Model developed will address CO₂ plume migration in a coupled-use system
- The Water Treatment technological assessment is more broadly applicable to other types of saline waters (looking for economical treatment in the face of unconventional water sources for multiple uses)
- The Assessment Model (WECS) provides an integrating framework to highlight the physical and economic opportunities and challenges for a coupled system

Technology Development Pathway

Timeline

2008

Summer

Fall

2009

- **Completed Phase I:**
 - Developed a Test Case Model
 - Initial results: may be 100s years worth of CO₂ storage capacity
 - Potential to displace and extract these waters
 - with treatment, could supplement the additional water requirements (parasitic loads due to CCS and producing and treating the water)
- **Ongoing Phase II:**
 - **Additional Geosystems Analysis**
 - Detailed TOUGH 2 modeling of coupled fluid/gas flow calculations of the 2 Morrison Formation Locations & 1 Fruitland Formation sites
 - Detailed Geochemistry insights (for saline formation waters), detailed CO₂-brine-rock interaction
- **Where we are going:**
 - Developing additional water treatment/waste heat components
 - Final Product
 - **User Analysis Model for Distribution** -- assessment for new candidate sites via WECS model and framework
 - Final Report, Carbonsq Conference Participation

Summer

Future Plans

Timeline

2009

Winter

2010

Summer+

- **Expanding the Scope**
 - Assess Nation-Wide Formation Data
 - Based on NatCarb and other sources
- **Analyzing the Formations**
 - Down-select other potential coupled CO₂ and extracted, treated water locations
 - Model representative/selected formations (e.g., TOUGH2, & caprock analysis)
- **Expand the User Model**
 - Include the Nation-wide data assessment for a first-order user model
 - Refine interface for user options

Eighth Annual Conference on Carbon Capture & Sequestration

Geologic Storage - Saline

Combining Power Plant Water Needs and Carbon Storage using Saline Formations: An Assessment Tool

Acknowledgements

Thanks to the National Energy Technology Laboratory, and Andrea McNemar and the Existing Plants, Emissions & Capture (EPEC) program in particular, for funding the research in the areas of Energy-Water Program Management and Research. Thanks also go to Mike Hightower and Tom Feeley for their guidance during the initial phases of this project.

May 4 -7, 2009 • Sheraton Station Square • Pittsburgh, Pennsylvania