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A Quick Overview of Sandia National Laboratories
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Albuquerque, New Mexico Livermore, California

Waste Isolation Pilot Plant,
Carlsbad, New Mexico

Kauai, Hawaii Pantex Plant,
Amarillo, Texas

Tonopah, Nevada



Nuclear Weapons

Design agency for
nonnuclear components

Pulsed power and radiation 
effects sciences

Warhead systems engineering 
and integration 
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 Neutron generators

 Arming, fuzing and 
firing systems

 Safety systems

 Gas transfer systems

Production agency



Ground sensors for future 
combat systems

Support for ballistic 
missile defense

Support for NASASynthetic aperture radar

Defense Systems and Assessments
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Mower 
activity

Human 
footprints



Climate

Crosscuts 
and enablers
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Energy, Climate, and Infrastructure Security

Energy Infrastructure



Homeland security programs

Homeland defense and force protectionCritical asset protection

Global security
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International, Homeland, and Nuclear Security 



Nanodevices and 
microsystems

Engineering 
sciences

Radiation effects 
and high-energy 
density science

Materials science
Computing and 
information science

Bioscience
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Science and Engineering Foundations 

Geoscience



Now back to computational simulation
What type of computing am I talking about?

Physics-based computing

 Starts with a model, often a 
PDE or conservation law

 And a physical system

 And an initial/boundary 
conditions

 Then evaluates the model 
for that system.

Information-based computing

 Starts with data

 And searches for 
meaningful patterns or 
conclusions in the data

 Models exist, but are most 
often implicit and indirectly 
evaluated.  (An analysis of 
Google FluTrends highlights 
the problems.)

8



As an example, suppose we want to know the 
response of a system in a fire…..

 Fire is one source of a thermal “insult”

 There are many types of fires, and each 
creates a different environment.

 The physics of a fire is interesting, but let’s 
take that as a boundary condition for now.
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Let’s start with thermal transport
 What are the equations

 Diffusion

 Convection

 Radiation

 What discretization should we use?

 Finite difference? Finite volume? Finite element?

 What type of element?

 What order?
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What are some of the other decisions that must 
be made?

 How do we mesh?

 Geometry cleanup

 Defeaturing

 Meshing and mesh quality

 What solvers will be used?

 Direct

 Iterative

 Preconditioned CG

 Are we ready to solve the thermal 
problem
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But we also know there are structural changes 
in thermal environments

 What new physics is introduced?

 Solid mechanics, including thermal stress

 Contact can create or eliminates thermal 
paths

 Phase change

 We also have to go back and ask the same 
questions as before

 Finite difference?, Finite volume? Finite 
element?

 What type of element?

 What order?

 And we need to think through the 
mathematics of coupling

 Implicit or explicit

 Time steps and errors

 Data transfers

12



Phase change and multiphase flow is another 
twist
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Object
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Object
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Heat 
Flux
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Liquefaction/flow

Channeling

Condensation

Channeling

Heat 
Flux



We also get pressure build-up in enclosed 
volumes resulting in fracture and failure.
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Let’s summarize the situation so far

 We are

 Simulating a system in a thermal environment

 Coupling mechanical effects due to the thermal environment

 Pushing the model to the point of system failure

 We are not

 Modeling the environment itself (fire)

 Subjecting the system to mechanical or electrical insult

 Coupling aerodynamics or fluid flow effects

 Where do we need more mathematics or computer science?

 The basic physics, discretizations and algorithms for the separate physics 
regimes at these scales is fairly well-known.

 Need mathematics for coupling, contact, multiscale modeling, solvers, etc.
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One challenge is contact.

 There are several types of contact
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One challenge is contact

 Contact can be local or non-local

 Contact algorithms have different phases 
and differ in character from FP 
calculations

 Block skinning: identify surfaces

 Search: O(NlogN) but not local in memory

 Enforcement: Iterative, augmented 
Lagrange algorithm for contact constraints

 Contact presents challenges for UQ and 
margin calculations

 Implicit contact provides pre-loads (initial 
condition for the transient response

 Mesh sensitivites and discontinuities 
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And there are several algorithmic approaches to 
contact

Node/Face  (ACME, Dash) Face/Face (Dash)

Ambiguous Cases:

?

??

Corner Contacts, Poor Corner Contacts, 
Good

Face  Coverage, 
No Support

Face 
Coverage, Good

Sharp Point 
Contact, Good

Beam and shell
Edges,  No support

Sharp Point 
Contact, Poor

Beam and shell
Edges,  OK

Ambiguous Cases:

Ntol

Ttol



The ability to model fracture and failure remains 
a research challenge

 The Sandia fracture challenge shows 
both how far we have come and how 
far we have to go
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For the specimen shown below

• What is the load-line displacement d 
and the peak force prior to crack 
initiation?

• What is the order of crack propagation 
(e.g. A-B-D-C, etc.)?

• What is the force and displacement at 
which the crack reaches the 1st line?

• What is the force (kN) and load-line 
displacement (mm) at which the crack 
reaches line E?
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Four mathematical approaches to fracture

Localization Elements

 Interface elements placed 
in mesh a priori

 3 potential crack paths 
competed against each 
other to determine most 
likely path

Peridynamics

• Elastic-plastic continuum 
material used

• Bonds broken based on 
critical stretch

• Pins modeled with finite 
elements, interact with 
peridynamics via contact

XFEM

• XFEM in Sierra is still in 
development stage. This 
is one of first applications

• Elastic-plastic continuum 
material used, no 
cohesive zone law

• Coarse elements used for 
time step and because of 
crack tangling

Element Death

• Elastic-plastic material 
with triaxial-based 
tearing parameter to 
determine failure

• Elements killed when 
failure criterion reached

• Used implicit solver with 
limited number of failed 
elements per iteration



And of course, the traditional heart of any 
simulation is the solver.  

Time to solve one linear system of equations: Ax = b

Cube Mesh Dense Skyline Sparse FETI

10x10x10 5 s 1 s 1 s 1 s 

15x15x15 100 s 6 s 3 s 2 s

20x20x20 1300 s 40 s 10 s 6 s

25x25x25 DNF 180 s 30 s 12 s

30x30x30 - - 93 s 25 s

1000x1000x1000 - - - ?
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Linear solvers dominate nonlinear implicit solution time.
We must have a scaleable technology to be able to take 
advantage of current and next generation machines 



Multilevel solvers represent a path to scalability 
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The computing itself also remains a challenge

 The state of the art in HPC computing is currently explicitly-programmed 
domain-decomposition-based parallelism.  This is about to change.

 Until now, mathematicians and engineers needed little more than a 
passing knowledge of computer architecture, including for example,

 What is MPI and message passing?

 Which algorithms scale logarithmically?

 What data structures and algorithms facilitate vectorization?

 What is a cache and what data structures and algorithms are cache friendly?

 Soon we will need to know

 Hierachical load balancing for heterogeneous computers

 Resilient algorithms

 Power management

 More complex programming models

 Asynchronous task-based parallelism

 Etc.
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We have to consider a solver’s algorithmic and 
implementation scalability.  What  size problems are 
we talking about?

Implicit Quasi-Statics Scalability

Successfully ran on 16,384 processors 
with Implicit Nonlinear and Linear 
solvers, solving

 ~100 million equations

1 Nonlinear Solve, 10 Iterations.

~1 minute per linear solve.

Scalability study identified areas of 
improvement in 3-Level FETI parallel 
iterative linear solver.

Specifically need an automatic algorithm 
for coarse grid solves.

30 Million element quasi-static implicit analysis 
requiring 1 nonlinear solve with 10 linear solves. 
Coarse grid solves are done with 32 and 64
processors.
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Dynamic and hierarchical load balancing

 We need a much more sophisticated approach to workload and 
memory management.  Example drivers for load balancing

 Hierarchical architectures  and memories

 Adaptivity

 Localized multiscale methods

 Contact

 Power management

 We have implementing a “topology” parameter

 TOPOLOGY=96 (96 cores)

 TOPOLOGY=4,2,2,6 (4 nodes,  2 sockets,  

2 dies, 6 cores)

 Topology-aware load balancing has resulted in

a 60% speedup in one (simple) example

Official Use Only

http://frankdenneman.nl/2011/01/amd-magny-cours-and-esx/

…



 Exascale systems will be less reliable, and codes 
will be expected to take more responsibility

 Exception handling/detect and fail

 Checkpoint/restart

 Redundant calculations

 Asynchrony

 Fault-tolerant algorithms

 Selective reliability enables new solvers

 System exposes reliability tradeoffs

 Algorithm identifies what must be reliable

 Fault-tolerant GMRES

 Inner solver “preconditions” outer solver

 Inner solver runs unreliably, outer solver reliably

 Reuse any existing solver stack as “inner solver”

 Most time spent in cheap unreliable mode

 Faults only delay convergence; don’t prevent it

 Standard restarting GMRES (simpler approach) is 
not sufficient.

FT-GMRES: Convergence decay proportional 
to number of soft faults.

Standard Restarted GMRES

FT-GMRES

Classic Non-restarted GMRES

Resilience and Fault Tolerance
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Embedded UQ

 Current methods are sample based and use capacity computing

 Embedding leads to

 Better accuracy

 Overall more efficient than ensembles

 Reordering allows more parallelism and use of threads

 Can be coupled with traditional sample-based methods

 Steady-state stochastic problem (for simplicity):

 Stochastic Galerkin method (Ghanem and many, many others…):

 Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

Official Use Only

Stochastic sparsity Spatial sparsity



The computational advantage of moving UQ 
calculation to the inner loop (GFLOPS – Intel 
Westmere)
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 Standard 3-D first-order FEM grid (5x5x5)
 Small FEM size due to limited GPU memory, large usage by block and CRS 

approaches

 N = polynomial order (larger N, denser blocks)
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And finally, there are a few potentially 
revolutionary advances

 Optimization and design

 Asking a different set of questions

 Predictive simulations  

 Coupled scales

 reduced-order models and surrogates

 Full life cycle (cradle-to-grave) engineering

 Environmental specification for design

 Design

 Qualification and testing

 Manufacturing and infrastructure

 Surveillance  and maintenance

 Decommissioning 

Official Use Only



Long pause ------- deep breath

We know the physics and the 
algorithms.  And we have a machine 
to run on.  But is it correct?
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To answer that question is a long process

 Software verification and testing

 Solution verification

 Uncertainty quantification, sensitivities, error estimations and quantified 
margins

 Validation, including experiments and simulations
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 Objective: Assess predictions of the minimum penetration velocity using 
Sierra/SM w/tearing parameter as the failure criterion by comparing to test data.

 More questions: Typically, we can only afford to use a ‘coarse’ mesh when many 
function evaluations are involved! Are these models still valuable? Why do we 
believe in them? What error do they carry with them?

V&V process and methods were tested in a recent L2 milestone.

Coarse Mesh
9.5 hrs/4 proc

Fine Mesh
82.5 hrs/48 proc

OUO: ECI/ITAR



The Milestone included verification activities.

 Credibility Assessments:

 Code/Solution Verification:

Phenomena
Consensus Adequacy
Importance Math 

Model
Sierra/S
M Code

Validati
on

Large elastic-plastic 
deformation of metals

H H M M

Ductile material failure H M M L

Contact H H M M

Friction between 
punch and test item

M M M L

Enforcement of 
boundary conditions

L H H L

Inertial loads H H H M

94% one-way coverage
59% two-way coverage

Evaluate mesh 
convergence rates 
before convergent 
behavior degrades

OUO: ECI/ITAR



It also included validation activities.

Neyer Testing: 19 samples

Probability of failure

Experimental Uncertainties

– Bungee force

– Friction (punch and plate/tube)

– Velocity measurement

– Material variability-> 
characterization process

Numerical Uncertainties

– Discretization Error

– Algorithmic parameters

Sensitivity analysis 
helped identify important 
factors  reduce scope

Margin to 
Unc. metric

Validation metrics

OUO: ECI/ITAR



Summary

 Computational simulation may not replace experiment, but it has 
fundamentally changed the way we approach engineering.

 It has the potential to revolutionize engineering

 Mathematics and computer science (whether taught in traditional 
Mathematics and C.S. departments or taught in engineering programs) 
are critical to the success of computational simulation.

 We have moved well beyond the physical regimes in which engineering 
intuition is sufficient.

 The complexity of the problem (physics, engineered systems, algorithms, 
code, architectures) required an integrated multidisciplinary approach
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