

Characterization of Intrusion Detection System Performance using Design of Experiments

Kim W. Mitchiner, Mark Snell, Frank Griffin
Sandia National Laboratories
Albuquerque, NM

INMM Conference
Tucson, AZ
July 8 - 12, 2007

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Why Alternative Test and Evaluation Processes?

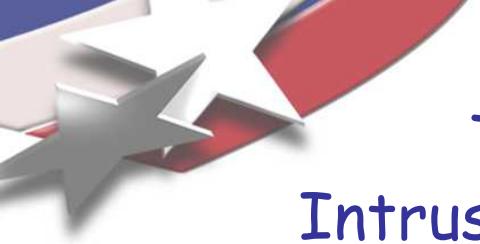
- Generic needs for Test and Evaluation
 - Deliver data in a cost-effective, timely manner
 - Provide data that are predictive and reusable
 - Ensure traceability of experimental variables and data
 - Document system's performance under simultaneously varying conditions
 - Store data in good data-management systems
 - Provide the basis for alternative, formal testing protocols
- Design of Experiments
 - Addresses each of these bullets

Conventional Test and Evaluation Methods

- 30 detections / 30 tests
 - Uses binomial tables to determine probability of sensing at a given confidence level
 - Problems:
 - Pass / Fail test
 - Manpower intensive
 - Does not evaluate interactions among variables
 - Environmental factors and weather conditions are not included as test variables
- One-variable-at-a-time experiment
 - Used to determine the effects of specific variables on the measured response while holding all other variables constant.
 - Problems:
 - Does not consider the interactions between the variables
 - Impractical to perform enough tests to cover the entire set of operating conditions
 - For example, 108 experiments with no repetitions are required to evaluate 4 variables with 3 values each

Overview of Design of Experiments

- Statistical testing methodology
 - **Uses** all of the factors considered to influence the measured performance response
 - **Generates** randomized test matrix of unique experiments as a function of the factors
 - **Measures** response as a function of the interaction of all of the factors
 - **Varies** multiple factors in the matrix simultaneously for each unique experiment
- Statistical, model-based evaluation methodology
 - **Uses** statistical methods, such as "regression analysis," to
 - Generate an equation for the performance response as a function of the experimental test factors
 - Identify the significant factors influencing system performance
 - Create a model for predicting responses under different operating conditions



Test and Evaluation of a Radar Intrusion Detection System

- Problem:
 - Determine the viability of an extended-detection radar technology for intrusion detection
 - Assess the impact of degradation factors, such as terrain and environment
- Approach:
 - Conduct 30/30 tests based on target and radar factors only
 - Conduct DOEx experiments based on target, radar, and degradation-factor interactions
- Consideration:
 - Key to any successful DOEx test is the selection of an all-inclusive set of the right factors to test
- Measured Response:
 - Sensing Distance from radar at first detection in meters

Table of Factors and Values

Factor	Low Value	High Value
Vegetation Height (in)	12	48
Number of Targets	1	2
Starting distance from radar (m)	1200	1400
Speed of Target(s) (m/sec)	1	3
Installation Height of Radar above ground (ft)	4	15
Antenna Tilt (deg)	0	30
Scan Angle (deg)	60	180

Test and Evaluation of the Radar Intrusion Detection System (30/30 tests)

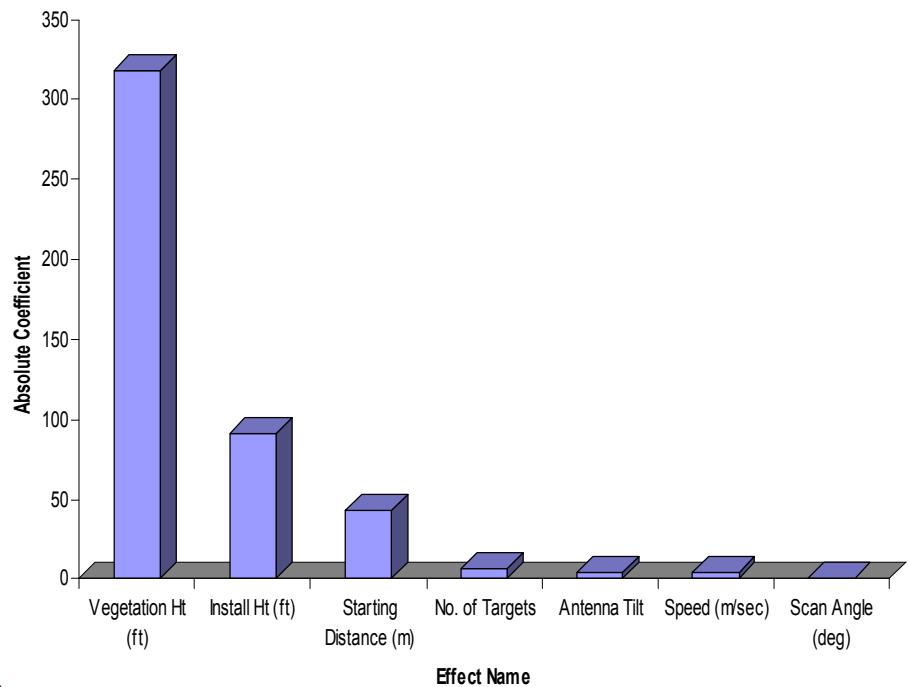
Results

- 5 probability of sensing values based on 150 Pass/Fail tests
- Tests - pros:
 - Provided data set that the customer expected
 - Repeatable under similar conditions
 - Required minimal setup time
- Tests - cons:
 - Manpower intensive
 - Did not take into account vegetation height, terrain, etc.
 - Speculation is required to determine performance under a different set of conditions
 - Test variables were limited to one condition at a time

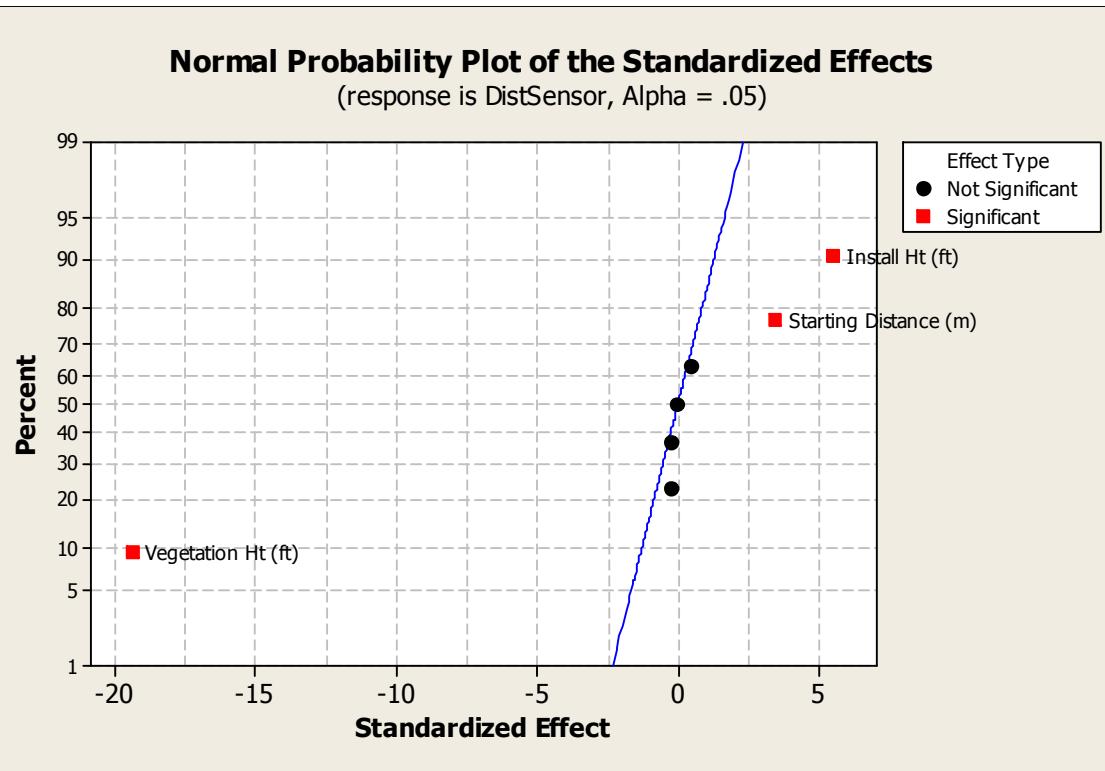
Starting Distance	Average Sense Range from System	Average Distance Traveled	Standard Deviation	Alarms/Tests	Ps @ 95% Confidence
Hands-and-Knees Radial Crawler (Speed = 0.3 m/s)					
498 m	487 m	11 m	6.3 m	30/30	0.90
Radial Walker (Speed = 1.0 m/s)					
1008 m	996 m	12 m	2.2 m	30/30	0.90
Tangential Walker (Speed = 1.0 m/s)					
1000 m	1000 m	47.4 m	23.4 m	28/30	0.80
Radial Pickup Truck (Speed = 15 mph)					
1405 m	1243 m	162 m	32.8 m	27/30	0.76
Radial Small Vehicle (Speed = 15 mph)					
1405 m	1361 m	44 m	9.7 m	30/30	0.90

DOEx Test Matrix and Results for Upright Walker Target

Run	Variables							Distance from Radar			Results	
	Vegetation Ht (ft)	No. of Targets	Starting Distance (m)	Speed (m/sec)	Install Ht (ft)	Antenna Tilt	Scan Angle (deg)	Y1	Y2	Y3	Y avg	S avg
1	12	1	1200	3	15	3	60	1166.3	1169.6	1081.2	1139	50
2	12	1	1400	3	4	0	180	1358.1	1344.2	1356.2	1353	8
3	12	1	1200	1	4	0	60	1190.8	1192.3	1155.9	1180	21
4	48	1	1200	1	4	3	180	437.6	407.7	392.7	413	23
5	48	2	1200	3	4	0	60	434.1	472.9	464.7	457	20
6	48	2	1400	3	15	3	180	831.8	771.1	848.4	817	41
7	12	1	1400	1	15	3	180	1389.6	1383.6	1383.6	1386	3
8	48	1	1200	3	15	0	180	1158.9	1166.6	1168.2	1165	5
9	12	2	1400	3	15	0	60	1363.7	1380.3	1380.4	1375	10
10	48	1	1400	3	4	3	60	478.5	463.4	479.2	474	9
11	48	2	1200	1	15	3	60	1183.6	1184.9	1183.4	1184	1
12	12	2	1400	1	4	3	60	1386.6	1386.6	1383.5	1386	2
13	48	2	1400	1	4	0	180	478.4	486.8	477.3	481	5
14	12	2	1200	3	4	3	180	1151.2	1166.4	1192.1	1170	21
15	48	1	1400	1	15	0	60	1378.1	1381.1	1381.3	1380	2
16	12	2	1200	1	15	0	180	1187.9	1198.5	1193.9	1193	5

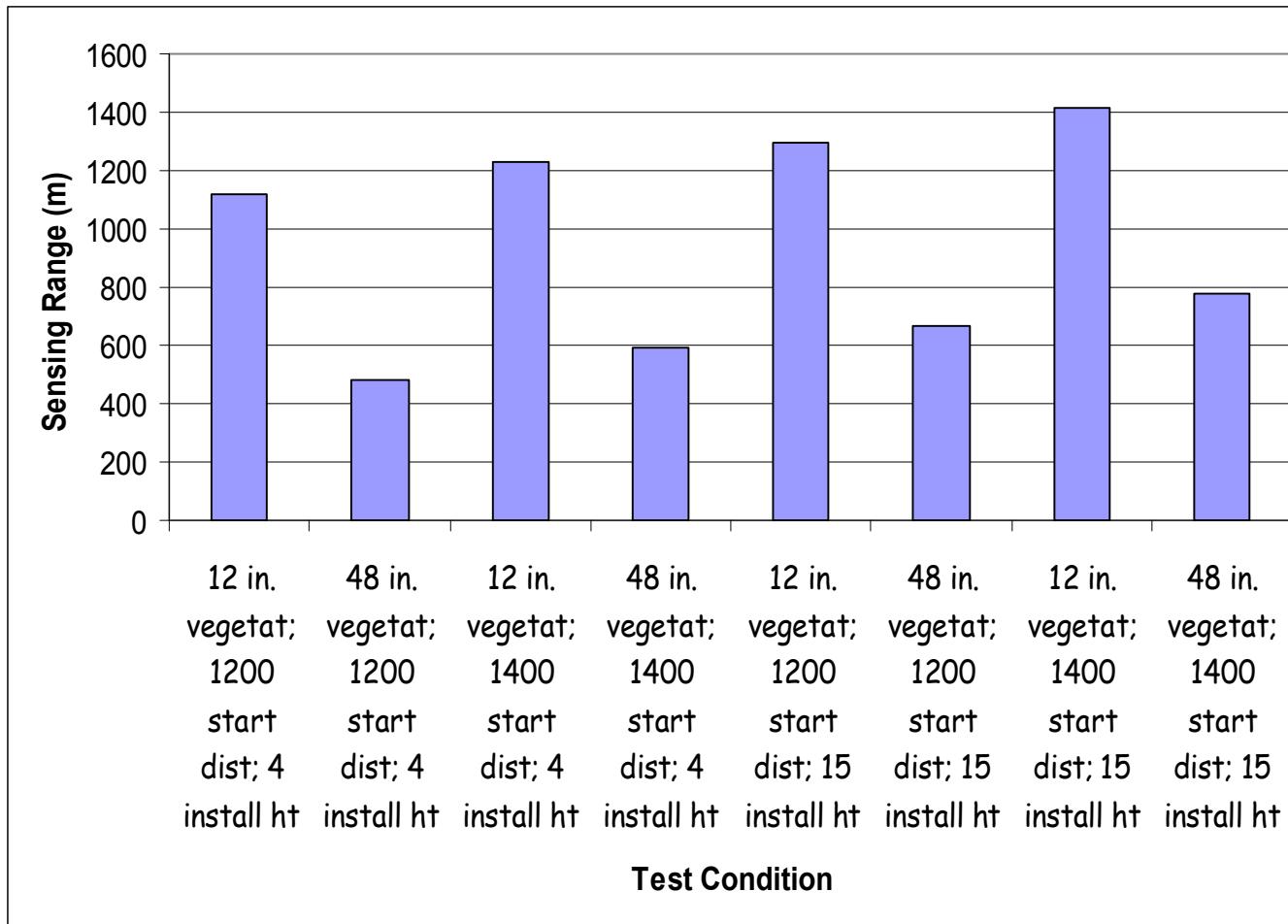

- 16 unique experiments were generated for the 7 factors identified
 - DOEx screening experiment (fractional factorial)
 - Only main effects are considered
- Each experiment was repeated three times
- The averages were used as input into the statistical regression analysis

DOEx Screening Analysis Results for the Radar System


- DOEx Screening Analysis provided data on the main significant effects and some limited data on interactions
 - Indication that Vegetation Ht X Install Ht could be significant
- Significant Main Factors:
 - Vegetation Height (in)
 - Installation Height (ft)
 - Starting Distance (m)
- Regression Equation:

Detection Distance (m) = $588.73 - 17.67 \times \text{Vegetation Ht}$
+ $16.46 \times \text{Installation Ht} + 0.56 \times \text{Starting Distance}$

Pareto Chart of Degree of Factor Significance


Comparison of Factors based on Normal Probability

The greater the distance from the line, the larger the influence

Sensing / Detection Distance (m) for Upright Walker Target

- Vegetation Height was the predominant discriminator for sensing distance
- Starting distance and installation height had relatively smaller effect

Summary of DOEx and 30/30 Results for the Upright Walker Target

- 30/30 Tests
 - For each set of tests, only one condition was tested
 - Crawler (1 m/sec)
 - Walker (either radial or tangential) (3 m/sec)
 - Vehicle (large or small) (15 mph)
 - 150 tests were required to generate 5 probability of sensing values
 - Possible to extrapolate, if all of the variables (terrain, target, speed, radar) are held constant:
 - Approximate time required for the intruder to reach the sensor
 - Approximate point of first detection
- DOEx Tests
 - Evaluated 7 factors simultaneously in 16 unique experiments (repeated three times (48) for the walker/crawler only)
 - Provided a "predictive equation" for sensing distance at first detection
 - Enables the experimenter to evaluate conditions and locations not tested
 - Generates data with a given statistical accuracy
 - Probabilities of sensing can be calculated for a wide range of conditions
 - Provides data on
 - Sensitivity of sensing to variations in conditions/factors
 - Approximate points of first detection for several conditions
 - Approximate times for the intruder to reach the sensor

Test and Evaluation of the Radar Intrusion Detection System -Summary-

- Pros for DOEx
 - Fewer overall tests could be performed than for 30/30 tests, and an unlimited number of 0.90 P_s range values could potentially be provided under varying "tested" conditions using predictive model
 - Predictive model could be used to generate a theoretical detection envelope
 - Although test results were expected (most vs. least significant variables), the predictive model would help the SME or analyst to determine expected performance values of a system under untested, site-specific conditions
- Cons for DOEx
 - Very hard to find many of the test variable conditions at a site; just because they exist does not necessarily mean they exist together
 - System configuration changes may not save man hours in long run vs. 30/30 tests
 - Variable combinations need to be thoroughly evaluated and thought out
 - For example, performing a high-speed belly crawl at night in tall vegetation with undulating terrain does not make sense

Conclusion

"Customers are beginning to require more rigorous T&E methodologies"

Design of Experiments:

- Provides **early input** into the characterization of systems
- Provides **insight** into the performance of systems
- Optimizes and **minimizes** the number of **tests** required
- Can include **defeat and degradation conditions** as varying factors
- **Maximizes** information per observation
- Can be **cost effective** over the long term (as we get smarter!)