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Main Goals for Text Analysis Research

* Relationship discovery and understanding
— Document-document, term-term, term-document
— Data clustering, classification, summarization
* Understanding of sensitivities
— Statistical significance, hypothesis testing
— Visual analysis
— Surrogate data generation and model verification
— Persistent homology
* Incorporation of analyst knowledge
— Annotation and relevance feedback
— Metric learning, priors
« Applications

— Nuclear nonproliferation, intelligence analysis, technology

assessment, sentiment analysis, cyber security @ Sandia
Laboratories
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Text Analysis Pipeline

Ingestion
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Pre-processing
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Archiving

File readers (ASCII, UTF-8, XML, PDF, ...)

Tokenization, stemming, part-of-speech tagging
named entity extraction, sentence boundaries

Data model, dimensionality reduction,
feature weighting, feature extraction/selection

Information retrieval, clustering, summarization,
classification, pattern recognition, statistics

Visualization, filtering, summary statistics

Database, file, web site
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Machine Learning and Text Analysis

» User feedback
— Learn how users interact with analysis capabilities
— Leverage annotation in future analyses
— Encode knowledge and perspective

 Example: labeling data as “relevant” / “not relevant”

— Posed as a classification problem
» Goal: data instance = label (class, category)
* Method: supervised learning = classification models

* Ensemble: combined set of classification models
— E.g., bagging, boosting, random forest

Sandia
National
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Vector Space Model

d d,,
- Vector Space Model for Text - a111 .
— Terms (features): t € R™
— Documents (objects): d € R"
tm Am1 " Qmn

— Term-Document Matrix: A
— a;;: measure of importance of term 7 in document j

 Term Examples
— Sentence: “Danny re-sent $1.”
— Words: danny, sent, re [# chars?], $ [sym?], 1 [#7], re-sent [-7?]
— n-grams (n=3): dan, ann, nny, ny , re, re-, e-s, sen, ent, nt_, ...
— Named entities (people, orgs, money, etc.): danny, $1

 Document Examples
— Documents, paragraphs, sentences, fixed-size chunks

Sandia
[G. Salton, A. Wong, and C. S. Yang (1975), Comm. ACM, 18(11), 613—620.] @ National )
Laboratories



Feature Weighting

Term x Document Matrix Scaling: a;; =7, -7, -9

J

Local Weights (7;;)

Term Frequency fij

0 fi; =0
Binary x(fij) =

1 ffj >0
Log Ic’g{fr_j 1)

Global Weights (v;)
None 1
) o\ —1/2
Normalized (Z, fﬁ)
Inverse Document Frequency (IDF) log (n/ E (fiz) )
IDF Squared(IDE2) log (n/ E x(fij)
fis/ Tir ) log | fis/ - Ffiw

Entl‘op}-’ _]. I Z ( E I\)log n( = / Zk J\')

Normalization (6;)

None 1

— Sandia
Normalized (Z; (Tijva )2) ' National
Laboratories
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* Impact of data characteristics and extraction
algorithms on features

— Natural language processing (NLP)
« Stemming and lemmatization
 Part-of speech tagging
 Named entity extraction
» Sentence boundary detection

— Data imperfections
* Encoding errors
* Segmentation errors
* Incomplete data

More about Features

Sandia
National
Laboratories
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Latent Semantic Analysis (LSA)

documents singular
d, d,d;d, d, concepts values documents

0 | 0 o
;
: £ g
o > 7]

B Truncated T

SVD > D

+SVD: A =TZD'
- Truncated SVD: A ~ A, = T, D] =Y%_, o t,d}
* Query scores (query as new “doc”): ¢! A
« LSA Ranking: ¢q'A;
Sandia

[Deerwester, S. C., et al. (1990). J. Am. Soc. Inform. Sci. 41 (6), 391-407.] @ National
Laboratories



LSA Example

d, : Hurricane. A hurricane is a catastrophe.

d, : An example of a catastrophe is a hurricane.
ds : An earthquake is bad.

d, : Earthquake. An earthquake is a catastrophe.

Remove
stopwords

normalization only rank-2 approximation
A A,

q dj d, ds dy dj d, ds dy
hurricane 1 hurricane .89 .71 0 0 hurricane .78 .78 -1 1M
earthquake 0 earthquake 0 0 1 .89 earthquake -.03 .02 .96 .92
catastrophe 0 catastrophe .45 .71 0 .45 catastrophe .59 .60 15 .30

q’A .89 71 0 0 q7A, .78 .78 - 1

captures link to doc 4

Sandia
National
Laboratories
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LSA: Rank Selection

« Conceptual searching
— rank(k) T : more exact data similarities
— rank(k) 4 : more conceptual data similarities
— Compute larger rank, then use smaller rank

concepts concepts
terms terms
>
increasing k
k=6 k=24
more conceptual more exact

* Determining useful values for rank

— Cross-validation, expectation maximization, Markov chain
Monte Carlo, Bayesian inference

National

[Crossno, P.J., Dunlavy, D.M., Shead, T.M. (2009). IEEE VAST, Atlantic City, NJ.] @ Sandia
Laboratories
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LSA: Singular Value (Re)Scaling

- Document similarities: A]A; = D, 32D/
* Inner product view: (D.3;.) (Dkzk)T

T
« Scaled inner product view: (DkZ%) (DkZ%)

What is the best scaling for document
similarity graph generation? [Data: 97 documents, 335 terms]

a=1 a=~0 a= —0.5 a= —1

2 1 2 1 2 1 2
1.5 1 1.5 1 1.5 1.5 1
e \ _../
b 1 , 1 1 ] 1 ]

—
0.5 \ 0.5 J 0.5 ] 0.5/
0

20 40 60 80 "% 40 60 80 "% 40 60 80 "% 40 60 80
original scaling no scaling inverse sqrt inverse

[Crossno, P.J., Dunlavy, D.M., Shead, T.M. (2009). IEEE VAST, Atlantic City, NJ.] @ ﬁaa%gﬁlm

Laboratories
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LSA: Document Similarity Graphs

* Document similarity matrix

singular

concepts values documents ~
0 Q d’&
€ S
g 2 d;
3 S —
(]
3 - threshold '
(87
2k Dy d;

Dy,

* Document similarity graph

8

— Each document (or term, entity, etc.) is a vertex

— Each row defines an edge

sparse
coordinate
format
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- Statistics on edges
— One graph: one-sample t statistic

LSA: Graph Similarities

K+ns/2 -
TL—SEH —KZ [Drngr]ij _[D}_(Z?fDK]@j
. r=K-—ns/2
tij T s/vns+1

— Two graphs: two-sample t statistic

Ki+ny1/2 . Ko+no/2 .
TESL SN RN P13 b L D DI | RER S S
. r=Ki—ny/2 r=Ko—no/2
ij = 5 5
\/nl-ll—1+n2-2|—1

| |

Edges from graph 1 Edges from graph 2 @ lﬁgg'}ﬂi,??,_
aboratories



LSA: Relevance Feedback

query (t, t,, t4,...
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Machine Learning and Text Analysis

» User feedback
— Learn how users interact with analysis capabilities
— Leverage annotation in future analyses
— Encode knowledge and perspective

 Example: labeling data as “relevant” / “not relevant”

— Posed as a classification problem
» Goal: data instance = label (class, category)
* Method: supervised learning = classification models

* Ensemble: combined set of classification models
— E.g., bagging, boosting, random forest
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Alternative Approaches for LSA

« SVD alternatives
— Semi-discrete decomposition (SDD),
— Non-negative matrix factorization (NMF),
— Matrix subset selection (e.g., CUR)
* Probabilistic modeling
— Probabilistic LSA
— Latent Dirichlet allocation (LDA)
* Multiway modeling, semantic graphs
— Examples: term-document-author, term-document-time
— Data is modeled as a multidimensional array (tensor)

— Tensor decompositions
« PARAFAC, Tucker, DEDICOM, ...

Sandia
National
Laboratories
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* Is there useful structure in the graphs generated using LSA?

Research questions

« Can we find the structure and map it to analysts’ knowledge?
* Is the structure persistent with respect to LSA parameters?

« Can understanding of persistent homology lead to improved
algorithms for knowledge discovery?

 How sensitive are structures with respect to ...
— LSA parameters? Data outliers? Data noise? Changes over time?

« How do we communicate structure and persistence to users?
* Is it possible to detect persistence for dynamic data?
* Is it possible to detect persistence for streaming data?

 What does structural persistence mean for semantic graphs
and can it be computed? @ Sandia

National
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JPlex Example

-

ipsCatTest: Dimension 1

ripsCatTest: Dimension 2
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Persistent homology for parameter
sensitivity in large-scale text-analysis
(informatics) graphs

Thank You

Danny Dunlavy

dmdunla@sandia.gov

http://www.cs.sandia.qgov/~dmdunla
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