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4'“" Optimized Effective Potentials in DFT

Kohn-Sham problem:

[2(1) +vs(1)] @i(1) = &ig;(1)
Optimized effective potential condition, require

SE
Svs(1)

Leads to equation for the potential

[ 2 X(1.2n@ =£(1)

where X(1,2) is the density-density linear response function
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= ' Why a non-local OEP?

Effort in local OEP is substantial
» No significant computational advantage to locality

Since exchange is a non-local operator, focuses on correlation

Avoids the mathematical problems with inversion
» X(1,2) is a singular operator
» Projected in a basis, inversion of X(1,2) requires some form of
regularization

Defines a new set of “optimal” orbitals

Maybe a step on the way to an OEP for density matrix functional
theory (DMFT)
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P 4 ' Eigenproblem
/o’

Want to have the non-local eigenvalue problem

[h<1>+ [ vs<1,z>} o)) = £i(1)

First-order perturbation theory in the potential yields the following
functional derivatives
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V;IOptimized effective potential condition
OE

Svi(1,2) 0

0E  8¢i(3 OFE 6<pa() B
Z/ 5¢:(3 5v512 Z/d36 Svy(1,2) e =0

®a(3
Inserting the functional derivatives of the orbitals and rearranging,
SE SE ¢ ()ei(2)
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,V;, Linear independence

Linear independence of the functions:

/dl p» 2@ o M)ei(2) - (pllsle) 8y

&—& &—&  (-g)(e—&) (5—¢g)’

implies that each term in brackets can be set to zero individually:

[ 5(‘;‘(9)@6)— [ 5(25)@‘6) -
/d3 /d35<Pb ;(3) =0

5E OE
[a3 505 %)~ [a3 Sor? )=

/| V A' A=Y

National Nuclear Security Administration

Sandia
National
Laboratories



';! OO-MBPT(2) and OO-MP2

-

Writing the energy in the form

1 s
E=Y hi+ 3 Y (ijllij) + Ecorr
i ij
Straightforward to show simplification to

6ECOFI‘ 5ECOIT *
/ d3 = e / d3 f(3) =

[ §f () [a3 (ffb"g“)%()—

5Ecorr OFEcor *
| 3 55 50 /d35¢;(3)¢ = {ilvla) - ¥ ifla)

J

Two simple choices for ECorr

1 1)
MBPT(2 MP2 _ . b
B = Lfutf V4 3 X Gillab) " BN = 1Y (k)
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< . .
4 “" Semi-canonical

Independence of E.q to 00 & vv rotations implies

6E COIT
/ﬁa@

/d35¢a

are always true. Free to chose
(i[vs]j)

(alvs|b)

= Semi-canonical orbitals.
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f‘g" Final equations for v;: OO-MBPT(2)

Using the expressions for semi-canonical orbitals,

all) Jfia tab(l) (ab||ij)
! fii _faa v fll +.f}j faa fbb
Y = thx i _ 1Ztibjc< )zZC“’
b jbc
a i (1 1 (1) a (1)
Yaa ij(l)f’a()Jrg T 4
J Jjkb
Then
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47“" Final equations for vg: OO-MP2

Using the expressions for semi-canonical orbitals,

) __ {ablli)
v ftt +f]‘j faa fbb
1 ik (1) ab(l)
) YA A VA
ch jkb

Then
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A 4 i
P 4 Implementation
g

Methods:
o OO-MBPT(2): Use EMBPTQ) for optimization and energy
e 0O-MP2 (D): Use EMP? for optimization and energy
@ OO-MP2 (S+D): Use Elc\gff for optimization and E%EPT(Z) for
energy

Numerics:

e Iteratively solving for v, until Frobenius norm of {i|vs|a) < 1077
(matching HF convergence criterion)

@ Currently doing integral transformation at every iteration

o Integral transform is rate-determining step
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Convergence

Water, cc-pVDZ
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V“" Atomic Species
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f“" G2-99 Test set

Neutral, singlets, cc-pVTZ basis, relative to CCSD(T)
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A He,

Uncontracted aug-cc-pVTZ basis
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T}.’ Be,

Uncontracted aug-cc-pVTZ basis
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T“" Hydrogen Fluoride

Roos augmented double-§ ANO basis, relative to CCSDT
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il .
§ “" Conclusions

Positives:
e Circumvents problematic inversion of X
o Improves on HF-MBPT(2)

o Easily extendible to other hermitian energy functionals, in
particular LinCCSD

Negatives
@ Convergence for OO-MBPT(2) is very poor
o Improvement over HF-MBPT(2) is often small

@ Requires additional time-consuming iterations
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