

Persistent homology for parameter sensitivity in large-scale text-analysis (informatics) graphs

Danny Dunlavy

Computer Science and Informatics Department (1415)

Sandia National Laboratories

August 29, 2009

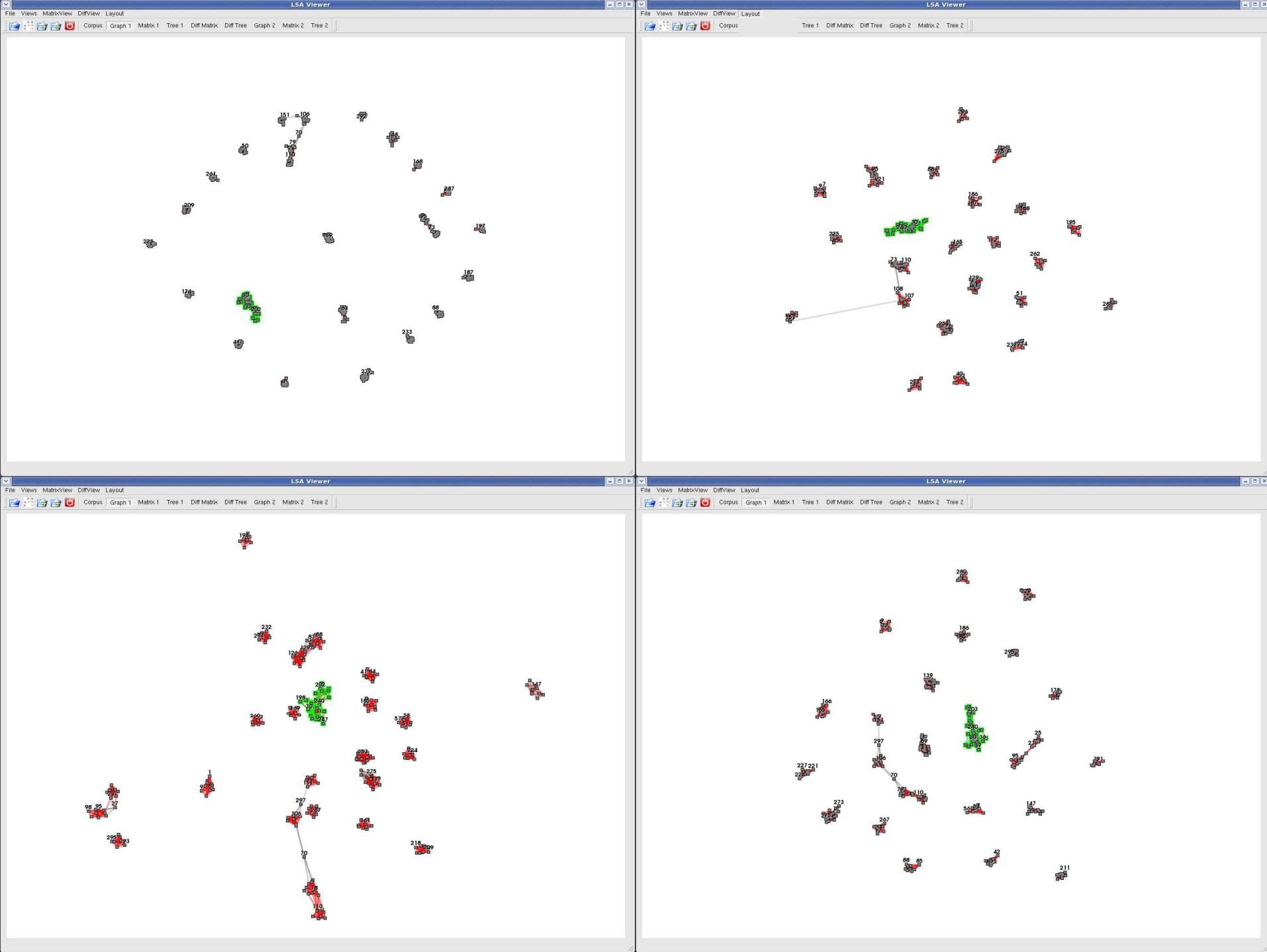
Acknowledgement

- **Text Analysis**

- Pat Crossno, Tim Shead, Tammy Kolda, Philip Kegelmeyer, Brett Bader, Sean Gilpin, Tad Turpen

- **Computational Topology**

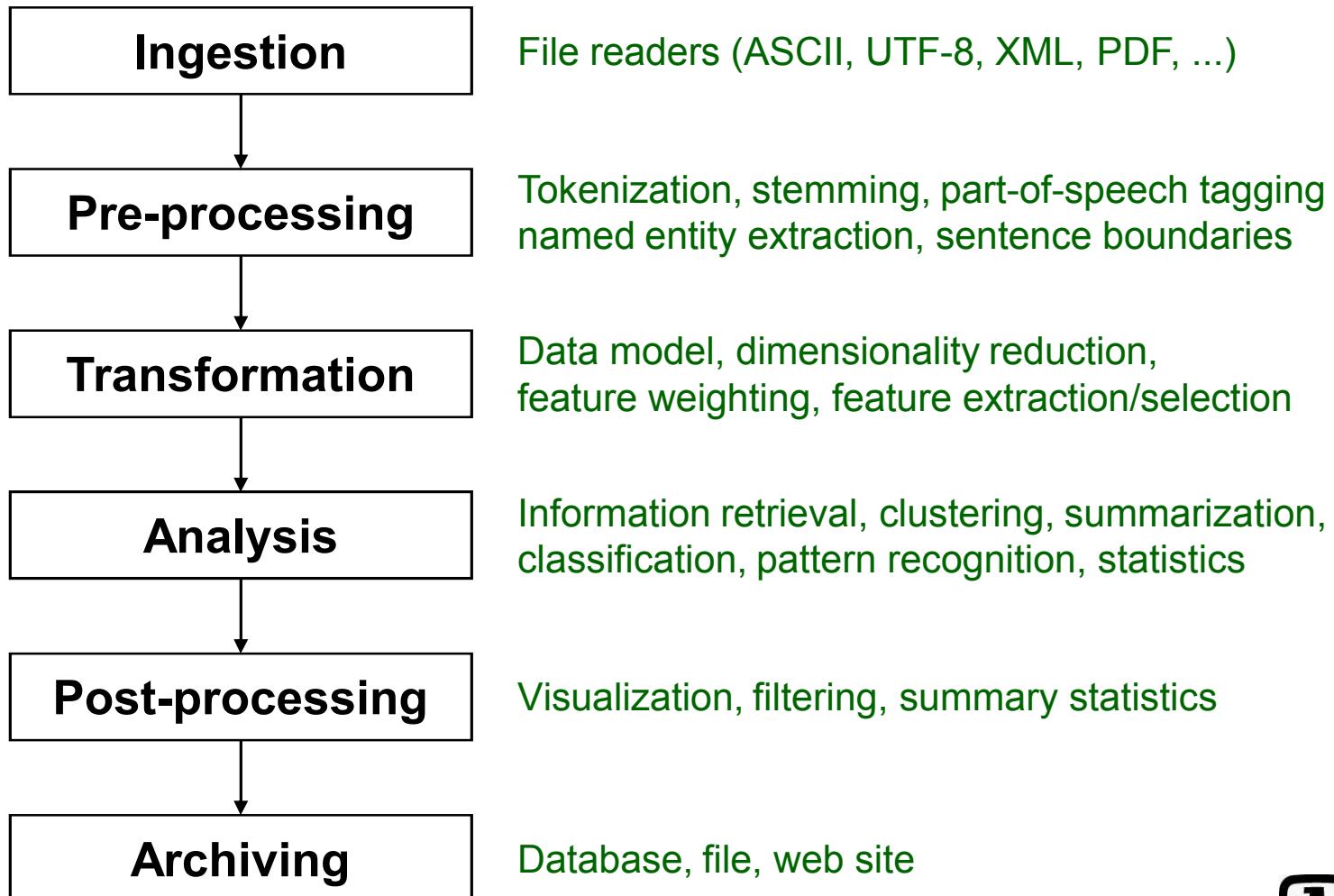
- David Day, Scott Mitchell, Shawn Martin



Main Goals for Text Analysis Research

- **Relationship discovery and understanding**
 - Document-document, term-term, term-document
 - Data clustering, classification, summarization
- **Understanding of sensitivities**
 - Statistical significance, hypothesis testing
 - Visual analysis
 - Surrogate data generation and model verification
 - Persistent homology
- **Incorporation of analyst knowledge**
 - Annotation and relevance feedback
 - Metric learning, priors
- **Applications**
 - Nuclear nonproliferation, intelligence analysis, technology assessment, sentiment analysis, cyber security

Text Analysis Pipeline



Machine Learning and Text Analysis

- **User feedback**
 - Learn how users interact with analysis capabilities
 - Leverage annotation in future analyses
 - Encode knowledge and perspective
- **Example: labeling data as “relevant” / “not relevant”**
 - Posed as a classification problem
 - **Goal:** data instance \Rightarrow label (class, category)
 - **Method:** supervised learning \Rightarrow classification models
 - **Ensemble:** combined set of classification models
 - E.g., bagging, boosting, random forest

Vector Space Model

- **Vector Space Model for Text**

- Terms (features): $t \in \mathbb{R}^m$
- Documents (objects): $d \in \mathbb{R}^n$
- Term-Document Matrix: A
- a_{ij} : measure of importance of term i in document j

	d_1	\cdots	d_n
t_1	a_{11}	\cdots	a_{1n}
\vdots	\vdots	\ddots	\vdots
t_m	a_{m1}	\cdots	a_{mn}

- **Term Examples**

- Sentence: “Danny re-sent \$1.”
- Words: danny, sent, re [# chars?], \$ [sym?], 1 [#?], re-sent [-?]
- n -grams ($n=3$): dan, ann, nny, ny_, _re, re-, e-s, sen, ent, nt_, ...
- Named entities (people, orgs, money, etc.): danny, \$1

- **Document Examples**

- Documents, paragraphs, sentences, fixed-size chunks

[G. Salton, A. Wong, and C. S. Yang (1975), *Comm. ACM*, 18(11), 613–620.]

Feature Weighting

Term \times Document Matrix Scaling: $a_{ij} = \tau_{ij} \cdot \gamma_i \cdot \delta_j$

Local Weights (τ_{ij})

Term Frequency

f_{ij}

Binary

$$\chi(f_{ij}) = \begin{cases} 0 & f_{ij} = 0 \\ 1 & f_{ij} > 0 \end{cases}$$

Log

$$\log(f_{ij} + 1)$$

Global Weights (γ_i)

None

1

Normalized

$$(\sum_i f_{ij}^2)^{-1/2}$$

Inverse Document Frequency (IDF)

$$\log \left(n / \sum_j \chi(f_{ij}) \right)$$

IDF Squared(IDF2)

$$\log \left(n / \sum_j (\chi(f_{ij}))^2 \right)$$

Entropy

$$1 - \sum_j \frac{\left(f_{ij} / \sum_k f_{ik} \right) \log \left(f_{ij} / \sum_k f_{ik} \right)}{\log n}$$

Normalization (δ_j)

None

1

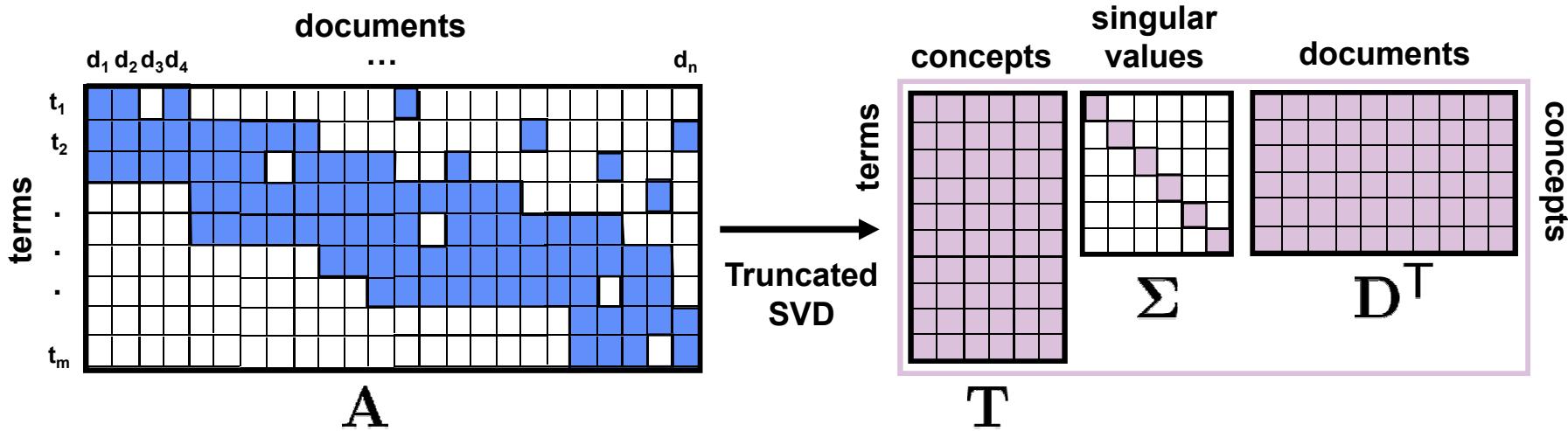
Normalized

$$\left(\sum_i (\tau_{ij} \gamma_i)^2 \right)^{-1/2}$$

More about Features

- **Impact of data characteristics and extraction algorithms on features**
 - Natural language processing (NLP)
 - Stemming and lemmatization
 - Part-of speech tagging
 - Named entity extraction
 - Sentence boundary detection
 - Data imperfections
 - Encoding errors
 - Segmentation errors
 - Incomplete data

Latent Semantic Analysis (LSA)



- **SVD:** $A = T\Sigma D^T$
- **Truncated SVD:** $A \approx A_k = T_k \Sigma_k D_k^T = \sum_{r=1}^k \sigma_r t_r d_r^T$
- **Query scores (query as new “doc”):** $q^T A$
- **LSA Ranking:** $q^T A_k$

[Deerwester, S. C., et al. (1990). *J. Am. Soc. Inform. Sci.* 41 (6), 391–407.]

LSA Example

d_1 : Hurricane. A hurricane is a catastrophe.

d_2 : An example of a catastrophe is a hurricane.

d_3 : An earthquake is bad.

d_4 : Earthquake. An earthquake is a catastrophe.

Remove
stopwords

	q
hurricane	1
earthquake	0
catastrophe	0

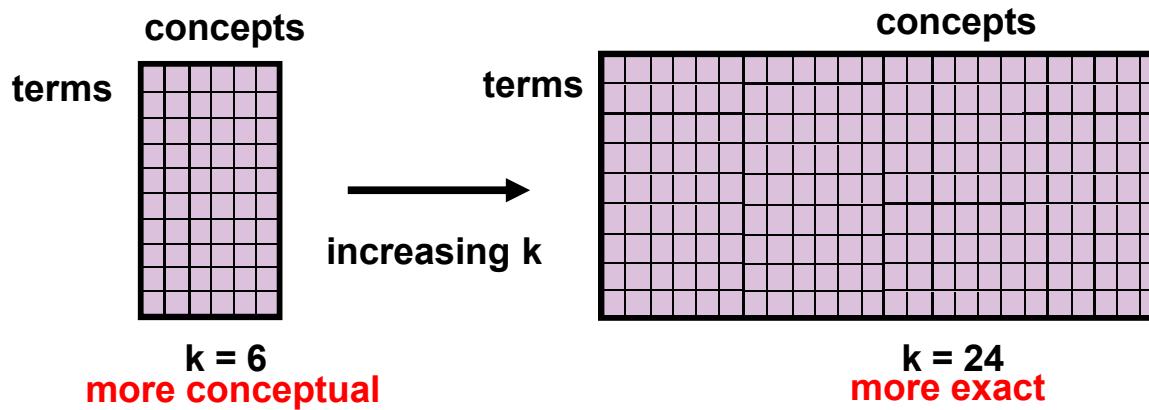
		normalization only				rank-2 approximation			
		A		A_2		A_2		A_2	
	d_1	d_2	d_3	d_4		d_1	d_2	d_3	d_4
hurricane	.89	.71	0	0		.78	.78	-.11	.11
earthquake	0	0	1	.89		-.03	.02	.96	.92
catastrophe	.45	.71	0	.45		.59	.60	.15	.30
$q^T A$.89	.71	0	0		$q^T A_2$.78	.78	-.11

captures link to doc 4

LSA: Rank Selection

- **Conceptual searching**

- $\text{rank}(k) \uparrow$: more exact data similarities
- $\text{rank}(k) \downarrow$: more conceptual data similarities
- Compute larger rank, then use smaller rank



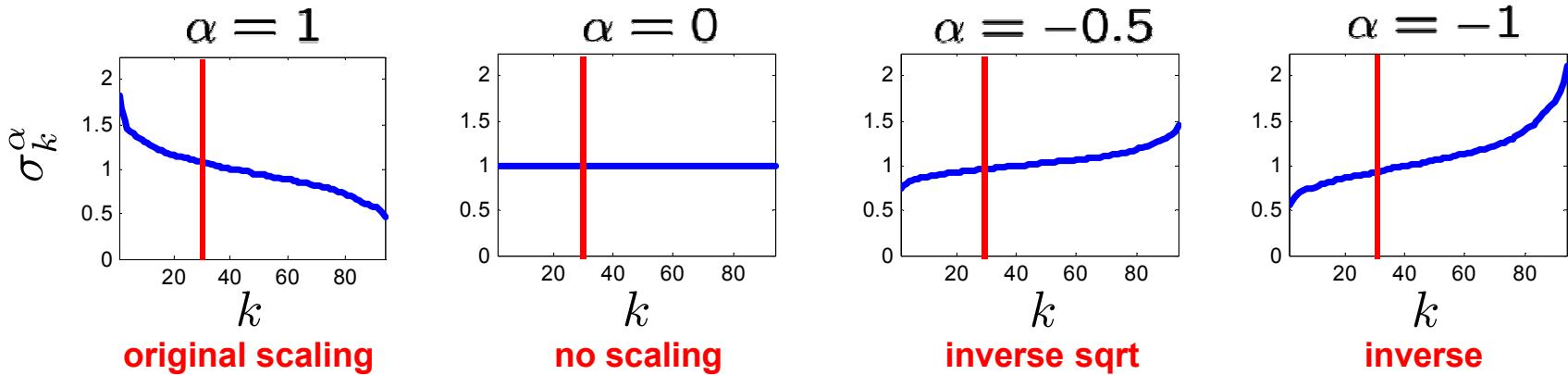
- **Determining useful values for rank**

- Cross-validation, expectation maximization, Markov chain Monte Carlo, Bayesian inference

LSA: Singular Value (Re)Scaling

- **Document similarities:** $A_k^\top A_k = D_k \Sigma_k^2 D_k^\top$
- **Inner product view:** $(D_k \Sigma_k) (D_k \Sigma_k)^\top$
- **Scaled inner product view:** $(D_k \Sigma_k^\alpha) (D_k \Sigma_k^\alpha)^\top$

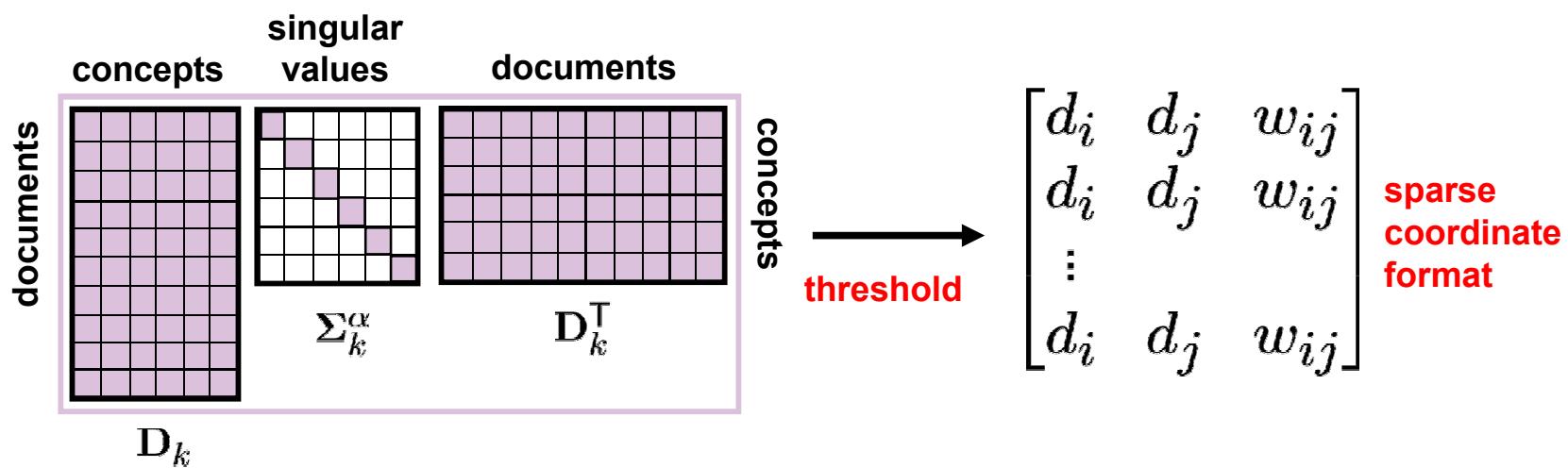
What is the best scaling for document similarity graph generation? [Data: 97 documents, 335 terms]



[Crossno, P.J., Dunlavy, D.M., Shead, T.M. (2009). IEEE VAST, Atlantic City, NJ.]

LSA: Document Similarity Graphs

- Document similarity matrix



- Document similarity graph

- Each document (or term, entity, etc.) is a vertex
- Each row defines an edge

LSA: Graph Similarities

- **Statistics on edges**

- One graph: one-sample t statistic

$$t_{ij} = \frac{\frac{1}{n_s+1} \left\{ \sum_{r=K-n_s/2}^{K+n_s/2} [\mathbf{D}_r^\top \Sigma_r^\alpha \mathbf{D}_r]_{ij} \right\} - [\mathbf{D}_K^\top \Sigma_K^\alpha \mathbf{D}_K]_{ij}}{s/\sqrt{n_s+1}}$$

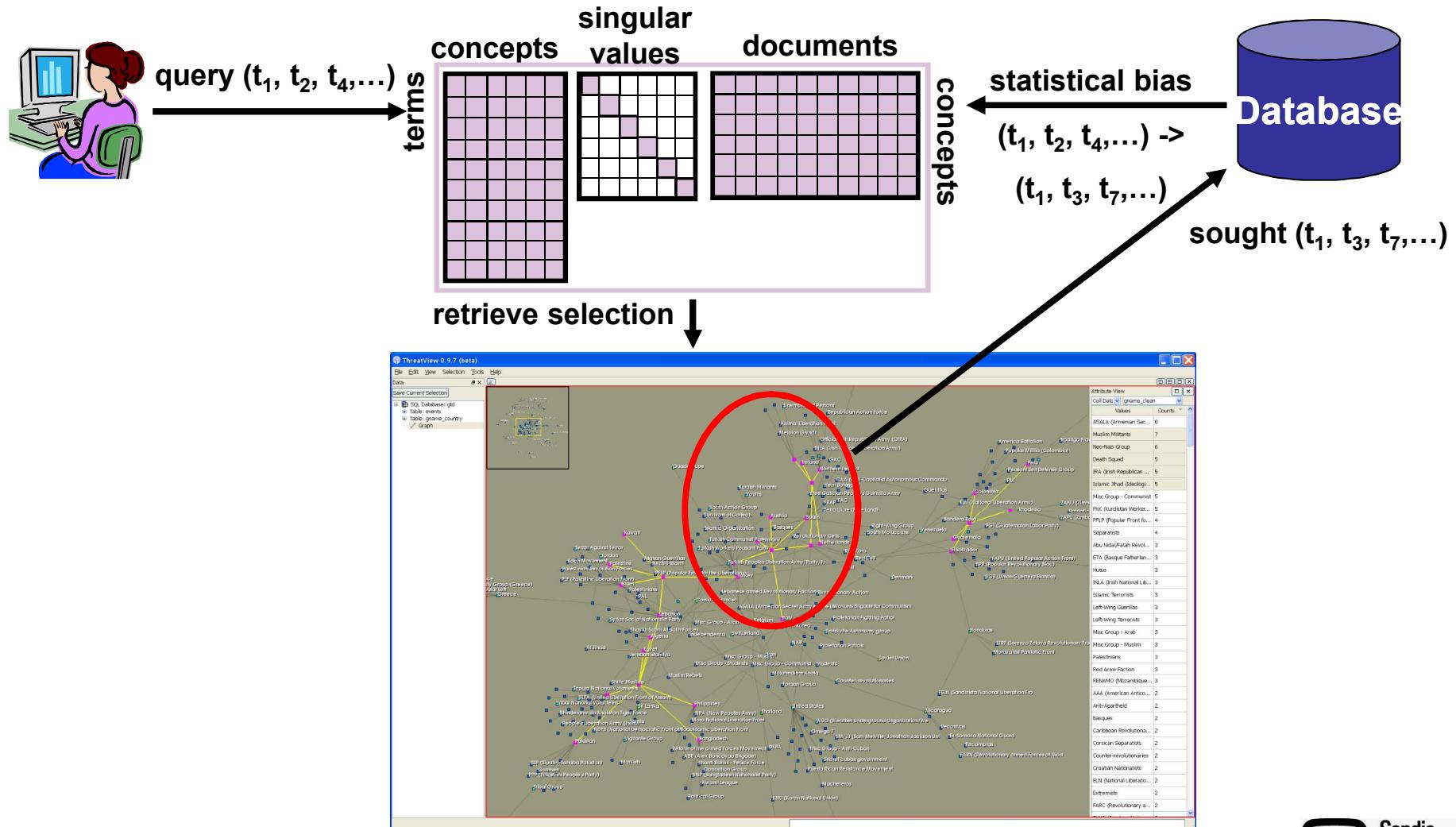
- Two graphs: two-sample t statistic

$$t_{ij} = \frac{\frac{1}{n_1+1} \left\{ \sum_{r=K_1-n_1/2}^{K_1+n_1/2} [\mathbf{D}_r^\top \Sigma_r^\alpha \mathbf{D}_r]_{ij} \right\} - \frac{1}{n_2+1} \left\{ \sum_{r=K_2-n_2/2}^{K_2+n_2/2} [\mathbf{D}_r^\top \Sigma_r^\alpha \mathbf{D}_r]_{ij} \right\}}{\sqrt{\frac{s_1}{n_1+1} + \frac{s_2}{n_2+1}}}$$

Edges from graph 1

Edges from graph 2

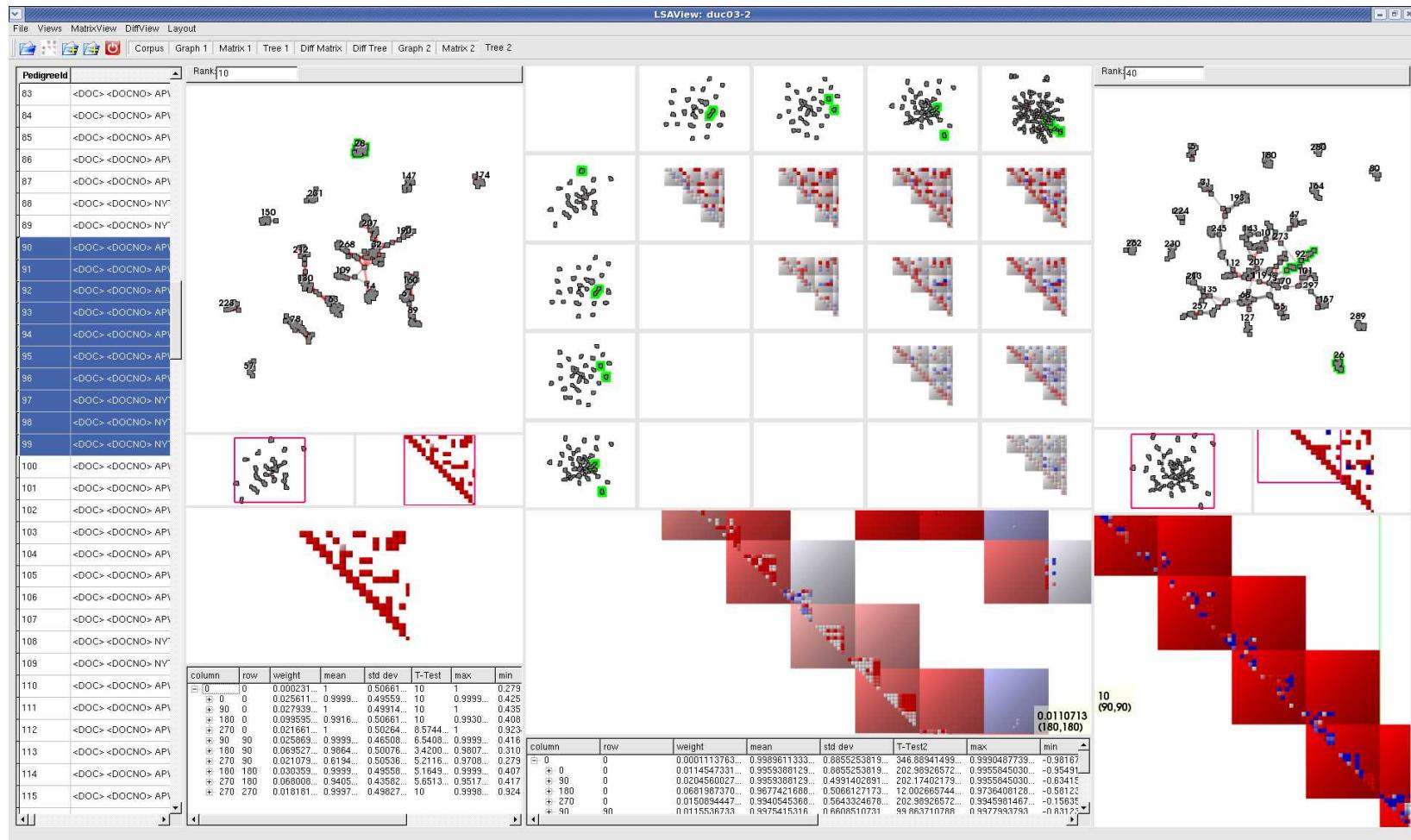
LSA: Relevance Feedback



Machine Learning and Text Analysis

- **User feedback**
 - Learn how users interact with analysis capabilities
 - Leverage annotation in future analyses
 - Encode knowledge and perspective
- **Example: labeling data as “relevant” / “not relevant”**
 - Posed as a classification problem
 - **Goal:** data instance \Rightarrow label (class, category)
 - **Method:** supervised learning \Rightarrow classification models
 - **Ensemble:** combined set of classification models
 - E.g., bagging, boosting, random forest

LSAView



Alternative Approaches for LSA

- **SVD alternatives**

- Semi-discrete decomposition (SDD),
- Non-negative matrix factorization (NMF),
- Matrix subset selection (e.g., CUR)

- **Probabilistic modeling**

- Probabilistic LSA
- Latent Dirichlet allocation (LDA)

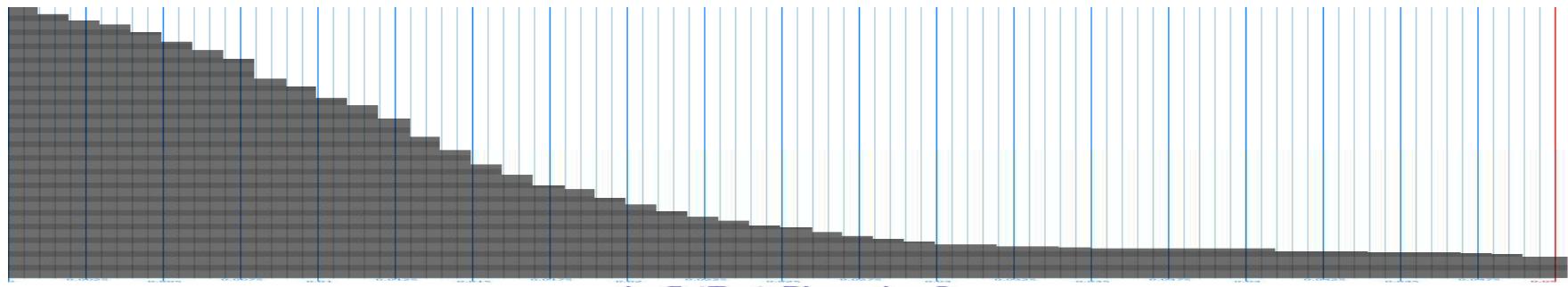
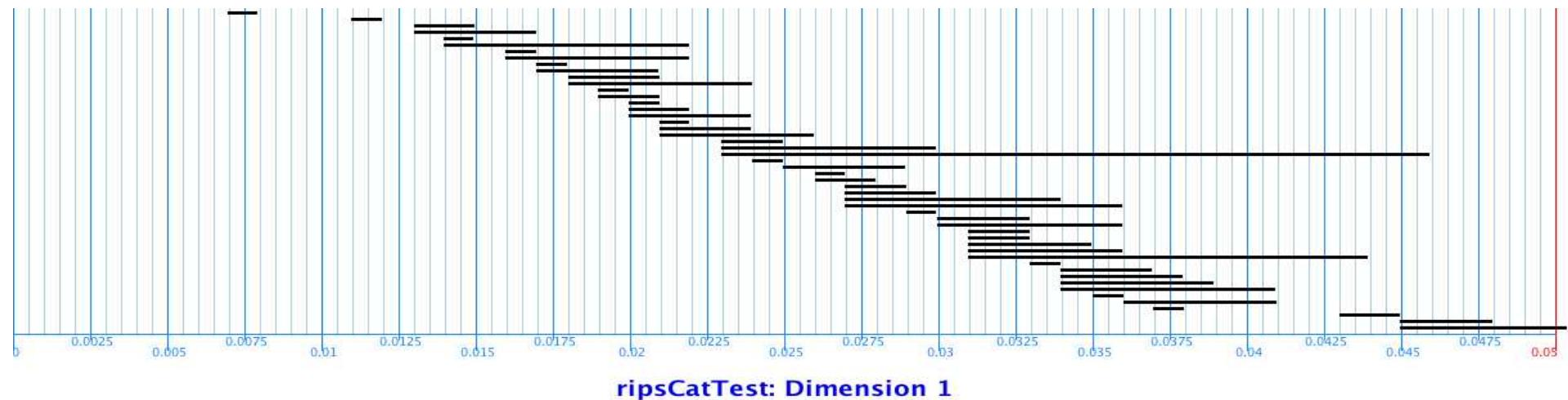
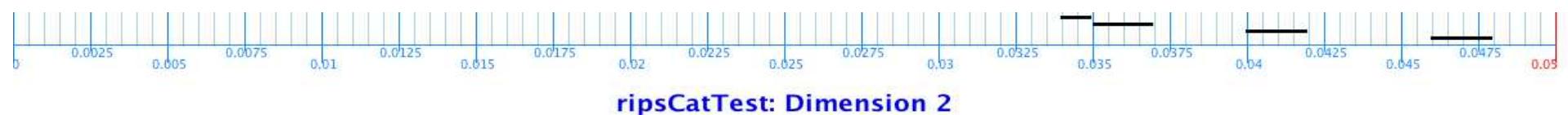
- **Multiway modeling, semantic graphs**

- Examples: term-document-author, term-document-time
- Data is modeled as a multidimensional array (tensor)
- Tensor decompositions
 - PARAFAC, Tucker, DEDICOM, ...

Research questions

- Is there useful structure in the graphs generated using LSA?
- Can we find the structure and map it to analysts' knowledge?
- Is the structure persistent with respect to LSA parameters?
- Can understanding of persistent homology lead to improved algorithms for knowledge discovery?
- How sensitive are structures with respect to ...
 - LSA parameters? Data outliers? Data noise? Changes over time?
- How do we communicate structure and persistence to users?
- Is it possible to detect persistence for dynamic data?
- Is it possible to detect persistence for streaming data?
- What does structural persistence mean for semantic graphs and can it be computed?

JPlex Example



Thank You

**Persistent homology for parameter
sensitivity in large-scale text-analysis
(informatics) graphs**

Danny Dunlavy

dmdunla@sandia.gov

<http://www.cs.sandia.gov/~dmdunla>