SAND2009- 4139C

Quantifying the Degree of Balance
in Physical Protection Systems

Gregory D. Wyss
Sandia National Laboratories, New Mexico
P.O. Box 5800, MS-0757, Albuquerque, NM, 87185-0757

Abstract

“Balanced protection” is recognized as an important heuristic of an effective physical protection
system. A physical protection system is viewed as balanced when every pathway by which an
adversary might attempt to accomplish a goal presents a similar level of difficulty (e.g., similar
resources required, similar probability of timely detection, similar likelihood of being neutralized,
etc.). Historically, the degree of balance within the protection system has been assessed
subjectively when the security analyst compares relevant security metrics for several of the most
vulnerable attack pathways using expert judgment. This paper proposes an objective method to
obtain a quantitative metric to represent the degree of balance within a security system. The method
is based on the mathematics of exponentially weighted moving averages, wherein the performance
of the security system for many of the most vulnerable attack pathways are aggregated to provide a
single metric. By using an exponentially weighted average instead of a simple mean or a linear
weighted average, the method automatically applies higher weighting to the most vulnerable attack
pathways and minimal weighting to the less desirable pathways. The method is relatively
insensitive to the number of attack pathways considered in the average as long as each attack
pathway is developed to a comparable level of granularity. This characteristic is very different from
a simple mean or a linear weighted average, which can be very sensitive to the number of terms
selected for use in the averaging process. This method can be used to help inform risk management
decisions within a single site and across multiple sites.

Introduction

The objective of a physical protection system is to protect a facility or system against potential
attacks by malevolent adversaries. For high-consequence facilities, the key functions of the
physical protection system are described by the philosophy “detect, delay, respond.” The protection
system must detect that the system or facility is under attack and then delay the adversary from
achieving his or her attack objectives for long enough that an effective response can be initiated to
interrupt and ultimately neutralize the attack. The ability of the physical protection system to
accomplish these objectives is measured by two probabilities:

1. the probability that the attack is detected in time for an effective response to be mustered to
interrupt the adversary’s attack tasks (P;, the probability of interruption, which is sometimes
also called the probability of timely detection), and

2. the probability that the response will be able to successfully neutralize that adversary attack
(Pn, the probability of neutralization).



To be successful, the protection system must succeed in both of these functions. Thus, the
probability that the protection system is effective in defeating an adversary attack, P, is the
probability that the attack is both interrupted and neutralized, so Pr = P; - Py, and Pz is an estimate
of the likelihood that an adversary will succeed given that they attempt a particular attack scenario.
Py is estimated for each potential attack scenario to which a facility or system is susceptible, and the
scenarios with the lowest value of Pz are the most advantageous to the adversary. The adversary is
assumed to be intelligent and knowledgeable about the protection system, so he or she will not
likely attempt an attack scenario that is significantly suboptimal (i.e., the adversary will likely select
from among the few scenarios with the lowest value Pz). For this reason, it is reasonable and
convenient to rate the performance of a physical security system according to the lowest value of Py
for any attack path at the facility or system.

Another desirable characteristic for a physical protection system is that it provide balanced
protection." A physical protection system is viewed as balanced when every pathway by which an
adversary might attempt to accomplish a goal presents a similar level of difficulty (e.g., similar
resources required, similar probability of timely detection, similar likelihood of being neutralized,
etc.). This has been described colloquially as ““a facility should not have tightly locked doors and
wide-open windows.” Mathematically, this means that the value of Py for the adversary’s one or
two most advantageous attack scenarios should not be dramatically lower than it is for the next
several most attractive scenarios. This definition is simple in concept and can be applied as a
heuristic when evaluating physical protection systems when an analyst visually scans the Pz values
for the adversary’s several most attractive scenarios. However, the definition of balance remains
heuristic unless it can be defined according to a mathematical formula.

The purposes of this paper are (a) to describe the desirable characteristics that such a formula
should exhibit and (b) to evaluate several such potential formulas against these characteristics.

Desirable Characteristics of a Balance Metric

The objective of a balance metric is to measure the degree to which the attractiveness of an
adversary’s “good” attack options are comparable to his best attack option. Since P is the most
commonly used metric for scenario attractiveness, a balance metric should be computed on the basis
of Pg, but should ideally support the use of other scenario attractiveness metrics if they should
become widely used. In addition, it should consider the scenarios that would be attractive but

discount the scenarios that would be unattractive to an adversary.

Another important characteristic of a balance metric is that it be relatively independent of the level
of detail employed in the physical protection system analysis. To appreciate the need for this
characteristic, one must understand a key fact about attack scenarios: if one thinks about the system
long enough, one can conceive of an almost infinite number of possible attack scenarios, most of
which would not be attractive to the adversary when compared to the most attractive scenario.
These unattractive scenarios should not contribute to the balance metric. That is, the balance metric
should be relatively insensitive to the number of scenarios identified during the security analysis.



The Mathematics of Averages

The mathematics of averages can be used to develop a metric for the balance of a protection system.
One can compute some sort of average P value for the scenarios that are attractive, but not most
attractive, and compare that average to the Py value for the most attractive scenario. If the two
values differ little, then the physical protection system can be viewed as balanced, while a large
difference between the values indicates an unbalanced protection system. This section examines
several types of averages that may be appropriate for this purpose, while the next section considers
the relative advantages and disadvantages of each as a possible balance metric.

This paper focuses specifically on the use of moving averages. A moving average (sometimes
called a rolling average or a running average) is typically used to examine the characteristics of a
system which exhibits noisy behavior but is evolving over time. The moving average smooths out
short-term fluctuations in the data and highlights longer-term trends or cycles. Examples include
financial data such as stock prices, trading volumes, employment, and gross domestic product, as
well as environmental data such as long-term climate trends (e.g., distilling long-term trends from
rapidly fluctuating daily and even annual temperature data). Thus, a moving average focuses
attention on data for a particular subset of the overall data. For the purposes of measuring balance
within a physical protection system, the subset of data upon which one wishes to focus is the set of
scenarios that are attractive, but not most attractive, to an adversary. Thus, before applying a
moving average to the data from a protection system, the analyst will sort the scenarios in order of
increasing Py so that those scenarios with the highest Pz values will receive the highest
consideration in the moving average and, hence, exert the greatest influence on the balance metric.

Simple Moving Average

A simple average represents the mean of a data set, and is computed as the sum of all points in the
data set divided by the total number of entries in the data set. The sum is unweighted; that is, all
points in the data set have exactly the same contribution to the calculation, and no point is more
important than any other in its contribution to the sum.

A simple moving average is similar to a simple average except that it considers only the previous n
data points.” Like the simple average, this is an unweighted mean. When an n-day simple moving
average is applied to a time series of data such as the daily closing price for a commodity, a simple
moving average is simply the unweighted mean of the closing prices from the previous n days.
When the next data point is added to the set (e.g., the closing commodity price for the next day),
this new value comes into the sum, and an old value drops out as it is beyond the n-day window for
the moving average.

The analyst must select a parameter in order to calculate a simple moving average: n, which is the
number of data points to be included in the average or the length of the time window over which the
moving average is calculated. The analyst selects this parameter value based on convention or
expert judgment in order to emphasize the type of trend that is being investigated. For example, a
10-day window emphasizes short-term movement, while a 200-day window emphasizes long-term
trends.



Linear Weighted Moving Average

A weighted average uses multiplying factors to give different weights to different data points within
the data set. This can be done for several reasons. For example, the analyst may assign greater
importance to more recent data because it is believed to be a better predictor of future trends than
older data. The analyst may also be unsure of how many data points should be used in a trend
analysis. In a simple moving average, the most recent or most important data point has exactly the
same contribution to the metric as the most distant or least important data point. The application of
a weight to each point in the moving average calculation can be used to reflect the analyst’s belief
that older or more distant data should be given lesser consideration.

The simplest weighted moving average applies a weighting factor that decreases linearly as one
moves from the most important value toward less important values in the data set.” For data in a
time series, the weights decrease toward zero linearly with each previous day in the time series. In
an N-day weighted moving average, the most recent day has weight N, the second most recent N—1,
and so forth until the N day in the average has a weight of 1, and all successive days have a weight
of 0. The data value for each day is multiplied by its weight, and the resulting weighted values are
summed. The denominator of the weighted moving average is simply the sum of the weighting
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factors, which is the triangle number ( 2 ) .

The value calculated for a linear weighted moving average is much less sensitive to the exact value
of the parameter N (the window for the moving average) than is the simple moving average. It can
be shown that a single additional value that is added to the linear weighted moving average (i.e.,

adding one day to the window, or increasing N by 1) will only contribute W%]\]m as a fraction of

the newly computed weighted average value. Still, a larger change in N causes a very significant
change in the relative importance of specific values in the weighted average value. Consider a
situation where N is doubled. In the original weighted average calculation, the N value was only
!/y as important to the computed weighted average value as the first value. When N is doubled, the
N" value becomes about % as important as the first value. This sensitivity may be important when
one is highly uncertain as to the correct value for V.

Exponentially Weighted Moving Average

Whereas the linear weighted moving average applies weighting factors that decrease linearly toward
zero as one moves toward less important or more distant data, the exponentially weighted moving
average, as its name implies, uses weighting factors that decrease exponentially in the form of a
power series. This influences the characteristics of the moving average in two ways. First, since
the exponential weighting function decreases more rapidly than a comparable linear weighting
function, the exponentially weighted moving average gives even more weight to the more recent or
more important data than does its linear counterpart. Second, since the exponential weighting
function never actually reaches zero no matter how many terms are applied, every member of the
data set contributes at least something to the exponentially weighted moving average.

The characteristics of the exponentially weighted moving average are set through the selection of
the weighting factor a, a value between 0 and 1, which determines the rate of decay for the



exponential weighting function. If one begins with the most important or most recent point in the
data set, then the value of the weighting factor for the &” term in the weighted average is

o (1 - 0)* V. Thus, the first point contributes o as a fraction of the total exponentially weighted
average, and the contribution of each successive term to the total is reduced by a factor of (1— a).
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The value for a is sometimes expressed in terms of a period N such that a="777 . When expressed

in this way, the first N terms in the weighted average represent approximately 86% of the total
weight in the calculation, and the first 2N terms represent more than 98% of the total weight. The
half-life of the weights (the interval over which the weights decrease by a factor of two) is

approximately % if N> 5. The value of o goes down by almost a factor of two when N is
doubled.

In the exponentially weighted moving average calculation, the relative contribution of each term to
the overall weighted sum is far more consistent than was observed for the linear weighted average.
Recall that when the width of the window was doubled, the importance of the N value was
increased from ’/y to about % as important as the first value. In other words, its importance to the
average increased by a factor of about V/,, which is important if N is greater than about 5, and
becomes enormous as N increases. By contrast, a comparison of the importance of the N* value to
that of the first value for the exponentially weighted average shows that the importance of the N
value is increased by a factor that never exceeds 2.8, regardless of the value of N (or o). Even the
importance of the 2N" value (at which the sum of the weighting factors exceeds 98% of the total
weight) never increases by a factor of more than 7.4 as N is doubled, regardless of the value of N (or
a). Thus, there is far greater consistency in the relative weighting among terms in the exponentially
weighted moving average across different values of N than exists in the linear weighted moving
average.

Application of Averages as Balance Metrics

A physical protection system is viewed as balanced when every pathway by which an adversary
might attempt to accomplish a goal presents a similar level of difficulty (e.g., similar resources
required, similar probability of timely detection, similar likelihood of being neutralized, etc.). This
definition can be applied as a heuristic when an analyst visually scans the P values for the
adversary’s most attractive scenarios. By definition, an assessment of balanced protection requires
the analyst to consider multiple scenarios. One way to measure this is to count the number of
scenarios that have Py values that are comparable the most attractive scenario. The problem with
this approach is that it is difficult to set a cutoff value that adequately expresses what it means to be
“comparable.” Even if such a criterion could be developed, the accuracy of such a scenario count
could be inaccurate if several scenarios had Py values that were just beyond the cutoff.

Using an average as a measure of balance is desirable because it considers multiple scenarios. The
averaging process minimizes the impact of the discrete cutoff values described above because it
allows the actual data to speak for itself without regard for potentially artificial limits. The
Department of Energy (DOE) makes use of this property of averages in its Graded Security
Protection (GSP) Policy.” Each site is rated in regard for compliance with security requirements on



the basis of the average P values over six significantly different and attractive scenarios.” This
approach is essentially a simple moving average with N = 6. Thus, by comparing the lowest Pg
value with the averaged Pr value calculated to satisfy the requirements of the GSP, one could
estimate the balance of the protection system at the site. Note, however, that the value of this
balance estimate is highly sensitive to the selection of &V, the size of the group of scenarios included
in the calculation. The value of the average is equally sensitive to the value of Pg for the 2™ most
attractive scenario, the 6™ most attractive scenario, and the 20" most attractive scenario (if N were
at least that large).

This paper has shown how the average Py calculation could be made significantly less sensitive to
the value selected for N through the use of either a linear weighted or exponentially weighted
average. This would, however, change the way that the average behaves, making it much more
sensitive to the value of P for the most attractive scenario. Decision makers would need to
evaluate whether this change would enhance or detract from their policy objectives. They may find
it desirable to develop a separate balance metric that makes use of a weighted average and a larger
value for NV in order to quantify the degree to which the physical protection systems for which they
are responsible exhibit the desirable characteristic of “balanced protection.”

While averaging P provides a reasonable balance metric, a more robust metric can be generated by
averaging the adversary’s probability of success during an attack Ps, which is (/-Pg). As one
moves through the list of scenarios from most attractive to least attractive, the value of Pr increases
towards 1.0 while the weighting factor used in both of the weighted averages decreases towards
zero. By using Py instead of Pg, one eliminates the competition between increasing metrics and
decreasing weights, and introduces a compounding effect wherein less attractive scenarios have
both lower metrics (Ps approaches zero) and lower weights. This makes the balance metric even
less sensitive to the value selected for V, resulting in more robust performance of the balance
metric.

Summary and Conclusions

An important principle of physical protection system design is that it should provide balanced
protection. A physical protection system is viewed as balanced when every pathway by which an
adversary might attempt to accomplish a goal presents a similar level of difficulty. Historically, the
degree of balance within the protection system has been assessed subjectively as the security analyst
compares Py for several of the most vulnerable attack pathways using expert judgment. This paper
describes how weighted averages can be used to effectively and objectively measure the degree of
balance within a physical protection system. In so doing, the performance of the physical security
system for many of the most vulnerable attack pathways are aggregated to provide a single balance
metric. Linear and exponentially weighted averages automatically apply higher weighting to the

" It has been noted that averaging of Py values across scenarios can also obscure information that is important to the
overall security analysis. The smoothing effect of the averaging process can obscure the existence of a single high-
vulnerability scenario when its P value is averaged with those of other less vulnerable scenarios. If one assumes that
adversaries will actively seek out and exploit the best scenarios that they can identify, then the existence of a high-
vulnerability scenario must be taken seriously and addressed. The DOE GSP addresses this issue administratively. We
should note that the situation just described reflects a physical protection system that exhibits a serious lack of balance.



most vulnerable attack pathways and minimal weighting to the less desirable pathways. In
particular, the exponentially weighted average is the least sensitive to the number of attack
pathways considered.

By comparing P for each site’s most attractive scenario with its averaged Pg as calculated
according to the DOE GSP, a decision maker can gain insights into whether the site provides
balanced protection, although this metric is very sensitive to the number of scenarios considered in
the averaging calculation. It can be made less sensitive through the use of one of the weighted
averaging methods described in this paper. A robust balance metric can be a valuable tool to inform
risk management decisions both within a single site and across multiple sites.
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