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Optimized Effective Potentials in DFT

Kohn-Sham problem:

[h(1)+ vs(1)]ϕi(1) = εiϕi(1)

Optimized effective potential condition, require

δE
δvs(1)

= 0

Leads to equation for the potential∫
d2 X(1,2)vs(2) = f (1)

where X(1,2) is the density-density linear response function



Why a non-local OEP?

Effort in local OEP is substantial
I No significant computational advantage to locality

Since exchange is a non-local operator, focuses on correlation
Avoids the mathematical problems with inversion

I X(1,2) is a singular operator
I Projected in a basis, inversion of X(1,2) requires some form of

regularization

Defines a new set of “optimal” orbitals

Maybe a step on the way to an OEP for density matrix functional
theory (DMFT)



Eigenproblem

Want to have the non-local eigenvalue problem[
h(1)+

∫
d2 vs(1,2)

]
ϕi(1) = εiϕi(1)

First-order perturbation theory in the potential yields the following
functional derivatives

δϕi(3)
δvs(1,2)

=∑
b

ϕb(3)
ϕ∗b (1)ϕi(2)

εi− εb
+∑

j 6=i
ϕj(3)

ϕ∗j (1)ϕi(2)
εi− εj

δϕa(3)
δvs(1,2)

= ∑
b6=a

ϕb(3)
ϕ∗b (1)ϕa(2)

εa− εb
+∑

j
ϕj(3)

ϕ∗j (1)ϕa(2)
εa− εj



Optimized effective potential condition

δE
δvs(1,2)

= 0

or

∑
i

∫
d3

δE
δϕi(3)

δϕi(3)
δvs(1,2)

+∑
a

∫
d3

δE
δϕa(3)

δϕa(3)
δvs(1,2)

+ c.c. = 0

Inserting the functional derivatives of the orbitals and rearranging,

∑
i 6=j

∫
d3

[
δE

δϕi(3)
ϕj(3)− δE

δϕ∗j (3)
ϕ
∗
i (3)

]
ϕ∗j (1)ϕi(2)

εi− εj

+ ∑
a 6=b

∫
d3
[

δE
δϕa(3)

ϕb(3)− δE
δϕ∗b (3)

ϕ
∗
a (3)

]
ϕ∗b (1)ϕa(2)

εa− εb

+∑
ia

∫
d3
[

δE
δϕi(3)

ϕa(3)− δE
δϕ∗a (3)

ϕ
∗
i (3)

]
ϕ∗a (1)ϕi(2)

εi− εa
+ c.c. = 0



Linear independence

Linear independence of the functions:∫
d1 d2

ϕ∗p (1)ϕq(2)
εp− εq

ϕr(1)ϕ∗s (2)
εr− εs

=
〈p|r〉〈s|q〉

(εp− εq)(εr− εs)
=

δprδqs

(εp− εq)2

implies that each term in brackets can be set to zero individually:∫
d3

δE
δϕi(3)

ϕj(3)−
∫

d3
δE

δϕ∗j (3)
ϕ
∗
i (3) =0∫

d3
δE

δϕa(3)
ϕb(3)−

∫
d3

δE
δϕ∗b (3)

ϕ
∗
a (3) =0∫

d3
δE

δϕi(3)
ϕa(3)−

∫
d3

δE
δϕ∗a (3)

ϕ
∗
i (3) =0



OO-MBPT(2) and OO-MP2

Writing the energy in the form

E = ∑
i

hii +
1
2 ∑

ij
〈ij||ij〉+Ecorr

Straightforward to show simplification to∫
d3

δEcorr

δφi(3)
φj(3)−

∫
d3

δEcorr

δφ ∗j (3)
φ
∗
i (3) =0∫

d3
δEcorr

δφa(3)
φb(3)−

∫
d3

δEcorr

δφ ∗b (3)
φ
∗
a (3) =0∫

d3
δEcorr

δφi(3)
φa(3)−

∫
d3

δEcorr

δφ ∗a (3)
φ
∗
i (3) =〈i|vs|a〉−∑

j
〈ij||aj〉

Two simple choices for Ecorr:

EMBPT(2)
corr = ∑

ia
fiata

i
(1) +

1
4 ∑

ijab
〈ij||ab〉 tab

ij
(1)

, EMP2
corr =

1
4 ∑

ijab
〈ij||ab〉 tab

ij
(1)



Semi-canonical

Independence of Ecorr to oo & vv rotations implies∫
d3

δEcorr

δφi(3)
φj(3)−

∫
d3

δEcorr

δφ ∗j (3)
φ
∗
i (3) =0∫

d3
δEcorr

δφa(3)
φb(3)−

∫
d3

δEcorr

δφ ∗b (3)
φ
∗
a (3) =0

are always true. Free to chose

〈i|vs|j〉=∑
k
〈ik||jk〉

〈a|vs|b〉=∑
k
〈ak||bk〉

⇒ Semi-canonical orbitals.



Final equations for vs: OO-MBPT(2)

Using the expressions for semi-canonical orbitals,

ta
i
(1) =

fia
fii− faa

tab
ij

(1)
=

〈ab||ij〉
fii + fjj− faa− fbb

γii =−∑
b

tb
i
(1)

ti
b
(1)− 1

2 ∑
jbc

tbc
ij

(1)
tij
bc

(1)

γaa =∑
j

ta
j
(1)tj

a
(1)

+
1
2 ∑

jkb
tjk
ab

(1)
tab
jk

(1)

Then

〈i|vMBPT(2)
s |a〉=−hia + fia (γii− γaa)+∑

jb

[
tb
j
(1) 〈ji||ba〉+ tj

b
(1)
〈bi||ja〉

]
+∑

j
γjj 〈ji||ja〉+∑

b
γbb 〈bi||ba〉+ 1

2 ∑
jbc

tij
bc

(1)
〈bc||aj〉

− 1
2 ∑

jkb
tjk
ab

(1)
〈ib||jk〉



Final equations for vs: OO-MP2

Using the expressions for semi-canonical orbitals,

tab
ij

(1)
=

〈ab||ij〉
fii + fjj− faa− fbb

γii =− 1
2 ∑

jbc
tbc
ij

(1)
tij
bc

(1)
γaa =

1
2 ∑

jkb
tjk
ab

(1)
tab
jk

(1)

Then

〈i|vMP2
s |a〉=∑

j
〈ij||aj〉+ fia (γii− γaa)+∑

j
γjj 〈ji||ja〉+∑

b
γbb 〈bi||ba〉

+
1
2 ∑

jbc
tij
bc

(1)
〈bc||aj〉− 1

2 ∑
jkb

tjk
ab

(1)
〈ib||jk〉



Implementation

Methods:

OO-MBPT(2): Use EMBPT(2)
corr for optimization and energy

OO-MP2 (D): Use EMP2
corr for optimization and energy

OO-MP2 (S+D): Use EMP2
corr for optimization and EMBPT(2)

corr for
energy

Numerics:

Iteratively solving for vs until Frobenius norm of 〈i|vs|a〉< 10−7

(matching HF convergence criterion)

Currently doing integral transformation at every iteration

Integral transform is rate-determining step



Convergence

Water, cc-pVDZ
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C2, 6-31G*
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Atomic Species

He Series:
Unc. Roos aug. DZ ANO basis
Relative to FCI

Be Series:
Unc. 7s3p1d basis
Relative to FCI
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G2-99 Test set

Neutral, singlets, cc-pVTZ basis, relative to CCSD(T)
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He2

Uncontracted aug-cc-pVTZ basis
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Be2

Uncontracted aug-cc-pVTZ basis
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Hydrogen Fluoride

Roos augmented double-ζ ANO basis, relative to CCSDT
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Conclusions

Positives:

Circumvents problematic inversion of X

Improves on HF-MBPT(2)

Easily extendible to other hermitian energy functionals, in
particular LinCCSD

Negatives

Convergence for OO-MBPT(2) is very poor

Improvement over HF-MBPT(2) is often small

Requires additional time-consuming iterations
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