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Study Introduction

Objective: A “valid” means of 
modeling material localization in 
finite element analyses (ARL, 
2001).

Initial Scope: quasi-brittle fracture 
using cohesive zone modeling
-- consistent with the enrichment 
functions

Approach: Develop an
extended FEM (XFEM) that 
allows the displacement field 
to be enriched in the 
neighborhood of a strong 
discontinuity.

 can represent a discontinuity 
without mesh refinement

 can potentially represent the 
gradients near a surface of 
localization without mesh 
refinement



Background

Initial related studies:
 Melenk and Babuska (1996)

• theory for Partition of Unity FEM (PUFEM)
 Belytschko and Black (1999)

• developed PUFEM for LEFM  XFEM

XFEM/PUFEM-Cohesive Zone Studies
 Wells and Sluys (2001)
 Moes and Belytschko (2002) 
 Zi and Belytschko (2003) -- tip function addresses tip

position but not the field
 Xiao and Karihaloo (2006) -- asymptotic fields
 …



PUFEM Displacement Field Enrichment

 Standard FEM

cohesive zone

enriched elements

Global displacement approximations

Element displacement approximations
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“My Path to Enrichment”
“I am not discouraged, because every wrong attempt discarded is another step forward.

I have not failed.  I’ve found 10,000 ways that won’t work.”       – Thomas Edison

Formulated simple series that incorporated 
a discontinuity.

Formulated simple functions that had key 
features of accurate numerical results.

Analytically derived enrichment functions 
based upon the Muskhelishvili formalism. 

u2

22



Enrichment Functions: An Analytical Source

Muskhelishvili formalism (1953)

Hong & Kim (2003) obtained a series solution to the inverse problem

Zhang & Deng (2007) obtained “asymptotic solutions”

– both assumed linear elastic isotropic material (except for cohesive zone)

Additional analysis was used to: 

verify the proposed solutions

extend them for field variables required by the XFEM

u1  iu2 
1

2
 z  z  z  z  

where  and  are analytic functions, and z = x+iy.

Displacements



Enrichment Functions: An Analytical Source

x/c

Qualitative comparison of 22 with fine-scale FEA
Analytical ~ First terms in series for Hong & Kim solution
 “Fine-scale” FEA ~ results for finely meshed FEA with interface el.

y/c

Analytical Fine-scale FEA

Note: problems differ and CZ sizes are not to the same scale.

Cohesive zone length = 2c



Enrichment Functions: An Analytical Source

Zhang & Deng (2007) solve the problems in terms of
elliptic coordinates ()

z  ccosh  
1

2

Symbolically the inverse map is give by
  cosh1 z c 

complex analysis  useful forms.

They (1) adopt a Westergard stress function, 
 one unknown analytic function,
(2) express this in a series, and
(3) define one term of the series to be the asymptotic solution.



Mode-I Enrichment Functions

 Based upon the asymptotic solutions of Zhang & Deng 

-2

-1

0

1

2 -2

-1

0

1

2

-2

0

2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2

-1

0

1

2 -2

-1

0

1

2

0

0.5

1

1.5

-2

-1

0

1

2

u2 u1

-2 -1 0 1 2

-2

-1

0

1

2

-2

-1

0

1

2 -2

-1

0

1

2

0

1¥10
7

2¥10
7

3¥10
7

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2

-1

0

1

2 -2

-1

0

1

2

0

1¥10
7

2¥107
3¥10

7

-2

-1

0

1

2

22 11



Numerical Formulation Issues

 Key solver issue: new DOFs that result from adding 
enrichment to nodes do not have a good initial values 
 nonlinear solver can have problems.

 Solution: Penalty relaxation in a multi-level solver

 Element Integration



Numerical Formulation Issues
Assign equation numbers;   Determine storage for K;
Repeat (* time increment loop *)
| Repeat (* outer level solver loop -- aka localization loop *)
| | Update K & R
| | Reset penalty number to large value when entering a new element, else 0
| | …
| | Repeat (* penalty reduction loop *)
| | | Relax the penalty number
| | | Reset line search
| | | Repeat (* nonlinear iteration loop *)
| | | | Factor K
| | | | Forward eliminate & back substitute to obtain dUiter
| | | | Repeat (* line search loop *)
| | | | | Search line for dUiter

| | | | | …
| | | | Until (||R||<Rtoler) OR (||R||<||Rold||)
| | | | …
| | | Until ||R||<Rtoler

| | Until penalty number is reduced to zero
| | …
| Until localization is complete
| U:= U + dUstep;   dUstep:= 0;   Uold:= U
| …
Until time stepping is complete



Preview of Results

 Mode-I Model Problems -- emphasis on 

reproducing the cracking history

 Results for aligned meshes

 Results for skewed meshes

 Extensions for “mixed mode”

 Mixed mode examples

quasibrittle



Initial Simple Test Problems

 Concrete test problems
• relevant to HDBT
• domain 1 m x 1 m
• process-zone size ~ O(200 mm)
• representative concrete tensile properties
(except for simplified linear softening)

• mode I quasistatic crack propagation

cohesive zone path

Problem geometry
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Spacial Discretizations
 Fine FEM mesh

9x9 ~ 200+52 dofs 17x17 ~ 648+88 dofs

 XFEM – Aligned Meshes      &      Skewed Meshes

81x80 ~ 13,284 dofs

• provides an accurate reference solution

• includes a column of interface elements

8x8 @ 45 16x16 @ 45



Extremes Histories

9x9 mesh, c = 125 mm
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Extremes Histories and Crack Profiles

c = 50 mm
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Extremes and Crack Profiles

8x8 mesh, c = 75 mm
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Summary of Average Deviations

Aligned Mesh Ave. Deviation Skewed Mesh Ave. Deviation
9x9 11 8x8 18

17x17 9 16x16 13
33x33 6 32x32 6



R2   x d x  
2
dA

A



 Deviation between a polynomial approximation and the FEM approximation

 Weighting function

 Residual measure

 Using the Gauss point values  weighted least squares solution

Crack Propagation and Direction Calculations

d x   p x  fem x  c0  c1x  c2y  ... fem x 
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“Stress smoothing” used when a crack enters a new element



Model Problem with Stress Smoothing 
17x17 Aligned mesh
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Mixed Mode Fracture Problem
Double edge-notched specimen (Nooru-Mohamed 1992) 
and experimental crack paths
Concrete square, 50 mm thick  

front face

back face

Load Path 4b:
Fs = 10 kN

notches 5x25 mm



Mixed Mode Fracture Problem
XFEM simulation results for test give crack 
paths within the experimental scatter. 

r= 20 mm ~ 2h, n=3, =0, full-disk, cz/t = 0.8

[46] Meschke & Dumstorff (2007)



Single Edge-Notched Beam Specimen
Experimental work of Schlangen (1993)
units ~ mm,  thickness = 100 mm



Single Edge-Notched Beam Specimen

Finer meshes have been used (e.g., Wells & Sluys, 2001)



Initial Simple Test Problem

Initial tests exclude crack -- to establish limitations of 
approximate reference solution

 Exact reference solution (=0)
Approximate reference solution (=0)
Approximate reference solution (=0.17)

cohesive zone path



Displacement Field Accuracy
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Displacement Field Accuracy

Approximate reference: 
81x80
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Displacement Field Accuracy
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Displacement Field Accuracy
“cz tip” ~ center-line
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Observations & Conclusions

 No free-lunch -- algorithm complexity  with analytical 
enrichment

 Analytically enriched XFEM for cohesive zone modeling of 
localization has potential.

 Not the best approach for every application

 Several open issues, e.g.:
 Value of c and its possible adjustment
 Can the accuracy be improved?
 How useful is analytical enrichment for materials that are:

• anisotropic?
• Inhomogeneous?
• inelastic?
• amenable to finite deformations?
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Some Recent Related Studies

XFEM/PUFEM-Cohesive Zone Studies
 Wells and Sluys (2001)
 Moes and Belytschko (2002) 
 Zi and Belytschko (2003) -- tip function addresses tip

position but not the field
 Xiao and Karihaloo (2006) -- asymptotic fields
 …

GFEM
 Strouboulis, Copps, Zhang, and Babuska (2000, 2001, 2003)

numerical enrichment functions -- handbook functions



Fracture Models

 Process zone -- region where inelastic processes 
are occurring that lead to a new surface.

Example processes in a quasibrittle material --
initiation, growth and coalescence of micro-
cracks.

 Linear Elastic Fracture Mechanics -- assumes the 
process zone can be idealized as a curve (i.e., a 
point in a 2D representation).
Appropriateness depends upon:
 material

 scale (of structure relative to the “micro-structure”)



Fracture Models

 Process zone -- region where inelastic processes 
are occurring that lead to a new surface.

Example processes in a quasibrittle material --
initiation, growth and coalescence of micro-
cracks.

 Linear Elastic Fracture Mechanics -- assumes the 
process zone can be idealized as a curve (i.e., a 
point in a 2D representation).
Appropriateness depends upon:
 material -- linear elastic, brittle

 scale (of structure relative to the “micro-structure”)



PUFEM Displacement Field Enrichment

 Standard FEM

Global displacement approximations

 PUFEM/XFEM
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FEM approximation



PUFEM Displacement Field Enrichment

 Standard FEM

Global displacement approximations

 PUFEM/XFEM

u x  i x ui
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u x  i x ui
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N



FEM approximation 
with mesh refinement



PUFEM Displacement Field Enrichment

 Standard FEM

Global displacement approximations

 PUFEM/XFEM

u x  i x ui
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j1

N 

u x  i x ui
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N
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FEM approximation 
with mesh refinement

PUFEM approximation



Neighborhood Enrichment
Aka the Mr. Roger’s modification

Enriches additional nodes within a user-
defined neighborhood of the tip.

Done each time the tip enters a new element.

r = 0 r = 63 r = 126



Initial Simple Test Problems

 Concrete test problems
• relevant to HDBT
• domain 1 m x 1 m
• process-zone size ~ O(250 mm)
• representative concrete tensile properties
(except for simplified linear softening)

• mode I quasistatic crack propagation

cohesive zone path

Problem geometry
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XFEM Displacement Field Enrichment

fine-scale FEM solution: xxfine-scale FEM solution: ux

Example Problem:
concrete 1 m x 1 m 
in bending



Example response in the “tip-element”

enrichment
region

ux for tip-element
Surface plot
view

ux for tip-element

XFEM

Fine-scale



Example enrichment in the “tip element”
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XFEM Skewed Mesh Tests

8x8 @ 45 16x16 @ 454x4 @ 45



Extremes Histories

Problem 2
c = 75 mm
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Extremes Histories
skewed meshes with the  enrichment functions

4x4 mesh, c = 75 mm
Neighborhood enrichment
Average deviations: 29 mm for r=0

20 mm for r=255 mm
19 mm for r=505 mm
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Value of c for 1 series term

Consider the approximation of the function y=x, on the interval [0,a].
In this case let the basis be an orthonormal sine series of the form:

Analogy to illustrate the point that if only one term of the 
series is used, adjusting another parameter of the single basis 
function can improve the solution.

2

a
Sin

ix

a
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
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

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

Approximation of y/a vs. x/a when keeping a finite number of terms:
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Having a basis for the function we can approximate it as closely as desired in 

the sense of the L2-norm, but 1 term is not very accurate.
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Value of c for 1 series term

Consider the approximation of the function y=x, on the interval [0,a].
If we can only keep one term of the series, consider changing a to c and treating it as a 
parameter that can be adjusted.  Our approximate solution then takes the form:

Analogy to illustrate the point that if only one term of the 
series is used, adjusting another parameter of the single basis 
function can improve the solution.

Approximation of y/a vs. x/a when adjusting c:
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1 c=a c=10a

When only 1 term is retained, increasing c improves the accuracy in the sense 

of the L2-norm -- obvious from a Taylor series point of view.

ˆ y  bsin
x

c











b ~ of the nodal unknown in the FEA.  Here it is determined 
by a least squares fit.  c ~ c of the cz analytical solution

c=2a



Preview

 Introduction

 Cohesive crack model

 Objective, goals, and approach

 Background

 Motivating problems



Spacial Discretizations
 Fine FEM meshes – accurate reference solution

5x5 ~ 72+36 dofs 9x9 ~ 200+52 dofs 17x17 ~ 648+88 dofs
 XFEM – Aligned Meshes

41x40 ~ 3444 dofs 81x80 ~ 13,284 dofs61x60 ~ 7564 dofs



Cohesive Zone Insertion

 In theory insertion occurs when max>t

 Issue: residual error between continuum and 
cohesive zone

 Numerical criterion: t >max>cz
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Mode II Enrichment Functions
Based on Zhang & Deng (2007)
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Model Problem with Arbitrary Intersects



Mixed Mode Fracture Problem

XFEM simulation results varying several parameters. 



A “Global Issue” for the Tahoe Implementation

Management of enrichment DOFs



Extensions for Finite Deformations
Example: Mapping of crack direction and geometry


