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s What is Canonical Tensor
Decomposition?

CAN DECOMP/PARAFAC (CP) mOdeI [Hitchcock’27, Harshman’70, Carroll & Chang’70]

Rank-1 tensor (rank-1 component)
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N SVD vs. CP

Singular Value Decomposition (SVD) expresses a matrix as the sum of rank-1
matrices.
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CANDECOMP/PARAFAC (CP) expresses a tensor as the sum of rank-1 tensors.
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CP Application: Chemometrics
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CP Application: Neuroscience

Epileptic Seizure Localization:
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CP Application: Neuroscience

Epileptic Seizure Localization:
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CP has Numerous Applications!
e Chemometrics
— Fluorescence Spectroscopy 22 e,
— Chromatographic Data ﬂf
Analysis g,
o . > R e MIKI ]
Neuro_sc1e_nce _ Mgrup, Hansen and Arnfred, Sldlgogoulcl)éiz(élglz_nnakls
— Epileptic Seizure Journal of Neuroscience Sigr;]al g?dcessingr%%%o
Localization Methods, 2007. ’ :

— Analysis of EEG and ERP

* Signal Processing )z
e Computer Vision rES HEEBEER
— |mag-e -Compression’ . . - . . - -
classification Furukawa, Kawasaki, Hazan, Polak and
. Ikeuchi and Sakauchi, Shashua. ICCV 2005
— Texture analysis EGRW '02. ! -
* Social Network Analysis e
- Web link a_‘naIySIS o D::lwr.fqllg — —E Bader, Berry, Browne,
— Conversation detection in Califorria, Survey of Text Mining:
emails nEra Clustering, Classification,
] X and Retrieval, 2 Ed.,
— Text analysis Traia’ g 2007

Downfall -

newsteeds = —— N




Algorithms: How Can We Compute CP?
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" Mathematical Details for CP

1 357

X)) = 2 46 8

Unfolding i ;
. _ 1113 \ 1 256
(Matricization) X = 562 X2y = 3478
(1 2 3 4

X3 = 56 7 8

/bl / bp Z:f:arobrocr

T =

ap % = [A, B, C]

Matrix Khatri-Rao Product
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-5 CP is a Nonlinear
Optimization Problem

Given tensor Z and R (# of components), find matrices A, B, C that solve the
following problem:

Optimization Problem Objective Function

: 2
min ||Z — [|A,B,C 1 2
A=~ A B.Cl FG) = 211 % - [A,B,C]|
C where the vector x comprises the
1 CR entries of A, B, and C stacked
/ / column-wise:
b1 . o
o = |]|:| + .+ |]|:| R a,
| :
< arR
J < : - Y o o X = b=l
R(I+J+K) l;‘f’-
variables ,
CR|
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Traditional Approach: CPALS

CPALS dating back to Harshman’70 and Carroll & Chang’70 solves for one factor
matrix at a time.

Optimization Problem

min || Z — [A, B, C] ||?

A B,C

min || % - [A, B, C] 2

min||Z — [A,B,C]||°

B i i

min||< — A, B, C 2

O | ]
end

A

I xR

Each step can be converted to a

matrix least squares problem:
fork=1,... - _ T2

!

A=7Zq)((Co B)T)Jr

I x JK JKxR

!

= Z(1)(C®B)(C'C«B'B)

R x R matrix
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Traditional Approach: CPALS

Optimization Problem

min || Z — [A, B, C] ||
A.,B,C

Repeat the following steps until “convergence”:
A =17y (CoB)(C'C+B'B)f
B =Z5)(CoA)(C'CxATA)
C=2Z;(BoA)B'BxATA)

Very fast, but not always accurate.
Not guaranteed to converge to a stationary point.
Other issues, e.g., cannot exploit symmetry.
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. Our Approach: CPOPT

Unlike CPALS, CPOPT solves for all factor matrices simultaneously using a
gradient based optimization.

Optimization Problem

min || % —[A,B,C] % o

D12 - [ABCIP| gy

Define the objective function: c‘;f
— 1 2 Dap
f()=731%-[AB.C]| oo
(] Ob1

al )

m) Vo=,

by e

N f;R(I-I—J-I-K)RHR af
bpr 3(_31

C-l af
C:*-z_ _ﬁ_
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Rewriting the Objective Function

fo) =212~ [A,B,C] |

FG) =3[ Z)2 - (%.[4B,Cl)+; | [A.B,C] |2
f1(x) f2(x) f3(x)

!

V f1(x) = 0 |UW|® = (u,u)

Inner Product
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Derivative of 2" Summand

5 1
FO) =5[22~ (%[A,B,C]) + |

f1(x) fo(x) f3(x)
R
fo(x) = ¥ % x1 ap X by x3 ¢

(=1

R
= Z (% X2 bg X3 Cg)Tag.
/=1

Analogous formulas 3]”2
exist for partials w.r.t.
columns of B and C.

XGRIXJXK,UERI,VERJ,WGRK

:x:Xlu><2V><3W:

S:S:S:ngk U; Vj W cR
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Derivative of 3'9 Summand

FO) =5 [1%1% - (%.[A,B,Cl) +

D N——

f1(x) f2(x) f3(X)

R R
fax) =Y Y alablbsclc,

k=1/=1

= (b;[brc;!_cr> ala, +2 Y <b;rbkc]:ck> ala,+ Y 3 alablbsclc,
k#r k7T 0T

0f3
oa,

x) =2 (b!'byclc,) a 2 b'b.clec)a
(x) ( ) T> rt k; < ) k) k Analogous formulas
r exist for partials w.r.t.

R columns of B and C.
= 2 Z (bIbkCICk) ar € RI
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Objective and Gradient

Objective Function

1
f) =7 1%~[AB.C] |2

Can also calculate Hessian (very large) or its action.
Extension to higher orders is straightforward.
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Gradient in Matrix Form

Objective Function / /

1
f) =7 1%~[AB.C] |2

of

53 = ~Z)(CoB) + A(CTC+B'B)
9 () = ~Z(C®A) + B(CTC ATA)
oB~ 7~ 7

of
760 = "Z5(BOA)+ C(BBxATA)

Note that this formulation can be used to
derive the ALS approach!
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Indeterminacies of CP

(‘,1
Unlike SVD, CP is often unique. / b1 /
= — + + —1
However, CP has two fundamental Z |] |]
Indeterminacies aj ap
— Permutation — The factors can
be reordered .
Not a big deal.

e Swap a,, b, ¢,
with a,, b;, ¢,

Leads to multiple,
but separated,
minima.

_

— Scaling — The vectors
comprising a single rank-one .
This leads to a
factor can be scaled continuous space of

— _ :
« Replace a, and b, equivalent solutions.

) Therefore singular
with 2 a, and 72 b, Hessian matrix.
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Adding Regularization

Objective Function

1 A
[ = 1%~ [AB,ClIIP+5 (I A7 + I BIZ + 1 CI17)

Gradient (for r = 1

of . T T
8_A(X) = —Z(l)(C@B) +A(C'CxB'B) + M\A
of T T
8—B(X) — _z(z)(C@A) +B(C'CxA'A)+ )\B

g—é(x) = —Z3(BOA)+CB'BxATA) +AC

Resolves issue with scaling ambiguity and resulting singular Hessian.



Bandia

e Our methods:
CPOPT & CPOPTR

CPOPT: Apply derivative-based optimization method to the following objective
function:

1
f) =7 1%~[AB.C] |2

CPOPTR: Apply derivative-based optimization method to the following regularized
objective function:

1 A
f6) =3 1% - [A,B,CII*+Z (I AlF+ I BIIF +1ClI7)
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- Another competing method:
CPNLS

CPNLS: Apply nonlinear least squares solver to the following equations:
F(x) =vec(Z — [A,B,C])

|
- RUHI+K)R | pIJK

Gauss-Newton

Vf(x)
Levenberg-Marquadt JT Jh _@
J'Ih4 M =-J'F

J IJK x (I +J+ K)R

I (U+J+FK)Rx(I+J+ KR Proposed by Paatero’97

and Tomasi and Bro’05.
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Experimental Set-Up ,siceroos

20 triplets Step 2: Construct tensor from

component matrices and add noise.
All combinations of:
* Homoscedastic: 1%, 5%, 10%
 Heteroscedastic: 0%, 1%, 5%
Step 1: Generate random

component matrices A, Z=|[A,B,C|+N
B, CwithR,,=30r5
columns each and
collinearity set to 0.5.

Step 3: Use algorithm to extract factors, using
Rire @and Ry 011 factors. Compare against
factors in Step 1. 180

/ / / / tensors

A

~
360 tests
R=3
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Implementation Details

o All experiments were performed in MATLAB on a Linux
workstation (Quad-Core Intel Xeon 2.50GHz, 9 GB RAM).

e Methods

— CPALS - Alternating least squares. Used parafac_als in the Tensor Toolbox
(Bader & Kolda)

— CPNLS - Nonlinear least squares. Used PARAFAC3W, which implements
Levenberg-Marguadt (necessary due to scaling ambiguity), by Tomasi and
Bro.

— CPOPT - Optimization. Used routines in the Tensor Toolbox in calculation
of function values and gradients. Optimization via Nonlinear Conjugate
Gradient (NCG) method with Hestenes-Stiefel update, using Poblano (in-
house code to be released soon).

— CPOPTR - Optimization with regularization. Same as above.
(Regularization parameter = 0.02.)
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N CPOPT is Fast and Accurate

Generated 360 dense test problems (with ranks 3 and 5) and factorized with R as
the correct number of components and one more than that. Total of 720 tests for

each entry below.

Time (sec)

100 x 100 x 100
250 x 250 x 250

Size CPALS CPNLS CPOPT CPOPTR
20 x 20 x 20 0.5x1.0 0.3x+0.3 0.3+0.2 0.2+0.1
50 x 50 x 50 0.3x£0.3 2.0t 2.6 0.7 £0.5 0.5x=0.1

1.7+1.1 11.5+11.5 56+3.6 43+1.3
26.6 £9.1 1439+£125.0 83.5+£352 81.9+228

Accuracy (%)

Size CPALS CPNLS CPOPT CPOPTR
20 x 20 x 20 78.8 99.0 99.9 100.0
50 x 50 x 50 65.7 99.0 100.0 100.0
100 x 100 x 100 |  63.5 97.9 100.0 100.0
250 x 250 x 250 |  62.2 99.0 100.0 100.0
K x K x K O(RK3) O(R3K3) O(RK3) O(RK3)

R = # components
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CPOPT is prone to overfactoring!

w
L —
— ——
o
5]
ol
Emission
% 1000 CPALS with R=3 x 1000 CPOPT with R=3
10 - - - — 10 - . -
& £
F 1 -1
(] [&]
o 50 100 150 200 v] S0 100 150 200
Vanables WVariablas
x 1000 CPALS with R=4 #1000 CPOPT wilth R=4
10 10
£ 3 | & 3 :ZS : '
a ['H)
L= (=]
O g ! o g = !
-5 -5
0 50 100 150 200 0 S0 100 150 200
Vanables Vanables
x 1000 CPALS with R=5 % 1000 CPOPT with R=5
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w  h W h 1
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Application: Link Prediction
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Q1: Can we use tensor decompositions to model the data and extract

meaningful underlying factors?

Q2: Can we predict who is going to publish at which conferences in future?
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Components make sense!
conferences
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Components make sense!

hans peter meinzer

[Refine by AUTHOR 98| =
Hans-Peter Meinzer (136)
[vo Wolt (40)
Matthias Thorn (24)
Gerald-P. Glombitza (24)
[top 4] [top 50] [all 187]
Feefine by VENUE "
Bildverarbeitung fiir die Medizin (76)
DAGM-Symposimm (12) b C
CARS (8) r r
[top 4] [all 26]
12 ‘ ‘ Conference Mode ; Time mo‘de
[Refine by YEAR %@ gL ]FMED | os
2001 (17 A o8l
1998 (11) oo ] o7
2000 (11) o6} ] o8r
2004 (10) gosr 1
2007 (10) | AARS 1 04 n
2008 (10) 02/ A {PAGM ] 0af ]
1999 (10) R | O T RN o2
2003 (9) | o1t
2':”:'2 |:S:] -0'20 260 460 660 860 1600 12‘00 14‘00 16‘00 1800 07719‘92 19‘94 19‘96 19‘98 20‘00 20‘02 2004
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Components make sense!
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== Craig Boutiliet

Components make sense!

[Refine by AUTHOR

Craig Boutilier (116)

Daphne Koller
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21. LJCAI 2009: Pasadena, California, USA
20. IJCAI 2007: Hyderabad, India

Manuela M. Veloso (Ed.): IJCAI 2007, Proceedngs of the 20th Internation:
Contents sioTax

Thomas $. Huang, Anton Nijholt, Maja Pantic, Alex Pentland (Eds.): Artific:
and Invited Papers. Lecture Notes in Computer Science 4451 Springer 200°
Contents sioTax

Artur 8. d'Avila Garcez, Pascal Hitzler, Guglielmo Tamburrini (Eds.): Procee
230 CEUR-WS org 2007
Contents ziT=x

19. IJCAI 2005: Edinburgh, Scotland, UK

Leslie Pack Kaelbling, Alessandro Saffiotti (Eds.): IJCAI-03, Proceedings o
Contents siorsx - IJJCAT 2005 Home Page

18. IJCAI'2003: Acapulco, Mexico

Georg Gottlob, Tobv Walsh (Eds.): ITCAI-03, Proceedings of the Eighteent!
Contents siorsx - IJJCAT 2003 Home Page

Subbarao Kambhampati, Craig A. Knoblock (Eds.): Proceedings of IJCAI-
Contents st - ITWeb 2003 Home Page

Bamshad Mobasher, Sarabjot 8. Anand (Eds.): Intellient Techniques for W
ISBN 3-540-20846-0
Contents st

17. IJCAI 2001: Seattle, USA

Bernhard Nebel (Ed.): Proceedings of the Seventeenth International Joint Cc
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Link Prediction Problem
TRAIN: Ce R =loy -l
= RIXJXK
‘bR}
TEST: ~ 60K links out of 19 million
possible <author, conf> pairs
§ => 0.3% dense

Y e RIXJXK §

e AR X JExre ~ 32K previously unseen links in
R N ks ,\the training set
conferences conférences <author;, confj> =0

<author;, conf>=1
if it author publishes at jt" conf.
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Score for <author;, cont;>

e Sign ambiguity:

2
2~ Z ar o by ocy
r=1
~ (—aj)o(—=by)ocy +azo(—=bsy)o(—c2)
~ (—aj)objo(—cy1)+ (—az)o(—bz)ocs

e Fix signs using the signs of the maximum magnitude entries and then compute a
score for each author-conference pair using the information from the time domain:

SCORE;; = Z vrag by 71 o + 72 o e Y -

r=1

a a, ar

 m= chl

g
EEEEEEE —» time




Bandia
National
Laboratories

Score for <author;, cont;>

e Sign ambiguity:

2
2~ Z ar o by ocy
r=1
~ (—aj)o(—=by)ocy +azo(—=bsy)o(—c2)
~ (—aj)objo(—cy1)+ (—az)o(—bz)ocs

e Fix signs using the signs of the maximum magnitude entries and then compute a
score for each author-conference pair using the information from the time domain:

i vo o)
SCOREEJ f— Z "'}fra?:?,bjT fY]. bl + b2 X X) bR
r=1
a, , CZ a, ap
1V K
: tl 2= > Cko

0.15
0.1
0.05
0
—
o L L L L L —
55555 12 14
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Performance Measure: AUC

s: contains the scores for all possible pairs, e.g., ~19 million

RN

L. E."{ Tt,
AT

authors

scores sorted scores labels

S Sos 1

con rences\ <authori’ Confj> =0

<author;, conf> =1
sort if it author publishes at j conf.
— RN s

_S J | S67 O

N: number of 1’s
M: number of 0’s
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Performance Measure: AUC

s: contains the scores for all possible pairs, e.g., ~19 million

Scores

S
"

S

sorted scores

Receiver Operating

labels TP rate FP rate

Characteristic (ROC)
B 7 P Curve
Sqs 1 1/N 0 1 -
S 0 N ™M
23
Sort o O
N 0.6
— - I I g
1 1 0.5 |
1 : ! & 04 Area Under the curve |
| | (AUC)
I I 02
S O 1 1 O0 011 0.‘2 0.‘3 0.‘4 O.‘S 016 017 018 019 1
67 FP rate

N: number of 1’s
M: number of 0’s
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Performance Evaluation

Iethod 1 (auc=0.921)
03r —— Random I

Predicting Links ND/OM

for 2005 - 2007 (~ 60K):

02} AUC=0.92

1 1 1 1
06 07 08 09 1
sitives

1 1 1 1
0 01 02 03 04
False

pl=1
2w

1

Method 1 (auc=0.874)
— Random

Predicting Previously Unseen Links ool
for 2005 - 2007 (~ 32K): 8 ost

e P

) AUC=0.87 |

0 01 [ 0.3 04
False

5 06 07 08 09 1
ositives

Ll



CP-WOPT': Handling Missing Data
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Missing Data Examples

channels

Missing data in different disciplines due to loss

of information, machine failures, different sampling
frequencies or experimental-set ups.

e Chemometrics

» Biomedical signal processing (e.g., EEG)

» Network traffic analysis (e.g., packet drops)

e Computer

time-frequency

vision (e.g., occlusions)

subject N subjects

time-frequency

CHEMISTRY

Tomasi&Bro’05

. ' . '-‘.__\ : ‘\‘I ) H l ;
30 : s BTN Pt
25 ; oSS . i3
20 . . i e 30
i - 20

emission 18 s ™ .-,--?/.10 1

excitation
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Modity the objective for CP

NO MISSING DATA

Optimization Problem

FOR HANDLING MISSING DATA

min || W(Z — [|[A.B,C 2
min [ W(% -~ [A,B.CD|
(1 if 2, is known,

W1, —
ik 0 if 2 is missing.

Objective Function

I J K
fw(A,B,C)= > > >

1i=17=1k=1

P 2
wiik | Zijk — Y @irbjrCry
r=1
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I J K R -
fwAB,C)= > > > Swijk | zijk — D airbjrciy
r=1

i=1j=1k=1
_af—w_
_ ) da1i
411 (I+J+K)R ?
. - of
| fwiR — R G
aArR 9fw
bll (%_11
x=| | - VWG =,
b;r ?ﬁj
C11 dc11
3fw
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Objective and Gradient

Objective Function

I J K R -
fw(AB,C)= > > > Swijk | zijk— D irbjrcir
i=1j=1k=1 r=1

Gradient (for 7= 1,.. f?izl I'j:1 J-k=1 K)

5 K J
w_ _5 SN wipziikbircer + 2 Z Z wz]k(z a;i1bj1cki)bjrChr

dair k=1j=1 k—1j=1

O fro Ko 1 K 1 R

Y Vv —_— ’) _\—\ \ o 1y . . ~ re ral _L ’) —\—\ _\—‘ 1 { \ o Ve k £ 1\/1 173
a7 < Lo Lo Pykcygk®rtkr U < /L L Mgk £ Y itk ®rCkr
“Ojr k=1i=1 k=1i=1 =1

j=1li=1 j=11i=1 =1
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Experimental Set-Up . ,iceroos

20 triplets

Step 2: Construct tensor from
component matrices and add noise

( 2% homoscedastic noise)

Step 1: Generate random _
component matrices A, 2 = [[Aer C]] N

B,CwithR=50r10
columns each and
collinearity set to 0.5.

Step 4: Use algorithm to extract R Step 3: Set some entries to missing
factors. Compare against factors in « Percentage of Missing Data: 10%, 40%,
Step 1. 70%

4 4

= H‘:' + +|]=' . Missing: entries, fibers

| J
Y

R




Sandia
National
Laboratories

CP-WOPT is Accurate!

Generated 40 test problems (with ranks 5 and 10) and factorized with an R-
component CP model. Each entry corresponds to the percentage of correctly
recovered solutions.

Accuracy (Randomly Missing Entries)

M =10% M = 40% M=70%
Size CPNLS CP-WOPT CPNLS CP-WOPT | CPNLS CP-WOPT
50 x 50 x 50 100.0 100.0 100.0 100.0 90.0 100.0
150 x 150 x 150 | 100.0 100.0 100.0 100.0 100.0 100.0
' Accuracy (Randomly Missing Fibers)
M =10% M = 40% M =T70%
Size CPNLS CP-WOPT | CPNLS CP-WOPT | CPNLS CP-WOPT
50 x 50 x 50 100.0 100.0 92.5 100.0 22.5 82.5
150 x 150 x 150 | 100.0 100.0 100.0 100.0 75.0 100.0

CPNLS : Nonlinear least squares. Used INDAFAC, which implements Levenberg-
Marquadt [Tomasi and Bro’05].

Other alternatives: ALS-based imputation (For comparisons, see Tomasi and Bro’05).
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CP-WOPT is Fast!

Generated 60 test problems (with M =10%, 40% and 70%) and factorized with
an R-component CP model. Each entry corresponds to the average/std of the CP
models, which successfully recover the underlying factors.

Time (sec) (Randomly Missing Entries)

150 x 150 x 150

Size
50 x 50 x 50
150 x 150 x 150

218.9 £42.7 107.6 £20.3

R=5 R =10
Size CPNLS CP-WOPT CPNLS CP-WOPT
50 x 50 x 50 6.1 +1.3 2.8+0.6 21.74+4.5 7.0+£14

808.1 £ 153.4 290.5 +46.3

Time (sec) (Randomly Missing Fibers)

R=5
CPNLS CP-WOPT
5.9x1.8 30x1.1
216.6 +43.1 94.7+18.9

R =10
CPNLS CP-WOPT
20.4 = 3.8 7.4+20

720.2+156.8 265.4+47.1




Bandia
National

Laboratories

Summary & Future Work

New CPOPT method

— Accurate & scalable
Extend CPOPT to CP-WOPT to
handle missing data

— Accurate & scalable
More open questions...

— Starting point?

— Tuning the optimization

— Regularization

— Exploiting sparsity

— Nonnegativity
Application to link prediction

— On-going work comparing to other
methods
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Thank you!

 More on tensors and tensor models:

— Survey: E. Acar and B. Yener, Unsupervised Multiway Data Analysis: A Literature
Survey, IEEE Transactions on Knowledge and Data Engineering, 21(1): 6-20, 2009.

— CPOPT: E. Acar, T. G. Kolda and D. M. Dunlavy, An Optimization Approach for
Fitting Canonical Tensor Decompositions, SAND2009-0857, Feb. 2009.

e Contact:
— Evrim Acar, eacarat@sandia.gov
— Tamara G. Kolda, tgkolda@sandia.gov
— Daniel M. Dunlavy, dmdunla@sandia.gov

Two Minisymposia on
Tensors and Tensor-based Computations
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