
1

An Overview of Trilinos

Roger Pawlowski
Sandia National Laboratories

2009 International Conference on Advances in Mathematics,
Computational Methods, and Reactor Physics

May 7th, 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2009-2753C

2

Trilinos Development Team
Chris Baker
Developer of Anasazi, RBGen, Tpetra

Ross Bartlett
Lead Developer of Thyra and Stratimikos
Developer of Rythmos

Pavel Bochev
Project Lead and Developer of Intrepid

Paul Boggs
Developer of Thyra

Eric Boman
Lead Developer of Isorropia
Developer of Zoltan

Todd Coffey
Lead Developer of Rythmos

David Day
Developer of Komplex and Intrepid

Karen Devine
Lead Developer of Zoltan

Clark Dohrmann
Developer of CLAPS

Michael Gee
Developer of ML, NOX

Bob Heaphy
Lead Developer of Trilinos SQA

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, Komplex, IFPACK, Thyra, Tpetra
Developer of Amesos, Belos, EpetraExt, Jpetra

Ulrich Hetmaniuk
Developer of Anasazi

Robert Hoekstra
Lead Developer of EpetraExt
Developer of Epetra, Thyra, Tpetra

Russell Hooper
Developer of NOX

Vicki Howle
Lead Developer of Meros
Developer of Belos and Thyra

Jonathan Hu
Developer of ML

Sarah Knepper
Developer of Komplex

Tammy Kolda
Lead Developer of NOX

Joe Kotulski
Lead Developer of Pliris

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Lead Developer of Thyra, Sundance
Developer of Teuchos

Roger Pawlowski
Lead Developer of NOX, Phalanx
Developer of Shards, LOCA

Michael Phenow
Trilinos Webmaster
Lead Developer of New_Package

Eric Phipps
Lead Developer of Sacado
Developer of LOCA, NOX

Denis Ridzal
Lead Developer of Aristos and Intrepid

Marzio Sala
Lead Developer of Didasko and IFPACK
Developer of ML, Amesos

Andrew Salinger
Lead Developer of LOCA

Paul Sexton
Developer of Epetra and Tpetra

Bill Spotz
Lead Developer of PyTrilinos
Developer of Epetra, New_Package

Ken Stanley
Lead Developer of Amesos and New_Package

Heidi Thornquist
Lead Developer of Anasazi, Belos, RBGen, and Teuchos

Ray Tuminaro
Lead Developer of ML and Meros

Jim Willenbring
Developer of Epetra and New_Package.
Trilinos library manager

Alan Williams
Lead Developer of Isorropia
Developer of Epetra, EpetraExt, AztecOO, Tpetra

3

Outline of Talk

 Background / Motivation / Evolution.

 Trilinos Package Concepts.

 Whirlwind Tour of Trilinos Packages.

 Getting Started.

 A Closer Look: Anasazi/Belos, ML, and NOX/LOCA

 Solver Collaborations: ANAs, LALs and APPs.

 Concluding remarks.

4

Sandia Physics Simulation Codes

 Element-based

 Finite element, finite volume,
finite difference, network, etc…

 Large-scale

 Billions of unknowns

 Parallel

 MPI-based SPMD

 Distributed memory

 C++

 Object oriented

 Some coupling to legacy Fortran
libraries

Fluids Combustion

Structures

Circuits

Plasmas

MEMS

5

Motivation For Trilinos

 Sandia does LOTS of solver work.

 9 years ago …

 Aztec was a mature package. Used in many codes.

 FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many
other codes were (and are) in use.

 New projects were underway or planned in multi-level
preconditioners, eigensolvers, non-linear solvers, etc…

 The challenges:

 Little or no coordination was in place to:

• Efficiently reuse existing solver technology.

• Leverage new development across various projects.

• Support solver software processes.

• Provide consistent solver APIs for applications.

 ASCI was forming software quality assurance/engineering
(SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.

6

Evolving Trilinos Solution

 Trilinos1 is an evolving framework to address these challenges:

 Fundamental atomic unit is a package.

 Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).

 Provides a common abstract solver API (Thyra package).

 Provides a ready-made package infrastructure (new_package package):

• Source code management (cvs, bonsai).

• Build tools (autotools).

• Automated regression testing (queue directories within repository).

• Communication tools (mailman mail lists).

 Specifies requirements and suggested practices for package SQA.

 In general allows us to categorize efforts:

 Efforts best done at the Trilinos level (useful to most or all packages).

 Efforts best done at a package level (peculiar or important to a package).

 Allows package developers to focus only on things that are unique to
their package.

1. Trilinos loose translation: “A string of pearls”

7

Evolving Trilinos Solution

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

Lh(uh)=fh
Numerical model

uh=Lh
-1fh

Algorithms

uh=Lh
-1fh

Algorithms

physicsphysics

computationcomputation

Linear
Nonlinear

Eigenvalues
Optimization

Linear
Nonlinear

Eigenvalues
Optimization

Automatic diff.

Domain dec.

Mortar methods

Automatic diff.

Domain dec.

Mortar methods

Time domain

Space domain

Time domain

Space domain

Petra
Utilities

Interfaces
Load Balancing

Petra
Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

 Beyond a “solvers” framework

 Natural expansion of capabilities to satisfy
application and research needs

 Discretization methods, AD, Mortar methods, …

8

Trilinos Package Summary

Objective Package(s)

Discretizations
Spatial Discretizations (FEM,FV,FD) Intrepid, Phalanx, Shards

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Core

Linear algebra objects Epetra, Jpetra, Tpetra

Abstract interfaces Thyra, Stratimikos, RTOp

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, Star-P, ForTrilinos

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos, Triutils

Solvers

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi

ILU-type preconditioners AztecOO, IFPACK

Multilevel preconditioners ML, CLAPS

Block preconditioners Meros

Nonlinear system solvers NOX, LOCA

Optimization (SAND) MOOCHO, Aristos

9

Package Concepts

10

Interoperability vs. Dependence
(“Can Use”) (“Depends On”)

 Although most Trilinos packages have no explicit
dependence, often packages must interact with some other
packages:
 NOX needs operator, vector and linear solver objects.

 AztecOO needs preconditioner, matrix, operator and vector objects.

 Interoperability is enabled at configure time. For example, NOX:
--enable-nox-lapack compile NOX lapack interface libraries

--enable-nox-epetra compile NOX epetra interface libraries

--enable-nox-petsc compile NOX petsc interface libraries

 Trilinos configure script is vehicle for:
 Establishing interoperability of Trilinos components…

 Without compromising individual package autonomy.

 Trilinos offers seven basic interoperability mechanisms.

11

Trilinos Interoperability Mechanisms
(Acquired as Package Matures)

Package builds under Trilinos
configure scripts.



Package can be built as part of a
suite of packages; cross-package
interfaces enable/disable
automatically

Package accepts user data as
Epetra or Thyra objects


Applications using Epetra/Thyra
can use package

Package accepts parameters
from Teuchos ParameterLists


Applications using Teuchos
ParameterLists can drive package

Package can be used via Thyra
abstract solver classes


Applications or other packages
using Thyra can use package

Package can use Epetra for
private data.


Package can then use other
packages that understand Epetra

Package accesses solver
services via Thyra interfaces


Package can then use other
packages that implement Thyra
interfaces

Package available via
PyTrilinos


Package can be used with other
Trilinos packages via Python.

12

“Can Use” vs. “Depends On”

“Can Use”

 Interoperable without dependence.

 Dense is Good.

 Encouraged.

“Depends On”

 OK, if essential.

 Epetra, Teuchos: 9 clients.

 Thyra, NOX: 2 clients.

 Discouraged.

13

What Trilinos is not …
 Trilinos is not a single monolithic piece of software. Each package:

 Can be built independent of Trilinos.

 Has its own self-contained CVS structure.

 Has its own Bugzilla product and mail lists.

 Development team is free to make its own decisions about algorithms,
coding style, release contents, testing process, etc.

 Trilinos top layer is not a large amount of source code:

 Trilinos repository (6.0 branch) contains: 660,378 source lines of code
(SLOC).

 Sum of the packages SLOC counts: 648,993.

 Trilinos top layer SLOC count: 11,385 (1.7%).

 Trilinos is not “indivisible”:

 You don’t need all of Trilinos to get things done.

 Any collection of packages can be combined and distributed.

 Current public release contains only 26 of the 30+ Trilinos packages.

14

Whirlwind Tour of Packages

Core Utilities
Discretizations Methods Solvers

15

Interoperable Tools for Rapid Development
of Compatible DiscretizationsIntrepidIntrepid

Intrepid offers an innovative software design for compatible discretizations:

 allows access to FEM, FV and FD methods using a common API

 supports hybrid discretizations (FEM, FV and FD) on unstructured grids

 supports a variety of cell shapes:

 standard shapes (e.g. tets, hexes): high-order finite element methods

 arbitrary (polyhedral) shapes: low-order mimetic finite difference methods

 enables optimization, error estimation, V&V, and UQ using fast invasive techniques

(direct support for cell-based derivative computations or via automatic differentiation)

Direct: FV/DDirect: FV/D

ReconstructionReconstruction

Cell DataCell Data

ReductionReduction

Pullback: FEMPullback: FEM

Higher order General cells

k

Forms

k

Forms

d,d*,,,(,)
Operations

d,d*,,,(,)
Operations

{C0,C1,C2,C3}
Discrete forms

{C0,C1,C2,C3}
Discrete forms

D,D*,W,M
Discrete ops.

D,D*,W,M
Discrete ops.

Developers: Pavel Bochev and Denis Ridzal

16

Rythmos

 Suite of time integration (discretization) methods

 Includes: backward Euler, forward Euler, explicit Runge-Kutta,
and implicit BDF at this time.

 Native support for operator split methods.

 Highly modular.

 Forward sensitivity computations will be included in the first
release with adjoint sensitivities coming in near future.

Developers: Todd Coffey, Roscoe Bartlett

17

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

18

Sacado: Automatic Differentiation

 Efficient OO based AD tools optimized for element-level computations

 Applies AD at “element”-level computation
 “Element” means finite element, finite volume, network device,…

 Template application’s element-computation code
 Developers only need to maintain one templated code base

 Provides three forms of AD

 Forward Mode:

• Propagate derivatives of intermediate variables w.r.t. independent variables forward
• Directional derivatives, tangent vectors, square Jacobians, when m ≥ n.

 Reverse Mode:

• Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
• Gradients, Jacobian-transpose products (adjoints), when n > m.

 Taylor polynomial mode:

 Basic modes combined for higher derivatives.

Developers: Eric Phipps, David Gay

19

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

20

 Portable utility package of commonly useful tools:

 ParameterList class: key/value pair database, recursive capabilities.

 LAPACK, BLAS wrappers (templated on ordinal and scalar type).

 Dense matrix and vector classes (compatible with BLAS/LAPACK).

 FLOP counters, timers.

 Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.

 Reference counted pointers / arrays, and more…

 Takes advantage of advanced features of C++:
 Templates

 Standard Template Library (STL)

 Teuchos::ParameterList:
 Allows easy control of solver parameters.

 XML format input/output.

Developers: Roscoe Barlett, Kevin Long, Heidi Thornquist, Mike Heroux,
Paul Sexton, Kris Kampshoff, Chris Baker

Teuchos

21

1Petra is Greek for “foundation”.

Trilinos Common Language: Petra

 Petra provides a “common language” for distributed
linear algebra objects (operator, matrix, vector)

 Petra1 provides distributed matrix and vector services.

 Exists in basic form as an object model:

 Describes basic user and support classes in UML,
independent of language/implementation.

 Describes objects and relationships to build and use
matrices, vectors and graphs.

 Has 3 implementations under development.

22

Petra Implementations

 Epetra (Essential Petra):
 Current production version.

 Restricted to real, double precision arithmetic.

 Uses stable core subset of C++ (circa 2000).

 Interfaces accessible to C and Fortran users.

 Tpetra (Templated Petra):
 Next generation C++ version.

 Templated scalar and ordinal fields.

 Uses namespaces, and STL: Improved usability/efficiency.

 Jpetra (Java Petra):
 Pure Java. Portable to any JVM.

 Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.

Developers: Chris Baker, Mike Heroux, Rob Hoekstra, Alan Williams

23

EpetraExt: Extensions to Epetra

 Library of useful classes not needed by everyone

 Most classes are types of “transforms”.

 Examples:
 Graph/matrix view extraction.

 Epetra/Zoltan interface.

 Explicit sparse transpose.

 Singleton removal filter, static condensation filter.

 Overlapped graph constructor, graph colorings.

 Permutations.

 Sparse matrix-matrix multiply.

 Matlab, MatrixMarket I/O functions.

 Most classes are small, useful, but non-trivial to write.

Developer: Robert Hoekstra, Alan Williams, Mike Heroux

24

Zoltan

 Data Services for Dynamic Applications

 Dynamic load balancing
 Graph coloring
 Data migration
 Matrix ordering

 Partitioners:
 Geometric (coordinate-based) methods:

• Recursive Coordinate Bisection (Berger, Bokhari)
• Recursive Inertial Bisection (Taylor, Nour-Omid)
• Space Filling Curves (Peano, Hilbert)
• Refinement-tree Partitioning (Mitchell)

 Hypergraph and graph (connectivity-based) methods:
• Hypergraph Repartitioning PaToH (Catalyurek)
• Zoltan Hypergraph Partitioning
• ParMETIS (U. Minnesota)
• Jostle (U. Greenwich)

Developers: Karen Devine, Eric Boman, Robert Heaphy

25

Thyra

 High-performance, abstract interfaces for linear algebra

 Offers flexibility through abstractions to algorithm developers

 Linear solvers (Direct, Iterative, Preconditioners)

 Abstraction of basic vector/matrix operations (dot, axpy, mv).

 Can use any concrete linear algebra library (Epetra, PETSc, BLAS).

 Nonlinear solvers (Newton, etc.)

 Abstraction of linear solve (solve Ax=b).

 Can use any concrete linear solver library:

• AztecOO, Belos, ML, PETSc, LAPACK

 Transient/DAE solvers (implicit)

 Abstraction of nonlinear solve.

 … and so on.

Developers: Roscoe Bartlett, Kevin Long

26

“Skins”

 PyTrilinos provides Python access to Trilinos packages

 Uses SWIG to generate bindings.

 Epetra, AztecOO, IFPACK, ML, NOX, LOCA, Amesos and
NewPackage are supported.

 WebTrilinos: Web interface to Trilinos

 Generate test problems or read from file.

 Generate C++ or Python code fragments and click-run.

 Hand modify code fragments and re-run.

 Will use during hands-on.

Developers: Ray Tuminaro, Jonathan Hu, and Marzio Sala

Developer: Bill Spotz

27

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

28

 Interface to direct solvers for distributed sparse linear
systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

 Challenges:
 No single solver dominates

 Different interfaces and data formats, serial and parallel

 Interface often changes between revisions

 Amesos offers:
 A single, clear, consistent interface, to various packages

 Common look-and-feel for all classes

 Separation from specific solver details

 Use serial and distributed solvers; Amesos takes care of data
redistribution

 Native solvers: KLU and Paraklete

Developers: Ken Stanley, Marzio Sala, Tim Davis

Amesos

29

AztecOO

 Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,…

 Incomplete factorization preconditioners

 Aztec is the workhorse solver at Sandia:
 Extracted from the MPSalsa reacting flow code.

 Installed in dozens of Sandia apps.

 1900+ external licenses.

 AztecOO improves on Aztec by:
 Using Epetra objects for defining matrix and RHS.

 Providing more preconditioners/scalings.

 Using C++ class design to enable more sophisticated use.

 AztecOO interfaces allows:
 Continued use of Aztec for functionality.

 Introduction of new solver capabilities outside of Aztec.

Developers: Mike Heroux, Alan Williams, Ray Tuminaro

30

Belos

 Next-generation linear solver library, written in templated C++.

 Provide a generic framework for developing iterative algorithms for solving large-scale,
linear problems.

 Algorithm implementation is accomplished through the use of traits classes and abstract
base classes:
 Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits
 Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
 Status tests: Belos::StatusTest, Belos::StatusTestResNorm
 Iteration kernels: Belos::Iteration
 Linear solver managers: Belos::SolverManager

 AztecOO provides solvers for Ax=b, what about solvers for:
 Simultaneously solved systems w/ multiple-RHS: AX = B
 Sequentially solved systems w/ multiple-RHS: AXi = Bi , i=1,…,t
 Sequences of multiple-RHS systems: AiXi = Bi , i=1,…,t

 Many advanced methods for these types of linear systems
 Block methods: block GMRES [Vital], block CG/BICG [O’Leary]
 “Seed” solvers: hybrid GMRES [Nachtigal, et al.]
 Recycling solvers: recycled Krylov methods [Parks, et al.]
 Restarting techniques, orthogonalization techniques, …

Developers: Heidi Thornquist, Mike Heroux, Mike Parks,
Rich Lehoucq, Teri Barth

31

IFPACK: Algebraic Preconditioners

 Overlapping Schwarz preconditioners with incomplete
factorizations, block relaxations, block direct solves.

 Accept user matrix via abstract matrix interface (Epetra
versions).

 Uses Epetra for basic matrix/vector calculations.

 Supports simple perturbation stabilizations and condition
estimation.

 Separates graph construction from factorization, improves
performance substantially.

 Compatible with AztecOO, ML, Amesos. Can be used by
NOX and ML.

Developers: Marzio Sala, Mike Heroux

32

: Multi-level Preconditioners

 Smoothed aggregation, multigrid and domain decomposition
preconditioning package

 Critical technology for scalable performance of some key
apps.

 ML compatible with other Trilinos packages:
 Accepts user data as Epetra_RowMatrix object (abstract interface).

Any implementation of Epetra_RowMatrix works.

 Implements the Epetra_Operator interface. Allows ML preconditioners
to be used with AztecOO, Belos, Anasazi.

 Can also be used completely independent of other Trilinos
packages.

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala

33

Anasazi

 Next-generation eigensolver library, written in templated C++.

 Provide a generic framework for developing iterative algorithms for solving large-scale
eigenproblems.

 Algorithm implementation is accomplished through the use of traits classes and
abstract base classes:
 Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits
 Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
 Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm
 Iteration kernels: Anasazi::Eigensolver
 Eigensolver managers: Anasazi::SolverManager
 Eigenproblem: Anasazi::Eigenproblem
 Sort managers: Anasazi::SortManager

 Currently has solver managers for three eigensolvers:
 Block Krylov-Schur
 Block Davidson
 LOBPCG

 Can solve:
 standard and generalized eigenproblems
 Hermitian and non-Hermitian eigenproblems
 real or complex-valued eigenproblems

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,
Rich Lehoucq, Ulrich Hetmaniuk

34

NOX: Nonlinear Solvers

 Suite of nonlinear solution methods

Implementation
• Parallel
• OO-C++
• Independent of the

linear algebra
package!

Jacobian Estimation
• Graph Coloring
• Finite Difference
• Matrix-Free

Newton-Krylov

MB f xc  Bcd+=

Broyden’s Method Newton’s Method
MN f xc  Jc d+=

Tensor Method
MT f xc  Jcd

1
2
---Tcdd+ +=

Globalizations
Trust Region

Dogleg
Inexact Dogleg

Line Search
Interval Halving

Quadratic
Cubic

More’-Thuente

http://trilinos.sandia.gov/packages/nox

Developers: Tammy Kolda, Roger Pawlowski

35

LOCA

 Library of continuation algorithms

 Provides
 Zero order continuation

 First order continuation

 Arc length continuation

 Multi-parameter continuation (via Henderson's MF Library)

 Turning point continuation

 Pitchfork bifurcation continuation

 Hopf bifurcation continuation

 Phase transition continuation

 Eigenvalue approximation (via ARPACK or Anasazi)

Developers: Andy Salinger, Eric Phipps

36

MOOCHO & Aristos

 MOOCHO: Multifunctional Object-Oriented arCHitecture
for Optimization

 Large-scale invasive simultaneous analysis and design
(SAND) using reduced space SQP methods.

 Aristos: Optimization of large-scale design spaces

 Invasive optimization approach based on full-space SQP
methods.

 Efficiently manages inexactness in the inner linear system
solves.

Developer: Denis Ridzal

Developer: Roscoe Bartlett

Full Vertical
Solver Coverage

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

Linear Problems
AztecOO

Belos

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems NOXS
e
n

s
it

iv
it

ie
s

(A
u

to
m

a
ti

c
 D

if
fe

re
n

ti
a
ti

o
n

:
S

a
c
a
d

o
)

38

A Closer Look …

39

Belos and AnasaziBelos and Anasazi

 Next generation linear solver / eigensolver library, written in
templated C++.

 Provide a generic interface to a collection of algorithms for
solving large-scale linear problems / eigenproblems.

 Algorithm implementation is accomplished through the use of
traits classes and abstract base classes:
 e.g.: MultiVecTraits, OperatorTraits

 e.g.: SolverManager, Eigensolver / Iteration, Eigenproblem/
LinearProblem, StatusTest, OrthoManager, OutputManager

 Includes block linear solvers / eigensolvers:
 Higher operator performance.

 More reliable.

 Solves:
 AX = XΛ or AX = BXΛ (Anasazi)

 AX = B (Belos)

40

Why are Block Solvers Useful?Why are Block Solvers Useful?

 Block Solvers (in general):

 Achieve better performance for operator-vector products.

 Block Eigensolvers (Op(A)X = LX):

 Block Linear Solvers (Op(A)X = B):

 Reliably determine multiple and/or clustered eigenvalues.

 Example applications: Modal analysis, stability analysis,

bifurcation analysis (LOCA)

 Useful for when multiple solutions are required for the same
system of equations.

 Example applications:

• Perturbation analysis

• Optimization problems

• Single right-hand sides where A has a handful of small eigenvalues

• Inner-iteration of block eigensolvers

41

Belos and Anasazi are solver libraries that:
1. Provide an abstract interface to an operator-vector products,

scaling, and preconditioning.

2. Allow the user to enlist any linear algebra package for the
elementary vector space operations essential to the
algorithm. (Epetra, PETSc, etc.)

3. Allow the user to define convergence of any algorithm (a.k.a.
status testing).

4. Allow the user to determine the verbosity level, formatting,
and processor for the output.

5. Allow these decisions to be made at runtime.

6. Allow for easier creation of new solvers through “managers”

using “iterations” as the basic kernels.

Linear / Eigensolver Linear / Eigensolver
Software DesignSoftware Design

42

Anasazi / Belos DesignAnasazi / Belos Design

 Eigenproblem/ LinearProblem Class
 Describes the problem and stores the answer

 Eigensolver / Linear Solver Manager (SolverManager) Class
 Parameter list driven strategy object describing behavior of solver

 Eigensolver / Iteration Class
 Provide basic iteration interface.

 MultiVecTraits and OperatorTraits
 Traits classes for interfacing linear algebra

 SortManagerClass [Anasazi only]
 Allows selection of desired eigenvalues

 OrthoManagerClass
 Provide basic interface for orthogonalization

 StatusTestClass
 Control testing of convergence, etc.

 OutputManagerClass
 Control verbosity and printing in a MP scenario

43

Anasazi / Belos StatusAnasazi / Belos Status

 Anasazi (Trilinos Release 8.0):
 Solvers: Block Krylov-Schur, Block Davidson, LOBPCG

 Can solve standard and generalized eigenproblems

 Can solve Hermitian and non-Hermitian eigenproblems

 Can target largest or smallest eigenvalues

 Block size is independent of number of requested eigenvalues

 Belos (Trilinos Release 8.0):
 Solvers: CG, BlockCG, BlockGMRES, BlockFGMRES, GCRO-DR

 Belos::EpetraOperator, Thyra::LOWS, and Stratimikos interface
allows for integration into other codes

 Block size is independent of number of right-hand sides

 Linear algebra adapters for Epetra, NOX/LOCA, and Thyra

 Epetra interface accepts Epetra_Operators, so can be used with
ML, AztecOO, Ifpack, Belos, etc…

 Configurable via Teuchos::ParameterList

44

: AMG for Magnetics Simulations

 in 0EE
1




 Efficient solution critical to HEDP Z-pinch simulations

 Challenges:

 Standard solvers do not converge

 Large near null space of curl

 Conductivity variation

 Mesh stretching

 Two Sandia AMG methods for eddy current eqns:

 (2002) Specialized AMG satisfying commutating relationship

 (2006) Implicitly reformulate (*) and leverage ML standard AMG:

()













)(

)(

n

e

45

: Scaling on Red Storm

 10 times steps

 Chebyshev polynomial smoother

 Parallel load-balancing via Zoltan

Processors

S
o
lv

e
 T

im
e

S
o
lv

e
 T

im
e

Previous
AMG

New AMG

10k 20k

46

: AMG for non-symmetric
systems

 For many applications, A ≠ AT

 Symmetric AMG methods ineffective or diverge

 Non-symmetric AMG theory doesn’t exist

 ML has new AMG method for A ≠ AT that minimizes basis
function energy (Tuminaro & Sala)

Charon drift-diffusion (P. Lin, J. Shadid, et al.)

47

NOX and LOCA are a combined package for solving and
analyzing sets of nonlinear equations.

 NOX: Globalized Newton-based solvers.

 LOCA: Continuation, Stability, and Bifurcation Analysis.

We define the nonlinear problem:

is the residual or function evaluation

is the solution vector

is the Jacobian Matrix defined by:

NOX/LOCA: Nonlinear Solver
and Analysis Algorithms

48

MB f xc  Bcd+=

Broyden’s Method

Newton’s Method
MN f xc  Jc d+=

Tensor Method
MT f xc  Jcd

1
2
---Tcdd+ +=

Iterative Linear Solvers: Adaptive Forcing Terms
Jacobian-Free Newton-Krylov

Jacobian Estimation: Colored Finite Difference

Line Search
Interval Halving

Quadratic
Cubic

More’-Thuente
Curvilinear (Tensor)

Homotopy
Artificial Parameter Continuation
Natural Parameter Continuation

Trust Region
Dogleg

Inexact Dogleg

Globalizations

Nonlinear Solver Algorithms

49

NOX Interface

Group Vector

computeF() innerProduct()

computeJacobian() scale()

applyJacobianInverse() norm()

update()

NOX solver methods are ANAs, and are implemented in terms
of group/vector abstract interfaces:

NOX solvers will work with any group/vector that implements
these interfaces.

Four concrete implementations are supported:
1. LAPACK
2. EPETRA
3. PETSc
4. Thyra (Release 8.0)

50

Solver Collaborations:
ANAs, LALs and APPs

Trilinos Strategic Goals

• Scalable Computations: As problem size and processor counts increase,
the cost of the computation will remain nearly fixed.

• Hardened Computations: Never fail unless problem essentially
intractable, in which case we diagnose and inform the user why the problem
fails and provide a reliable measure of error.

• Full Vertical Coverage: Provide leading edge enabling technologies
through the entire technical application software stack: from problem
construction, solution, analysis and optimization.

• Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

• Universal Accessibility: All Trilinos capabilities will be available to users
of major computing environments: C++, Fortran, Python and the Web, and
from the desktop to the latest scalable systems.

• Universal Solver RAS: Trilinos will be:

– Reliable: Leading edge hardened, scalable solutions for each of these
applications

– Available: Integrated into every major application at Sandia

– Serviceable: Easy to maintain and upgrade within the application
environment.

Thyra is being
developed to
address this
issue

Algorithmic
Goals

Software
Goals

52

Categories of Abstract Problems
and Abstract Algorithms

· Linear Problems:

· Linear equations:

· Eigen problems:

· Nonlinear Problems:

· Nonlinear equations:

· Stability analysis:

· Transient Nonlinear Problems:

· DAEs/ODEs:

· Optimization Problems:

· Unconstrained:

· Constrained:

Trilinos Packages

Belos

Anasazi

NOX

LOCA

Aristos

Rythmos

MOOCHO

53

Abstract Numerical Algorithms

An abstract numerical algorithm (ANA) is a numerical algorithm that can be
expressed solely in terms of vectors, vector spaces, and linear operators

Example Linear ANA (LANA) : Linear Conjugate Gradients

scalar product
<x,y> defined by
vector space

vector-vector
operations

linear operator
applications

scalar operations

Types of operations Types of objectsLinear Conjugate Gradient Algorithm

• ANAs can be very mathematically sophisticated!

• ANAs can be extremely reusable!

54

ANA Linear
Operator
Interface

Solver Software Components
and Interfaces

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizations,
preconditioners)

ANA

APP

ANA/APP
Interface

ANA Vector
Interface

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigensolvers, nonlinear
solvers, stability analysis, uncertainty quantification, transient solvers,
optimization etc.)

3) APP : Application (the model: physics, discretization method etc.)

Example Trilinos Packages:
• Belos (linear solvers)
• Anasazi (eigensolvers)
• NOX (nonlinear equations)
• Rhythmos (ODEs,DAEs)
• MOOCHO (Optimization)
• …

Example Trilinos Packages:
• Epetra/Tpetra (Mat,Vec)
• Ifpack, AztecOO, ML (Preconditioners)
• Meros (Preconditioners)
• Pliris (Interface to direct solvers)
• Amesos (Direct solvers)
• Komplex (Complex/Real forms)
• …

Types of Software Components

Thyra
ANA Interfaces to
Linear Algebra

FEI/Thyra
APP to LAL Interfaces Custom/Thyra

LAL to LAL
Interfaces

Thyra::Nonlin

Examples:
• SIERRA
• NEVADA
• Xyce
• Sundance
• …

LAL

Matrix Preconditioner

Vector

Introducing Stratimikos

• Stratimikos created Greek words "stratigiki“ (strategy) and "grammikos“ (linear)

• Defines class Thyra::DefaultLinearSolverBuilder.

• Provides common access to:

• Linear Solvers: Amesos, AztecOO, Belos, …

• Preconditioners: Ifpack, ML, …

• Reads in options through a parameter list (read from XML?)

• Accepts any linear system objects that provide

• Epetra_Operator / Epetra_RowMatrix view of the matrix

• SPMD vector views for the RHS and LHS (e.g. Epetra_[Multi]Vector objects)

• Provides uniform access to linear solver options that can be leveraged across multiple
applications and algorithms

• Future: TOPS-2 will add PETSc and other linear solvers and preconditioners!

Key Points

• Stratimikos is an important building
block for creating more sophisticated
linear solver capabilities!

Stratimikos Parameter List and Sublists
<ParameterList name=“Stratimikos”>
<Parameter name="Linear Solver Type" type="string" value=“AztecOO"/>
<Parameter name="Preconditioner Type" type="string" value="Ifpack"/>
<ParameterList name="Linear Solver Types">
<ParameterList name="Amesos">
<Parameter name="Solver Type" type="string" value="Klu"/>
<ParameterList name="Amesos Settings">
<Parameter name="MatrixProperty" type="string" value="general"/>
...
<ParameterList name="Mumps"> ... </ParameterList>
<ParameterList name="Superludist"> ... </ParameterList>

</ParameterList>
</ParameterList>
<ParameterList name="AztecOO">
<ParameterList name="Forward Solve">
<Parameter name="Max Iterations" type="int" value="400"/>
<Parameter name="Tolerance" type="double" value="1e-06"/>
<ParameterList name="AztecOO Settings">
<Parameter name="Aztec Solver" type="string" value="GMRES"/>
...

</ParameterList>
</ParameterList>
...

</ParameterList>
<ParameterList name="Belos"> ... </ParameterList>

</ParameterList>
<ParameterList name="Preconditioner Types">

<ParameterList name="Ifpack">
<Parameter name="Prec Type" type="string" value="ILU"/>
<Parameter name="Overlap" type="int" value="0"/>
<ParameterList name="Ifpack Settings">
<Parameter name="fact: level-of-fill" type="int" value="0"/>
...

</ParameterList>
</ParameterList>
<ParameterList name="ML"> ... </ParameterList>

</ParameterList>
</ParameterList>

L
in

e
a
r S

o
lv

e
rs

P
re

c
o

n
d

itio
n

e
rs

Sublists passed
on to package

code!

Top level parameters

Every parameter
and sublist is

handled by Thyra
code and is fully

validated!

57

Trilinos Integration into an
Application

Export Makefile System

Once Trilinos is built, how do you link against the application?

There are a number of issues:

• Library link order:
• -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack

• Consistent compilers:
• g++, mpiCC, icc…

• Consistent build options and package defines:
• g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

Answer: Export Makefile system

Why Export Makefiles are Important

• The number of packages in Trilinos has exploded.

• As package dependencies (especially optional ones) are
introduced, more maintenance is required by the top-level
packages:

NOX Amesos

EpetraExt

Epetra

Ifpack

ML SuperLU

Direct Dependencies Indirect Dependencies

NOX either must:
• Account for the new libraries in it’s configure script (unscalable)
• Depend on direct dependent packages to supply them through

export makefiles.

New Library New Library

Export Makefiles in Action

Example Makefile for a user application that does not use autoconf
- Uses lapack concrete instantions for group and vector
- Must use gnu-make (gmake) if the "shell" command is invoked

Set the Trilinos install directory

TRILINOS_INSTALL_DIR = /home/rppawlo/trilinos-local-install

Include any direct Trilinos library dependencies - in this case only nox

include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.nox.macros
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.nox

Use one of the following lines (2nd line is for non-gnumake platforms)

COMPILE_FLAGS = $(shell perl $(TRILINOS_INSTALL_DIR)/include/strip_dup_incl_paths.pl $(NOX_CXXFLAGS) $(NOX_DEFS)
$(NOX_CPPFLAGS) $(NOX_INCLUDES))

COMPILE_FLAGS = $(NOX_CXXFLAGS) $(NOX_DEFS) $(NOX_CPPFLAGS) $(NOX_INCLUDES)

Use one of the following lines (2nd line is for non-gnumake platforms)

LINK_FLAGS = $(shell perl $(TRILINOS_INSTALL_DIR)/include/strip_dup_libs.pl $(NOX_LIBS))
LINK_FLAGS = $(NOX_LIBS)

Build your application code ##
main.exe: main.o $(NOX_CXXLD) $(NOX_CXXFLAGS) -o main.exe main.o $(LINK_FLAGS)

main.o: $(NOX_CXX) $(COMPILE_FLAGS) -c main.cpp

clean: rm -f *.o main.exe *~

61

Concluding Remarks

62

Trilinos / PETSc Interoperability
(new in Trilinos 9.0)

 Epetra_PETScAIJMatrix class

 Derives from Epetra_RowMatrix

 Wrapper for serial/parallel PETSc aij matrices

 Utilizes callbacks for matrix-vector product, getrow

 No deep copies

 Enables PETSc application to construct and call virtually any
Trilinos preconditioner

 ML accepts fully constructed PETSc KSP solvers as smoothers

 Fine grid only

 Assumes fine grid matrix is really PETSc aij matrix

 Complements Epetra_PETScAIJMatrix class
 For any smoother with getrow kernel, PETSc implementation should be

much faster than Trilinos

 For any smoother with matrix-vector product kernel, PETSc and Trilinos
implementations should be comparable

Trilinos Statistics

Stats: Trilinos Download Page 10/20/2008.

External Visibility
 Awards: R&D 100, HPC SW Challenge (04).
 www.cfd-online.com:

 Industry Collaborations: Boeing, Goodyear, ExxonMobil, others.
 Linux distros: Debian, Mandriva, Ubuntu, Fedora.
 SciDAC TOPS-2 partner, IAA Algorithms (with ORNL).
 Over 8000 downloads since March 2005.
 Occasional unsolicited external endorsements such as the following two-person exchange on

mathforum.org:
> The consensus seems to be that OO has little, if anything, to offer
> (except bloat) to numerical computing.
I would completely disagree. A good example of using OO in numerics is
Trilinos: http://software.sandia.gov/trilinos/

Trilinos
A project led by Sandia to develop an object-oriented software framework for scientific
computations.
This is an active project which includes several state-of-the-art solvers and lots of other nice things
a
software engineer writing CFD codes would find useful. Everything is freely available for download
once
you have registered. Very good!

http://software.sandia.gov/trilinos/rd100_2004.html

65

Trilinos Availability / Information
 Trilinos and related packages are available via LGPL.

 Current release (8.0) is “click release”. Unlimited availability.
 1800+ Downloads since 3/05 (not including internal Sandia users).
 750 registered users:

• 57% university, 11% industry, 20% gov’t.
• 35% European, 35% US, 10% Asian.

 Trilinos Release 9: September 2008.

 Trilinos Awards:
 2004 R&D 100 Award.
 SC2004 HPC Software Challenge Award.
 Sandia Team Employee Recognition Award.
 Lockheed-Martin Nova Award Nominee.

 More information:
 http://trilinos.sandia.gov

 6th Annual Trilinos User Group Meeting in October 2008 @ SNL
 talks available for download

