

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Why We Care

Conclusions

More Connections Are Not Always Better Braess-like Paradoxes on a Bipartite Transaction Network

RANDALL LAVIOLETTE and VITUS LEUNG
Sandia National Laboratories, NM

INFORMS 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Naive Exchange Model

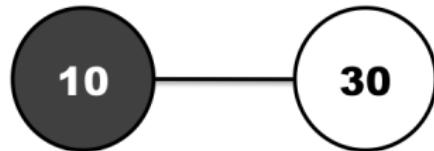
Budget-Constrained Bilateral Exchange of One Good with Unit Price¹

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

Bilateral
Exchange


Statement of the
Problem

How to
Connect For
Success?

Why We Care

Conclusions

- **Bilateral exchange must occur if feasible**

¹e.g., "Emergence of Price Divergence in a Model Short-Term Electric Power Market." LaViolette, Ellebracht, Stamber, Gieseler & Cook. <http://arxiv.org/abs/0905.2366>.

Naive Exchange Model

Budget-Constrained Bilateral Exchange of One Good with Unit Price¹

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

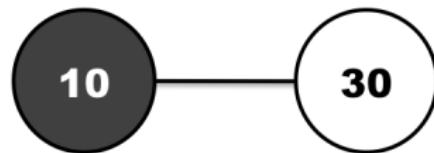
Bilateral
Exchange

Statement of the
Problem

How to
Connect For
Success?

Why We Care

Conclusions


- Bilateral exchange must occur if feasible
 - Buyer has finite demand

¹e.g., "Emergence of Price Divergence in a Model Short-Term Electric Power Market." LaViolette, Ellebracht, Stamber, Gieseler & Cook. <http://arxiv.org/abs/0905.2366>.

- Bilateral exchange must occur if feasible
 - Buyer has finite demand
 - Seller has finite supply

¹e.g., "Emergence of Price Divergence in a Model Short-Term Electric Power Market." LaViolette, Ellebracht, Stamber, Giesealer & Cook. <http://arxiv.org/abs/0905.2366>.

Naive Exchange Model

Budget-Constrained Bilateral Exchange of One Good with Unit Price¹

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

Bilateral
Exchange

Statement of the
Problem

How to
Connect For
Success?

Why We Care

Conclusions

- Bilateral exchange must occur if feasible
 - Buyer has finite demand
 - Seller has finite supply
 - **There is a link between them**

¹e.g., "Emergence of Price Divergence in a Model Short-Term Electric Power Market." LaViolette, Ellebracht, Stamber, Gieseler & Cook. <http://arxiv.org/abs/0905.2366>.

Naive Exchange Model

Budget-Constrained Bilateral Exchange of One Good with Unit Price¹

More
Connections
Are Not
Always Better

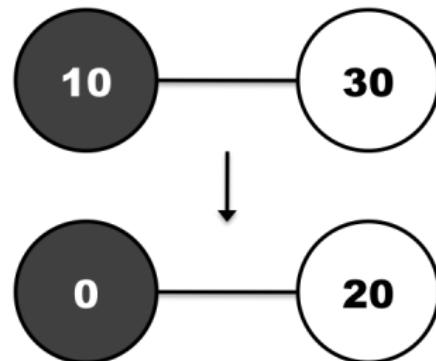
Sandia
National
Laboratories

Naive
Exchange
Model

Bilateral
Exchange

Statement of the
Problem

How to
Connect For
Success?


Why We Care

Conclusions

- Bilateral exchange must occur if feasible

- Buyer has finite demand
- Seller has finite supply
- There is a link between them

- Maximum possible exchange must occur

¹ e.g., "Emergence of Price Divergence in a Model Short-Term Electric Power Market." LaViolette, Ellebracht, Stamber, Gieseler & Cook. <http://arxiv.org/abs/0905.2366>.

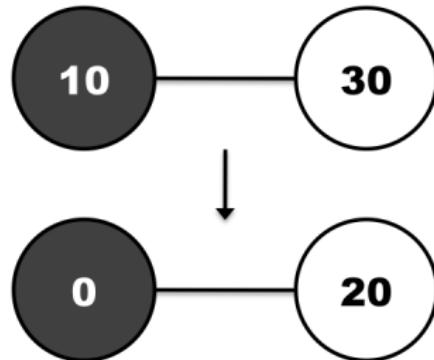
Naive Exchange Model

Budget-Constrained Bilateral Exchange of One Good with Unit Price¹

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model


Bilateral
Exchange

Statement of the
Problem

How to
Connect For
Success?

Why We Care
Conclusions

- Bilateral exchange must occur if feasible
 - Buyer has finite demand
 - Seller has finite supply
 - There is a link between them
- Maximum possible exchange must occur
 - No holding back

¹e.g., "Emergence of Price Divergence in a Model Short-Term Electric Power Market." LaViolette, Ellebracht, Stamber, Gieseler & Cook. <http://arxiv.org/abs/0905.2366>.

Naive Exchange Model

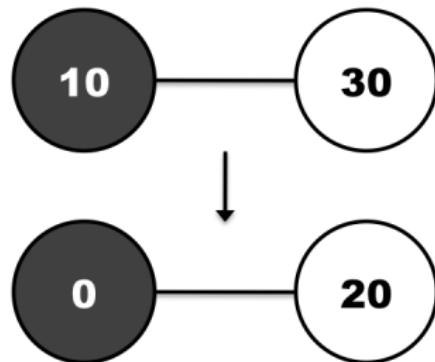
Budget-Constrained Bilateral Exchange of One Good with Unit Price¹

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

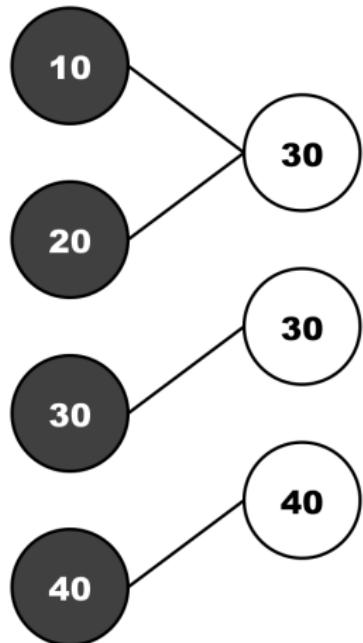
Bilateral
Exchange


Statement of the
Problem

How to
Connect For
Success?

Why We Care

Conclusions


- Bilateral exchange must occur if feasible
 - Buyer has finite demand
 - Seller has finite supply
 - There is a link between them
- Maximum possible exchange must occur
 - No holding back
 - **No further exchange**

¹e.g., "Emergence of Price Divergence in a Model Short-Term Electric Power Market." LaViolette, Ellebracht, Stamber, Gieseler & Cook. <http://arxiv.org/abs/0905.2366>.

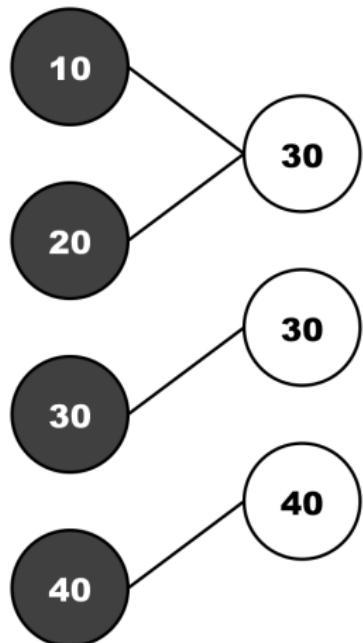
Naive Exchange Model

Statement of the Problem for Asynchronous Exchange on a Bipartite Graph

- Example of transactions on a multicomponent bipartite graph (buyers: gray, sellers: white)

More
Connections
Are Not
Always Better

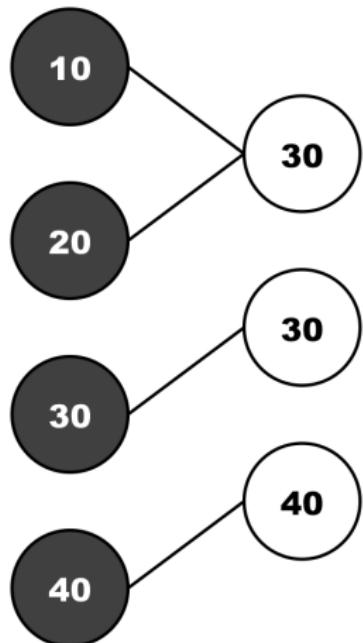
Sandia
National
Laboratories


Naive
Exchange
Model
Bilateral
Exchange
Statement of the
Problem

How to
Connect For
Success?

Why We Care
Conclusions

Naive Exchange Model


Statement of the Problem for Asynchronous Exchange on a Bipartite Graph

- Example of transactions on a multicomponent bipartite graph (buyers: gray, sellers: white)
- In this example, all demands can be met regardless of the order in which transactions occur

Naive Exchange Model

Statement of the Problem for Asynchronous Exchange on a Bipartite Graph

- Example of transactions on a multicomponent bipartite graph (buyers: gray, sellers: white)
- In this example, all demands can be met regardless of the order in which transactions occur
- **What is necessary and sufficient for that to be true?**

How to Connect For Success?

Necessary and Sufficient Conditions

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

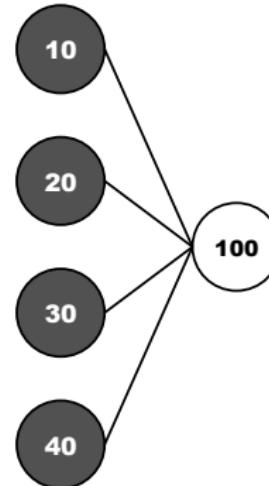
Example:
Starvation on an
incomplete
component

Enumeration
Worst Case
Reserves

Why We Care

Conclusions

Definition


A trading session on the graph consists of one of the (up to $L!$) possible sequences of all possible trades on the graph of L links.

Theorem

Given that supply equals demand, the demands are reduced to zero at the end of every trading session iff each component (for which, within that component, supply equals demand) is complete bipartite.

How to Connect For Success?

Example: Star graph (local monopoly) always works

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

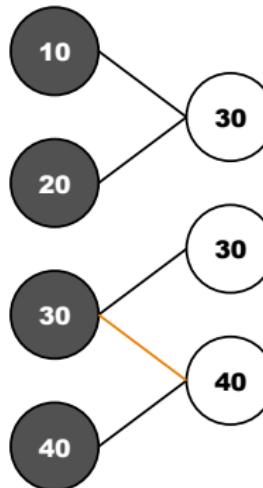
Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component


Enumeration
Worst Case
Reserves

Why We Care

Conclusions

How to Connect For Success?

Example: Starvation on an incomplete component

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component

Enumeration
Worst Case
Reserves

Why We Care

Conclusions

How to Connect For Success?

Example: Starvation on an incomplete component

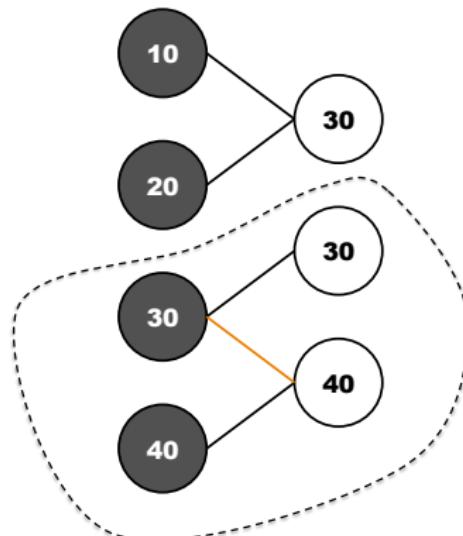
More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

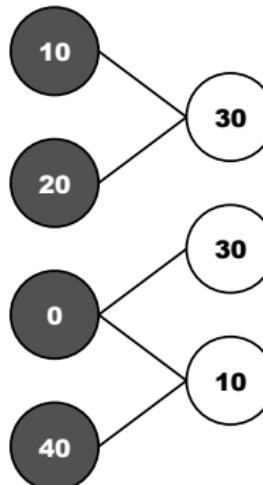
How to
Connect For
Success?

Necessary and
Sufficient
Conditions


Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component

Enumeration
Worst Case
Reserves


Why We Care

Conclusions

How to Connect For Success?

Example: Starvation on an incomplete component

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

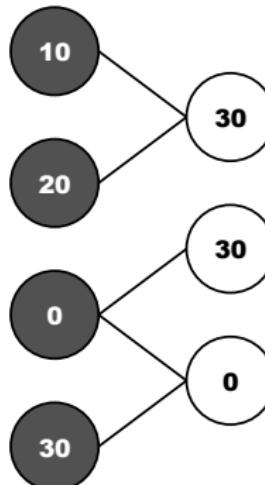
Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component


Enumeration
Worst Case
Reserves

Why We Care

Conclusions

How to Connect For Success?

Example: Starvation on an incomplete component

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

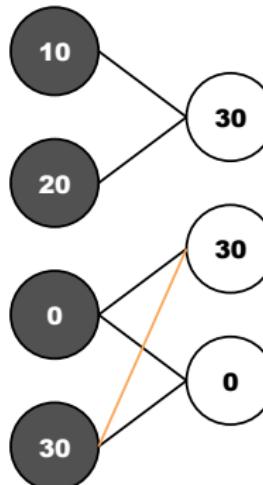
Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component


Enumeration
Worst Case
Reserves

Why We Care

Conclusions

How to Connect For Success?

Example: Starvation on an incomplete component

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component

Enumeration
Worst Case
Reserves

Why We Care

Conclusions

How to Connect For Success?

Enumeration

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

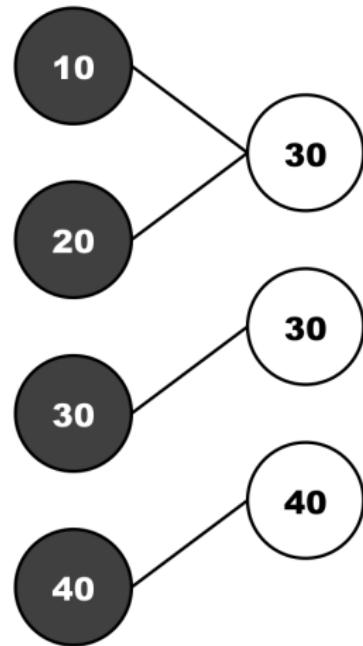
Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component


Enumeration

Worst Case
Reserves

Why We Care

Conclusions

- Begin with the minimally connected example (four links) and add all possible links one at a time

How to Connect For Success?

Enumeration

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

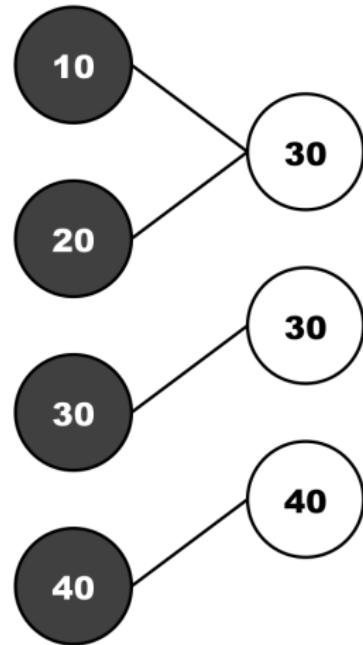
Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component


Enumeration

Worst Case
Reserves

Why We Care

Conclusions

- Begin with the minimally connected example (four links) and add all possible links one at a time
- Record the fraction of trading sessions that do NOT meet demand ("infeasible")

How to Connect For Success?

Enumeration

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

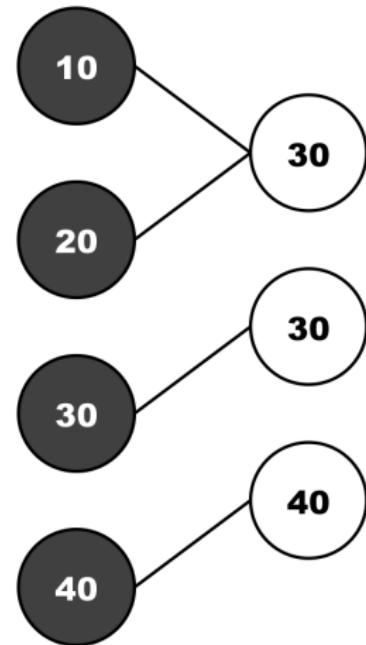
Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component


Enumeration

Worst Case
Reserves

Why We Care

Conclusions

- Begin with the minimally connected example (four links) and add all possible links one at a time
- Record the fraction of trading sessions that do NOT meet demand ("infeasible")
- **Also record the maximum demand left unmet after each trading session**

How to Connect For Success?

Enumeration

More
Connections
Are Not
Always Better

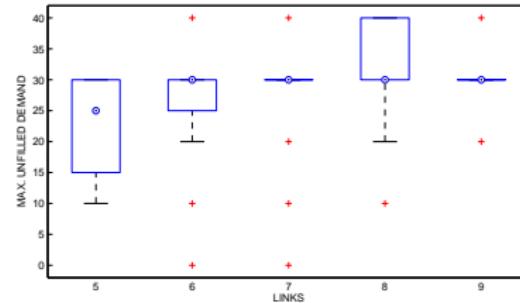
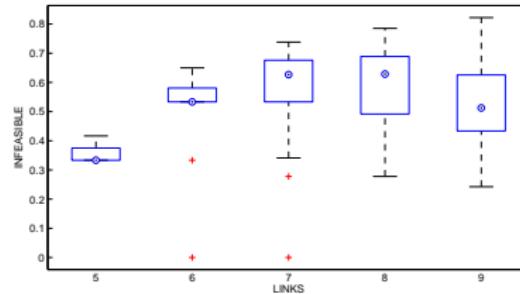
Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works



Example:
Starvation on an
incomplete
component

Enumeration

Worst Case
Reserves

Why We Care

Conclusions

How to Connect For Success?

What Reserves Would Be Needed to Meet Demand?

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

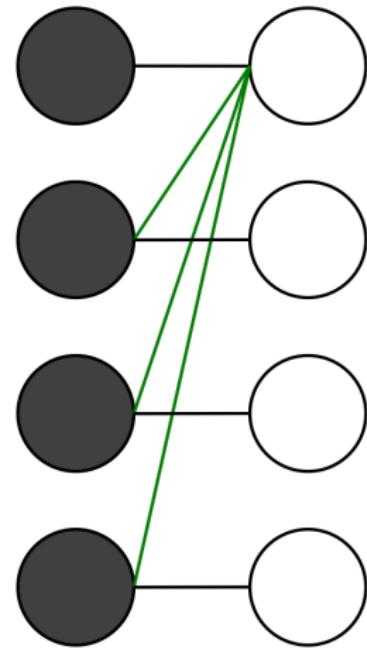
Naive
Exchange
Model

How to
Connect For
Success?

Necessary and
Sufficient
Conditions

Example: Star
graph (local
monopoly)
always works

Example:
Starvation on an
incomplete
component
Enumeration


Worst Case
Reserves

Why We Care

Conclusions

Lower Bound

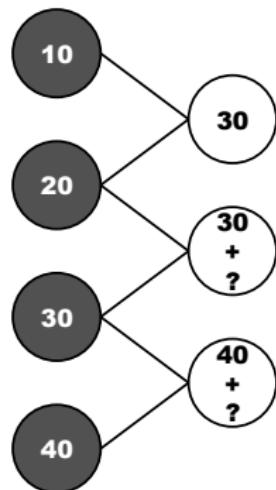
The reserves that would be required by sellers in order to meet demand in the worst case has a lower bound that is proportional to the number of buyers.

Why We Care

Tomorrow's "Smart Grid"

More
Connections
Are Not
Always Better

Sandia
National
Laboratories


Naive
Exchange
Model

How to
Connect For
Success?

Why We Care
Tomorrow's
"Smart Grid"

Conclusions

- “Smart Grid” has the potential to turn 5×10^7 households into market points (from 200 now)^a

^a “A Smart Grid is a Transactive Grid.” Kieseling.
[http://knowledgeproblem.com/2009/03/03/
a-smart-grid-is-a-transactive-grid-part-2-of-5/](http://knowledgeproblem.com/2009/03/03/a-smart-grid-is-a-transactive-grid-part-2-of-5/)

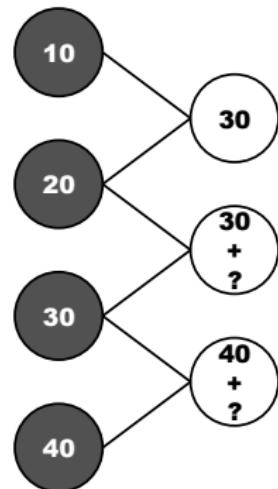
Why We Care

Tomorrow's "Smart Grid"

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model


How to
Connect For
Success?

Why We Care

Tomorrow's
"Smart Grid"

Conclusions

- "Smart Grid" has the potential to turn 5×10^7 households into market points (from 200 now)^a
- Savings are supposed to result from lower reserve requirements

^a "A Smart Grid is a Transactive Grid." Kieseling.
[http://knowledgeproblem.com/2009/03/03/
a-smart-grid-is-a-transactive-grid-part-2-of-5/](http://knowledgeproblem.com/2009/03/03/a-smart-grid-is-a-transactive-grid-part-2-of-5/)

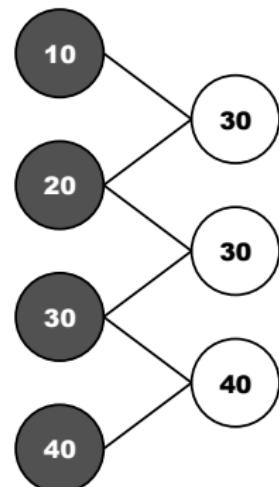
Why We Care

Tomorrow's "Smart Grid"

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model


How to
Connect For
Success?

Why We Care

Tomorrow's
"Smart Grid"

Conclusions

- "Smart Grid" has the potential to turn 5×10^7 households into market points (from 200 now)^a
- Savings are supposed to result from lower reserve requirements
- Meeting demand with lower reserves may be more difficult than advertised

Conclusions

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Why We Care

Conclusions

- Proved necessary and sufficient topological conditions for naive model (asynchronous bilateral unit-price) transactions to satisfy demand on a bipartite graph

Conclusions

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Why We Care

Conclusions

- Proved necessary and sufficient topological conditions for naive model (asynchronous bilateral unit-price) transactions to satisfy demand on a bipartite graph
 - Star-graph/local-monopoly always works for this model

Conclusions

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Why We Care

Conclusions

- Proved necessary and sufficient topological conditions for naive model (asynchronous bilateral unit-price) transactions to satisfy demand on a bipartite graph
 - Star-graph/local-monopoly always works for this model
 - **Otherwise maintaining complete components may be challenging**

Conclusions

More
Connections
Are Not
Always Better

Sandia
National
Laboratories

Naive
Exchange
Model

How to
Connect For
Success?

Why We Care

Conclusions

- Proved necessary and sufficient topological conditions for naive model (asynchronous bilateral unit-price) transactions to satisfy demand on a bipartite graph
 - Star-graph/local-monopoly always works for this model
 - Otherwise maintaining complete components may be challenging
- Enumeration and Lower Bounds show that reserve requirements (or unmet demand) could be large if these conditions were not satisfied