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Abstract

Accurate failure prediction in conjunction with efficient
process migration facilities can enable failure avoidance in
large-scale high performance computing (HPC) platforms.
In this work we demonstrate a proof of concept system
that incorporates our probabilistic failure prediction system
with virtualization mechanisms and techniques to provide a
whole system approach to failure avoidance. This work uti-
lizes a failure scenario based on a real-world HPC case
study.

1 Introduction

Infrastructure As A Service (IAAS) relies heavily on
virtualization technologies and redundancy to provide re-
liable customized compute environments tailored to a spe-
cific customer needs. While these environments may be
well suited to software development work, web hosting, and
even a host of embarrasingly parallel types of calculations
that have traditionally been run on high performance com-
pute platforms, the current interconnects and individual re-
source reliability in these environments are such that they
don’t lend themselves to the kind of tightly coupled MPI
applications that typify todays large scale scientific applica-
tions currently being run on HPC platforms that are specif-
ically designed for their requirements (high reliability, fast
processors, high bandwidth low latency interconnects, etc.).

High performance compute platforms, though they are
tailored as described above to the requirements of large
scale scientific applications, are becoming increasingly less
efficient due to the large number of components. The prob-
lem is that no matter how reliable the individual compo-
nents may be, the reliability of a pool of such resources

taken as an aggregate can become arbitrarily low as the
number in the pool becomes large. This decrease in reliabil-
ity drives an increase in checkpoint frequency and efficiency
goes down correspondingly as time spent in checkpointing
doesn’t contribute to the solution.

It is well understood that further scaling of platforms (be-
yond peta-scale) will require mechanisms to deal with the
short mean time to failures expected over such large pools
of resources [4]. While there are efforts under way to build
more fault tolerant applications [19] there is significant in-
vestment in current MPI based applications which will still
be required to run at significant scale on platforms for the
forseeable future and hence be affected by these issues. To
date most application related fault tolerance work has been
in the form of more efficient checkpoint/restart schemes
which has in some cases significantly increased application
throughput [9]. The work presented here is based on the
premise that if a failure can be predicted with enough lead
time, the affected resources could be removed and replaced
with good ones and the application would hence not require
speculative checkpointing but could rather checkpoint when
flagged to do so by the predicting system . In this work we
explore the use of Cloud constructs (IAAS and virtualiza-
tion) in conjunction with resource failure prediction to facil-
itate migration of tradtional MPI based processes from fail-
ing to healthy resources without checkpoint/restart. Though
checkpoint/restart could still be used, a reliable failure pre-
diction and migration combination should be able to signif-
icantly reduce the need for and wasted time due to check-
point/restart.

The reason for utilizing these constructs is that the vir-
tual machine provides a nice process state container that can
be appropriately placed within the pool of real resources
transparently to the application. While there is still over-
head associated with the use of virtualized resources, it has
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been greatly reduced through hardware support and there
is promise of further reduction in the future. With suffi-
ciently reliable failure prediction mechanisms driving mi-
gration, the overhead of virtualization has only to be less
than that of the checkpointing mechanisms for this to be vi-
able as a failure avoidance mechanism.

In this work we demonstrate use of a proof of concept
system for migrating running MPI processes from a node
for which failure is predicted to a known good resource in-
cluding methodologies, constraints, and scaling concerns.
Our failure scenario is based on previous work in which we
identified precursor behavior for one of our production sys-
tem’s main failure modes (OOM) [3]. In particular we uti-
lize automated detection of such behavior to trigger migra-
tion of all MPI processes off a resource identified as likely
to fail in a way that is transparent to the application.

This paper is divided as follows: This section gave an in-
troduction, background, and motivation for this work, Sec-
tion 2 discusses related work, Section 3 discusses our ap-
proaches and methodologies, Section 4 covers experimental
configuration and outcomes, and Sections 5 contains sum-
mary and conclusions.

2 Related Work

In this section we cover in sections work related to the
specific components of our system and then similar system
approaches.

2.1 Failure Prediction

While there have been many papers about how reliable
failure pedictors could enhance the resilience of large scale
high performance compute (HPC) platforms, most of this
work has been in the area of trying to model failure trends
for use in checkpoint frequency calculations (e.g., [4, 7,
12]). Schroeder has done significant work on looking at
disk failure trends and predictors [13] as well as those for
DRAM [14]. There are also several bodies of work on using
system log files (e.g., [11, 15]) to find predictors though
these have been more successful in helping to identify

2.2 Checkpoint Restart Strategies

Though the work in this area may not be directly applica-
ble to any of the system components discussed in this paper
this is certainly complementary work and until such time as
accurate and effective prediction strategies are discovered
this will probably continue to be the main fault tolerance
mechanism for some time. There are numerous methods
(e.g. [9, 5]) for more efficient checkpointing using system
memory to store the checkpoint state. Though this is fine
for some applications it requires the running application to

have a substantially smaller footprint as checkpoint state
can require significant memory resources. Oliner et. al. [10]
take an interesting and related approach as they allow the
system to work in cooperation with the application to take
checkpoints at convenient places in the execution and de-
pendent on the systems view of the likelihood of failure.
This methodology can benefit from good resource health
metrics but in the absence of these degrades to checkpoint-
ing at places of convenience for the application. This is
similar to our system in which the failure prediction system
advises the application that it should migrate and prepares a
resource and container for the migration but lets the appli-
cation initiate the actual migration.

2.3 Virtualization Overhead and Migra-
tion Strategies in HPC Applications

There are a host of papers on this subject (e.g., [17, 18,
16]) as transparent targeted process migration is very ap-
pealing given the alternative of saving all state and per-
forming application restarts. The overhead numbers seem
to range from 60% [6] to actually achieving a speedup [8].
Concensus seems to be, however, that virtualization tech-
nology and the process mobility it provides is or will be
viable for HPC applications in the near future. The compo-
nent that seems to be lacking in most, if not all, of this work
is the accurate and effective prediction component.

2.4 Complete System

Nagarajan et. al. [8] take a systems approach to this
and even incorporate a ”proactive fault tolerance daemon”
which does health monitoring, load balancing and decision
making for virtual machine (VM) migration. The piece that
is missing in this work is viable health metrics beyond the
known thresholds which suffer from the problem of typi-
cally having to be set so high that by the time they are
crossed it is too late to react and if they are set low enough to
allow reaction time there can be significant numbers of false
positives which can result in unnecessary moves and asso-
ciated overhead. The significant differences between this
work and our own is our probabilistic approach to health
monitoring and our system for notifying a MPI process of
the desirability for migration but then allowing it to request
a migration when it reaches an MPI barrier. This requires
re-linking of the application code with our wrapper code.
The Charm++ project [19] is a programming language ap-
proach that supports object migration for both load balanc-
ing and fault tolernace.



3 Approaches and Methodologies

There has been work, as described above, on many as-
pects of this problem from failure prediction, to migration.
Our work in this area demonstrates a full system approach
which integrates these pieces together. To do this we needed
to add some functionality to the resource manager to in-
corporate knowledge of both physical and virtual resources
and which applications are running where. We also built
a Controller to interact with the failure prediction system
(OVIS [1, 2]), the Resource Manager, the virtual resource
controller (not shown here), and the applications in order to
orchestrate migration of KVMs based on failure prediction.
Additionally we wrote an MPI Barrier wrapper to interact
with the Controller in order to initiate migration at an ap-
propriate time for the MPI applications so as not to lose in
flight messages.

Figure 1. Components in a system to enable
pre-failure process migration.

Our proof of concept (POC) system 1 is comprised of a
testbed of compute nodes identical to those used in our pro-
duction systems, a custom piece of code for launching, live
migration, and removing Kernel Virtual Machines (KVMs)
within our testbed cluster, our OVIS data collection, anal-
ysis, visualization, and response tool [1], and a Controller
for orchestrating the migration of KVMs and their processes
from one location to another on the basis of input from the
OVIS monitoring system. In this section we discuss in de-
tail each of these blocks’s functionality and limitations.

Our testbed (referred to herafter as wtb) consists of ten
diskless quad CPU 2.2Ghz AMD Istanbul (6 core) nodes.
The interconnects are 4x DDR Infiniband (IB) and Gigabit
Ethernet. In this proof of concept deployment we utilize the
Gigabit Ethernet interconnect as we don’t currently have the
virtio drivers working for the IB network. This would be a
limitation with respect to the performance of the MPI code

but since this particular work is focused on failure avoid-
ance through migration and not performance (which we will
address in the future) it is inconsequential. On all hosts we
run a linux 2.6.27.21 distribution.

With respect to the virtualized environment we are use-
ing KVM-86, qemu-0.10.5, libvirt-0.7.0. We boot the
KVMs using a OneSis image (currently same as the host
image) that resides on an nfs server. When launching or mi-
grating the KVMs, numactl is used to bind the processes
associated with a KVM to a specific core and the mem-
ory region associated with that core’s CPU for both perfor-
mance and stability reasons. The code that manages KVM
launch, migrate, and remove also takes care of virtual inter-
face setup and teardown on the hosts as well as maintaining
current state on all KVMs. This is currently driven by the
resource manager in conjunction with the controller shown
in figure 1.

OVIS, our data collection, analysis, visualization, and
response system monitors the hardware related metrics of
the testbed. This system, originally built as a research tool
for large scale computer system data collection and analy-
sis, is able to scalably collect metric data, such as memory
statistics, voltages, resource utilizations, and perform vari-
ous types of analyses on this data with the end result being
characteristics models against which particular data can be
compared for the determination of how well it matches in
order to drive inference about component health and failure
prediction. In this case there are two criteria, both based
on the active memory metric, used by OVIS to determine if
an anomalous and potentially fatal condition exists. First it
determines if an anomalous condition exists using a learned
and stored distribution model of active host memory while
the MPI application of interest is running on wtb over the
hosts involved in the run. Each time an active memory value
is collected on a host it is compared with the distribution to
determine a relative probability for the value. When a value
is determined to be anomalous using this methodology and
a user defined threshold of relative probability, OVIS then
must determine if a dangerous threshold (based on measure-
ments taken before previous OOM related failures) has been
reached and if so contacts the Controller (described below)
with a notification of impending failure for that particular
host. Additionally OVIS is informed (currently a manual
operation) of the change in the resource pool membership
being monitored on behalf of the application as soon as the
migration to a new resource has been completed. In this
case the reason for using two criteria is that an application
might be a memory hog in which case migrating processes
which are using all memory on their current machines to
new ones will do no good. Additionally just being an out-
lier in this metric doesn’t necessarily imperil the application
run and we only wish to incur the expense of migration if
there is real danger of failure.



Finally the function of the Controller is to effect a migra-
tion of all processes from a failing resource to a healthy one.
In order to do this it must first be notified, in this case by
OVIS, of the impending failure of a particular component
or aggregation of components. Since in the failure mode
under consideration here the failure happens on a compute
node granularity this is the granularity of notification. Once
the Controller has been notified by OVIS of an impending
resource failure it initiates migration of the affected MPI
processes. In order to preclude loss of packets in flight this
is done in several steps: 1a) Notification is posted by the
Controller to a known location in the controllers file sys-
tem. 1b) The Controller contacts the Resource Manager to
acquire a new resource to host the affected KVMs. 2) An
MPI Barrier wrapper directs each rank, upon passing a bar-
rier for the nth time (n settable by the user and set to 1 for
the purpose of this work), to check for notification of the
need for a migration of any associated MPI process. If no
migration is required the process continues to its barrier. If
a migration is required and the reading rank is unaffected it
continues to its barrier. If a migration is required and the
reading rank is affected it contacts the Controller to notify
it that it is ready to be migrated (this is a blocking call and
upon return the reading rank continues to its barrier). 3)
The controller initiates migration of the KVM hosting each
rank that has notified it. 4) Upon successful migration of all
affected KVMs the Controller returns notification of com-
pletion (at which time the affected ranks continues to its
barrier) 5) Upon successful completion of migration of all
KVMs from the affected resource the Controller notifies the
Resource Manager to remove the resource from the ”free”
pool for inspection and repair.

We demonstrate the POC system interaction to handle a
failure scenario in section 4.2

3.1 Limitations and Issues

Scalability: In this deployment every MPI Barrier call
results in the rank0 process setting a semaphore, grabbing a
file, releasing a semaphore and doing two MPI Bcast calls
in order for each rank to determine if a migration is re-
quired. This can be made lower impact by increasing the
ratio of barriers to checks (application dependent) as well
as by having the Controller push out the flag information
to the local ram file system of the KVM on which rank0
resides. This infomation would have to be sent to the Con-
troller perhaps by an MPI Init wrapper. Using semaphores
around flag writes and reads generates extra overhead but is
requiered in our POC system to guarantee data corruption
doesn’t occur due to reading/writing conflicts which we ex-
perienced before implementing the locks. It is possible that
loss of in flight barrier messages could occur during migra-
tion on large scale deployments due to propagation delays

and barrier messages getting misrouted to a migrating KVM
during the final phase of migration.

Other: The KVM images used in this deployment take
90 seconds to boot. Because we build the virtual infrastruc-
ture for an application at the time it is to be launched, each
application must wait an initial 90 seconds, independent of
the number of resources required or the time it will be run,
to start. For small, short lived applications this is too much
overhead and can be mitigated by maintaining a pool of vir-
tual resources that can be allocated to such application runs
in the same way as real resources are currently. The setup
time for a container to migrate an already booted KVM to is
sub-second and the migration process on order of seconds
so maintaining such a pool and relocating as appropriate to
an application would significantly reduce startup overhead.

4 Experimental Configuration and Demon-
stration

In this section we discuss the system functional compo-
nents and their functionalities and interactions.

4.1 System Components and Configura-
tion

Our system is comprised of five main components, four
of which are illustrated in Figure 1. The high level detail of
each is described below:

OVIS: This is a data collection, analysis, visualization,
and response system that is used to collect metric data from
the hardware and can also collect from the KVMs. In this
case since we are looking specifically at active memory this
is the only thing analyzed. At each collection time OVIS
collects the Active Memory metric of each host. This is
compared with a memory threshold (this was chosen to be
75% of the total memory) which is below that used to in-
voke the host’s OOM killer application ( 90% of the total
memory). At the same time the metric is compared to this
threshold, the active memory distribution over all host re-
sources involved in the application running on the threshold
is learned. If the threshold is reached and the host is not a
high statistical outlier (user defined at 2 std. dev. here), it is
assumed that the application is just using a lot of memory
and things continue. If the threshold is reached and the host
that reaches it is a statistical outlier with respect to the job
group it is assumed that there are memory problems on the
host and the KVMs on that host are live migrated to a free
host.

Resource Manager: This is a prototype resource man-
agement system that maintains a ”free” resource pool,
maintains a mapping between (job, virtual resource allo-
cation, physical resources hosting the virtual resources),
maintains a ”defunct” resource pool, performs initial launch



of virtual resources onto physical resources on behalf of an
application, starts an mpdring on the virtual resources, and
launches an application on the resources.

Virtual Resource Manager ( part of Resource Manager):
Performs the per-KVM launch, migrate, and tear-down on
the specified resources, sets up and tears down the network
environment, and maintains a state directory for each virtual
resource. This is used by the Resource Manager to launch or
tear down a pool of KVMs and by the Controller to perform
KVM live migration.

Controller: Listens to OVIS for indication of impending
resource failure. Contacts the Resource Manager to deter-
mine affected KVMs. Writes updated flag files on a per job
id basis, using a semaphore, that will be read by Rank0 at a
barrier and shared with all processes in its job group to in-
form of the need to migrate. Update the Resource Manager
on state of resources after a migrate.

Compute Resources: These are comprised of both the
hardware and virtual resources. In this particular work we
are using all virtual resources but these could be managed
and allocated as virtual or real depending on the nature of
the application and expected run time as discussed previ-
ously.

4.2 Demonstration

To demonstrate the POC system, we emulate a precur-
sor symptom to major failure mode which occurs on one
of our production systems. In the actual scenario, reported
in [3] there is a non-application related (application isn’t
using too much memory) OOM condition of active mem-
ory. A discoverable precursor symptom is the active mem-
ory of a node being abnormally high with respect to others
in the pool running that application. We emulate this by
running a background process on a selected host that ties up
a significant portion of the host memory (50% in this case).
Our MPI application also includes a process for consuming
memory so that we eventually meet both criteria given in
section 3 for migration.

A sequence of screenshots during the POC system dis-
covery and response interactions in shown in Figure 2. An
MPI-based application was initially assigned to 2 cores
(small blocks) per cpu on each of 4 cpus (white blocks) on
the lower 8 nodes of the rack (upper 2 nodes are idle). In
our POC system, OVIS discovers the signature of failure
via statistical analysis (top figure) and reports the poten-
tially failing resource to the Controller. The Controller then
coordinates with the Resource Manager to determine new
resources to which the processes on the failing resource can
be migrated. The Controller then instigates the migration
(middle fig). After migration the application continutes us-
ing the new resources (bottom fig). In the bottom fig, the
remaining process on the 2nd from bottom node is the one

Figure 2. OVIS display showing Active Mem-
ory values on the nodes and CPU Utilization
(scaled) on the cores. (top fig) OVIS dis-
covery of abnormal memory utilization on a
node (2nd from bottom) relative to the job
group triggers OVIS to send a message to the
Controller of impending node failure which
in turn (middle fig) instigates migration of
the endangered resources to a new node(2nd
from top). During live migration, both the
original and the new cores are in use. Migra-
tion is complete (bottom fig).



used to simulate the failure condition.

5 Conclusions

We have demonstrated the utility of using virtualization
and migration in conjunction with failure prediction to fa-
cilitate failure avoidance by applications of degrading re-
sources. This proof of concept work used a real life failure
scenario found in production systems in order to illustrate
such utility.
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