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What is Canonical Tensor What is Canonical Tensor 
Decomposition?Decomposition?



SVD vs. CPSVD vs. CP

+…+≈

+…+=

Singular Value Decomposition (SVD) expresses a matrix as the sum of rank-1 
matrices.

CANDECOMP/PARAFAC (CP) expresses a tensor as the sum of rank-1 tensors.



CP Application: ChemometricsCP Application: Chemometrics

Fluorescence Spectroscopy:
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CP Application: NeuroscienceCP Application: Neuroscience
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CP Application: NeuroscienceCP Application: Neuroscience
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CP has Numerous Applications!CP has Numerous Applications!

• Chemometrics
– Fluorescence Spectroscopy
– Chromatographic Data 

Analysis
• Neuroscience

– Epileptic Seizure 
Localization

– Analysis of EEG and ERP
• Signal Processing
• Computer Vision

– Image compression, 
classification

– Texture analysis
• Social Network Analysis

– Web link analysis
– Conversation detection in 

emails
– Text analysis

Sidiropoulos, Giannakis

 
and Bro, IEEE Trans. 

Signal Processing, 2000. 
Mørup, Hansen and Arnfred, 

Journal of Neuroscience 
Methods, 2007. 

Furukawa, Kawasaki, 
Ikeuchi

 

and Sakauchi, 
EGRW '02.

Hazan, Polak

 

and 
Shashua, ICCV 2005.

Bader, Berry, Browne, 
Survey of Text Mining: 
Clustering, Classification, 
and Retrieval, 2nd

 

Ed., 
2007



Algorithms: Algorithms: How Can We Compute CP?How Can We Compute CP?



Mathematical Details for CPMathematical Details for CP

Unfolding
(Matricization)

+…+=

Matrix Khatri-Rao Product



CP is a Nonlinear CP is a Nonlinear 
Optimization ProblemOptimization Problem

+…+=

Given tensor Z

 

and R (# of components), find matrices A, B, C

 

that solve the 
following problem:

where the vector x

 

comprises the 
entries of A, B, and C stacked 

column-wise:

Optimization Problem

II

JJ
KK

variablesvariables

Objective Function



Traditional Approach: CPALSTraditional Approach: CPALS

for k = 1,…

end

Alternating Algorithm

Optimization Problem

CPALS dating back to Harshman’70 and Carroll & Chang’70 solves for one factor 
matrix at a time.

Each step can be converted to a 
matrix least squares problem:

R x R matrix

I x R
I x JK JK x R

I x JK JK x R



Repeat the following steps until “convergence”: 

Very fast, but not always accurate.
Not guaranteed to converge to a stationary point.
Other issues, e.g., cannot exploit symmetry.

Traditional Approach: CPALSTraditional Approach: CPALS

Optimization Problem



Our Approach: CPOPTOur Approach: CPOPT

Unlike CPALS, CPOPT solves for all factor matrices simultaneously using a 
gradient based optimization.

Optimization Problem

Define the objective function:



Rewriting the Objective FunctionRewriting the Objective Function

Inner Product

Norm



Derivative of 2Derivative of 2ndnd
 

SummandSummand

Tensor-Vector Multiplication

Analogous formulas 
exist for partials w.r.t. 
columns of B and C.



Derivative of 3Derivative of 3rdrd
 

SummandSummand

Analogous formulas 
exist for partials w.r.t. 
columns of B and C.



Objective and GradientObjective and Gradient

+…+=
Objective Function

Gradient (for r

 

= 1,…,R)

Can also calculate Hessian (very large) or its action. 
Extension to higher orders is straightforward.



Gradient in Matrix FormGradient in Matrix Form

+…+=

Gradient

Note that this formulation can be used to 
derive the ALS approach!

Objective Function



Indeterminacies of CPIndeterminacies of CP

• Unlike SVD, CP is often unique.

• However, CP has two fundamental 
indeterminacies

– Permutation

 

– The factors can 
be reordered

• Swap a1

 

, b1

 

, c1

 
with a3

 

, b3

 

, c3

– Scaling

 

– The vectors 
comprising a single rank-one 
factor can be scaled

• Replace a1

 

and b1

 
with 2 a1

 

and ½ b1

+…+=

Not a big deal. 
Leads to multiple, 
but separated, 
minima.

This leads to a 
continuous space of 
equivalent solutions. 
Therefore singular 
Hessian matrix.



Adding RegularizationAdding Regularization

Objective Function

Resolves issue with scaling ambiguity and resulting singular Hessian.

Gradient (for r

 

= 1,…,R)



Our methods:Our methods:
 CPOPT & CPOPTRCPOPT & CPOPTR

CPOPT: Apply derivative-based optimization method to the following objective 
function:

CPOPTR: Apply derivative-based optimization method to the following regularized 
objective function:



Another competing method:Another competing method:
 CPNLSCPNLS

CPNLS: Apply nonlinear least squares solver to the following equations:

Proposed by Paatero’97 
and Tomasi and Bro’05.

Gauss-Newton

Levenberg-Marquadt



Experimental SetExperimental Set--UpUp[Tomasi&Bro’06]

Step 1: Generate random 
component matrices A, 
B, C with Rtrue = 3 or 5 
columns each and 
collinearity set to 0.5.

Step 2: Construct tensor from 
component matrices and add noise. 
All combinations of:

• Homoscedastic: 1%, 5%, 10%
• Heteroscedastic: 0%, 1%, 5%

Step 3: Use algorithm to extract factors, using 
Rtrue and Rtrue+1 factors. Compare against 
factors in Step 1. 180 

tensors

+= + +

R=3
360 tests

20 triplets



Implementation DetailsImplementation Details

• All experiments were performed in MATLAB on a Linux 
workstation (Quad-Core Intel Xeon 2.50GHz, 9 GB RAM).

• Methods
– CPALS

 

– Alternating least squares. Used parafac_als

 

in the Tensor Toolbox 
(Bader & Kolda)

– CPNLS

 

– Nonlinear least squares. Used PARAFAC3W, which implements 
Levenberg-Marquadt (necessary due to scaling ambiguity), by Tomasi and 
Bro.

– CPOPT

 

– Optimization. Used routines in the Tensor Toolbox

 

in calculation 
of function values and gradients. Optimization via Nonlinear Conjugate 
Gradient (NCG) method with Hestenes-Stiefel update, using Poblano

 

(in- 
house code to be released soon). 

– CPOPTR

 

– Optimization with regularization. Same as above. 
(Regularization parameter = 0.02.)



CPOPT is Fast and AccurateCPOPT is Fast and Accurate

Generated 360 dense test problems (with ranks 3 and 5) and factorized with R as 
the correct number of components and one more than that. Total of 720 tests for 
each entry below.

K x K x K 
R = # components

O(RK3) O(RK3)O(R3K3) O(RK3)



CPOPT is prone to CPOPT is prone to overfactoringoverfactoring!!
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Application: Application: Link PredictionLink Prediction
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Q1: Can we use tensor decompositions to model the data and extract 
meaningful underlying factors? 

Q2: Can we predict who is going to publish at which conferences in future?

# of papers 
by ith author 

at jth conf. in year k.



Components make sense! Components make sense! 
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Components make sense! Components make sense! 
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Components make sense! Components make sense! 
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Components make sense! Components make sense! 
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Link Prediction ProblemLink Prediction Problem

TRAIN:TRAIN:

TEST:TEST:
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20072007
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~  60K links out of  19 million 
possible <author, conf> pairs

 0.3% dense
~ 32K previously unseen links in 
the training set

<authori , confj > = 1 
if ith author publishes at jth conf.

<authori , confj > = 0



Score for <Score for <authorauthorii
 

, , confconfjj
 

>>
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• Sign ambiguity:

• Fix signs using the signs of the maximum magnitude entries and then compute a 
score for each author-conference pair using the information from the time domain:
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Performance Measure: AUCPerformance Measure: AUC

s: contains the scores for all possible pairs, e.g., ~19 million
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Performance Measure: AUCPerformance Measure: AUC

s: contains the scores for all possible pairs, e.g., ~19 million
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Performance EvaluationPerformance Evaluation

Predicting Links 
for 2005 - 2007 (~ 60K):

Predicting Previously Unseen LinksPreviously Unseen Links
for 2005 - 2007(~ 32K):

AUC=0.92AUC=0.92

AUC=0.87AUC=0.87

CPCP

RANDOMRANDOM



CPCP--WOPT: WOPT: Handling Missing DataHandling Missing Data
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Missing Data ExamplesMissing Data Examples

Missing data in different disciplines due to loss
of information, machine failures, different sampling
frequencies or experimental-set ups.
• Chemometrics
• Biomedical signal processing (e.g., EEG)
• Network traffic analysis (e.g., packet drops)
• Computer vision (e.g., occlusions)
• … excitationexcitation

emissionemission

Tomasi&Bro’05
CHEMISTRY
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+…+≈≈



Modify the objective for CPModify the objective for CP

Optimization Problem
Optimization Problem

Objective Function

NO MISSING DATA
FOR HANDLING MISSING DATA



Our approach: CPOur approach: CP--WOPTWOPT

Objective Function



Objective and GradientObjective and Gradient

Objective Function

Gradient (for r = 1,…,R; i=1,…I; j=1,..J; k=1,..K )



Experimental SetExperimental Set--UpUp[Tomasi&Bro’05]

Step 1: Generate random 
component matrices A, 
B, C with R = 5 or 10 
columns each and 
collinearity set to 0.5.

Step 2: Construct tensor from 
component matrices and add noise 
( 2% homoscedastic noise)

Step 4: Use algorithm to extract R 
factors. Compare against factors in 
Step 1.

+  …= +

R

20 triplets

Step 3: Set some entries to missing
• Percentage of Missing Data: 10%, 40%, 

70%

Missing: entries, fibers



CPCP--WOPT is Accurate!WOPT is Accurate!

Generated 40 test problems (with ranks 5 and 10) and factorized with an R- 
component CP model. Each entry corresponds to the percentage of correctly 
recovered solutions.

CPNLS : Nonlinear least squares. Used INDAFAC, which implements Levenberg- 
Marquadt [Tomasi and Bro’05].
Other alternatives: ALS-based imputation (For comparisons, see Tomasi and Bro’05).



CPCP--WOPT is Fast!WOPT is Fast!

Generated 60 test problems (with M =10%, 40% and 70%) and factorized with 
an R-component CP model. Each entry corresponds to the average/std of the CP 
models, which successfully recover the underlying factors.



Summary & Future WorkSummary & Future Work

• New CPOPT method 
– Accurate & scalable

• Extend CPOPT to CP-WOPT to
handle missing data
– Accurate & scalable

• More open questions…
– Starting point?
– Tuning the optimization
– Regularization 
– Exploiting sparsity
– Nonnegativity

• Application to link prediction
– On-going work comparing to other 

methods



Thank you!Thank you!

• More on tensors and tensor models:
– Survey:

 

E. Acar and B. Yener, Unsupervised Multiway Data Analysis: A Literature 
Survey, IEEE Transactions on Knowledge and Data Engineering, 21(1): 6-20, 2009.

– CPOPT: E. Acar, T. G. Kolda and D. M. Dunlavy, An Optimization Approach for 
Fitting Canonical Tensor Decompositions, SAND2009-0857, Feb. 2009.

• Contact:
– Evrim Acar, eacarat@sandia.gov
– Tamara G. Kolda, tgkolda@sandia.gov
– Daniel M. Dunlavy, dmdunla@sandia.gov

Two Minisymposia on
Tensors and Tensor-based Computations

mailto:eacarat@sandia.gov
mailto:tgkolda@sandia.gov
mailto:dmdunla@sandia.gov

	The Canonical Tensor Decomposition�and Its Applications to Data Analysis �
	What is Canonical Tensor Decomposition?
	What is Canonical Tensor Decomposition?
	SVD vs. CP
	CP Application: Chemometrics
	CP Application: Neuroscience
	CP Application: Neuroscience
	CP has Numerous Applications!
	Algorithms: How Can We Compute CP?
	Mathematical Details for CP
	CP is a Nonlinear �Optimization Problem
	Traditional Approach: CPALS
	Traditional Approach: CPALS
	Our Approach: CPOPT
	Rewriting the Objective Function
	Derivative of 2nd Summand
	Derivative of 3rd Summand
	Objective and Gradient
	Gradient in Matrix Form
	Indeterminacies of CP
	Adding Regularization
	Our methods:�CPOPT & CPOPTR
	Another competing method:�CPNLS
	Experimental Set-Up[Tomasi&Bro’06]
	Implementation Details
	CPOPT is Fast and Accurate
	CPOPT is prone to overfactoring!
	Application: Link Prediction
	Link Prediction 
	Components make sense! 
	Components make sense! 
	Components make sense! 
	Components make sense! 
	Link Prediction Problem
	Score for <authori, confj>
	Score for <authori, confj>
	Performance Measure: AUC
	Performance Measure: AUC
	Performance Evaluation
	CP-WOPT: Handling Missing Data
	Missing Data Examples
	Modify the objective for CP
	Our approach: CP-WOPT
	Objective and Gradient
	Experimental Set-Up[Tomasi&Bro’05]
	CP-WOPT is Accurate!
	CP-WOPT is Fast!
	Summary & Future Work
	Thank you!

