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Motivation

« Acoustic and structural meshes typically generated
independently

* Acoustic and structural meshes almost always have
different mesh density requirements

* Mesh tying methods have been researched extensively in
solid mechanics — but not in acoustics or structural
acoustics

* Fully coupled simulations are needed
— Coupled modes, coupled frequency response

Mesh typing methods are needed for
nonconforming wet interface
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} Acoustic-Structure Interaction

Equations of motion of solid

PU —Veo = f(xat) QeX[O,T]

Acoustic wave equation for fluid

1 Q x[O,T]
C_2¢zz_A¢:O !

Boundary conditions
% B °

= Continuity of Displacement
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i Weak Formulation for Time Domain

Find (w.¢) [0.7]> H(Q)x(H,(Q,))

p,v), (0. Vg +(phv)a =(fV)e  Yyve(H'@)))

! <BC/2A¢Jb,w) +

LGV )a, +(VOVY), (VG V) +
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BV, VY) = ()i =0 Yy e H'(Q))g

Discretized form:
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Coupling Terms

* The surface integral is the key to the coupling
methods

Ly =[N, Ngdr
I

N M, Surface shape function on master side

N g . Surface shape function on slave side
J
» For conforming meshes, this is the classical structural-acoustic coupling
matrix since N,,; and Ng are the same functions and are on the same

surface

 For mortar methods, N,, and Ny are different functions and are defined
on different surfaces, but the integral is still the same

Since Ny, and Ny are defined on different surfaces, a surface @ Sandia

. . . National
projection method is needed — we use approach of Laursen et al. Laboratories



i Mesh Tying Methods for Acoustics

Weak formulations

B Q, € €2,

I[%&}ww-w}d =0 I[zWWW'W}J =9
&

Q

Constraint equations on interface

* Classical MPC equations Vs = ZC}//M
e Mortar method j(l//1 —y, dl' =0

r
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i Discretization of Boundary Constraint

Boundary Constraint Equation:

[, —w,har=o0

I

Discretization:

W=D Ny Wy W=D N (X)W
n=~N S,

I(Wl_1/12)7drzZINMiNdeF_ZINSiNdeF
i T i T

r

Mortar method for acoustics involves same surface
integrals as for conforming structural acoustics @ Natoe
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A
} Mesh Tying Methods for Structural

Acoustics

1. Conforming finite element approach
« Requires matching meshes

2. Classical multipoint constraint equations with
ghost nodes

3. Mortar method with ghost nodes
4. Classical mortar method
* Flemisch et al, 2006

In all cases we need to evaluate integrals of the type: _[N uVdl
r

N 1 Surface shape function on master side

N S Surface shape function on slave side
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A
? Mesh Tying Methods for Structural

Acoustics

Ghost nodes approach:

» Add “ghost” acoustic degrees of freedom to solid
nodes on wet interface

« Use conforming coupling operators to couple solid
nodes on wet interface to appended acoustic dof

» Couple acoustic dof on both sides of wet interface
with mortar or standard MPC equations

For conforming meshes, this method reduces to
a conforming structural acoustics

Same constraint equations for acoustic-acoustic
coupling and structural-acoustic coupling |
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sh Tying for Structural Acoustics — Ghost
Node Approach

(solid dof + ghost acoustic dof)
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i Cube-In-Cube Structural Acoustic Example

e Aluminum tank filled with
water

 time-dependent pressure load
(sinusoid) applied to end of tank

» far-end of tank fixed to rigid
wall

D

We compare the results using 3 methods:

« Conforming meshes
 Nonconforming meshes with ghost nodes and classical MPCs
 Nonconforming meshes with ghost nodes and mortar constraints
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Convergence Results for Cube-in-Cube
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Convergence Results for Cube-in-Cube
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Convergence Results for Water-Castor Oil
System

 Two-fluid tank filled with
water and castor oil

* Assumed that no mixing
occurs

We compare the results using 3 methods:

« Conforming meshes
 Nonconforming meshes with ghost nodes and classical MPCs
 Nonconforming meshes with ghost nodes and mortar constraints
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Freq = 2076319 Hz.

Mortars, Freq = 207.6319 Hz.
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Log 10(Elgenvalue Error)

Freq = 214 4092 Hz.
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Observations and Conclusions

* Both Classical MPCs and mortar method demonstrate
convergence for both acoustic and structural acoustic
mesh tying

* Mortar method appears to converge faster on cube-in-cube
transient structural acoustic problem

* For two-fluid system, mortar method appears to give
convergence rates that are consistent with theory

* For two-fluid system, classical MPCs show consistent
convergent rates for some modes, and inconsistent rates
for other modes
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