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SUMMARY

This work presents a method to adaptively refine reduced-order models a posteriori without requiring
additional full-order-model solves. The technique is analogous to mesh-adaptive h-refinement: it
enriches the reduced-basis space by ‘splitting’ selected basis vectors into several vectors with disjoint
support. The splitting scheme is defined by a tree structure constructed via recursive k-means
clustering of the state variables using snapshot data. The method identifies the vectors to split using
a dual-weighted residual approach that seeks to reduce error in an output quantity of interest. The
resulting method generates a hierarchy of subspaces online without requiring large-scale operations or
high-fidelity solves. Further, it enables the reduced-order model to satisfy any prescribed error tolerance
online regardless of its original fidelity, as a completely refined reduced-order model is equivalent to
the original full-order model. Experiments on a parameterized inviscid Burgers equation highlight the
ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the
original reduced basis.

KEY WORDS: adaptive refinement, h-refinement, model reduction, dual-weighted residual, adjoint
error estimation, clustering

1. Introduction

Modeling and simulation of parameterized systems has become an essential tool across a wide
range of industries. However, the high computational cost of executing high-fidelity large-
scale simulations is infeasibly high for many time-critical applications. In particular, many-
query scenarios (e.g., sampling for statistical inversion) can require thousands of simulations
of the system for various input-parameter instances; real-time contexts (e.g., model predictive
control) require simulations to execute in mere seconds.

Reduced-order models (ROMs) have been developed to mitigate this computational
bottleneck. First, they execute an ‘offline’ stage during which computationally expensive
training tasks (e.g., evaluating the high-fidelity model for several instances of the input
parameters) compute a representative low-dimensional reduced basis for the system state.
Then, during the inexpensive ‘online’, these methods quickly compute approximate solutions
for arbitrary input values via a projection process of the high-fidelity full-order-model (FOM)
equations onto the low-dimensional subspace spanned by the reduced basis. They also introduce
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other approximations in the presence of nonlinearities. See Ref. [1] and references within for a
survey of current methods.

While reduced-order models almost always generate fast online predictions, there is no
guarantee that they will generate sufficiently accurate online predictions. In fact, the accuracy
of online predictions is predicated on the relevance of the training to the online problem: if
the offline stage failed to capture a physical phenomenon, then this feature will be missing
from online predictions. In general, the most one can hope for is that the ROM solution error
is bounded by a prescribed scalar over a finite set of ‘training points’ in the input-parameter
space [2]. The utility of this result is limited by the lack of applicability to online points outside
this training set, and by the fact that such bounds often have unknown effectivity: satisfying
the bound does not necessarily imply the true solution error is below a desired threshold.

This lack of error control precludes ROMs from being employed in many contexts.
For example, PDE-constrained optimization requires the solution to satisfy a prescribed
forcing sequence to guarantee convergence [3]. In uncertainty quantification, if the epistemic
uncertainty due to the ROM solution error dominates other sources of uncertainty, the ROM
cannot be incorporated in a useful manner. When simulating parameterized highly nonlinear
dynamical systems, it is unlikely that any amount of training will fully encapsulate the range
of complex phenomena that can be encountered online; such problems require an efficient
refinement mechanism to generate accurate ROM predictions.

A few methods exist to improve a ROM solution when it is detected to be inaccurate;
however, they entail large-scale operation counts. The most common approach is to revert to
the high-fidelity model, solve the associated high-dimensional equations for the current time
step or optimization iteration, add the solution to the reduced basis, and proceed with the
enriched reduced-order model [4, 5, 6]. Another approach employs the reduced-order model as
a preconditioner for the full-order model [7]; here, the reduced-order model serves to accelerate
the full-order solve to any specified tolerance. As our goal is to improve the reduced-order model
efficiently, i.e., without incurring large-scale operations, none of these methods is appropriate.

Instead, this work proposes a novel approach inspired by mesh-adaptive h-refinement. The
main idea is to adaptively refine an inaccurate ROM by ‘splitting’ selected reduced basis vectors
into multiple vectors with disjoint discrete support. This splitting technique is defined by a tree
structure generated by applying k-means clustering to the state variables. The method uses
a dual-weighted residual approach to select vectors to split. The resulting method generates
a hierarchy of subspaces online without requiring any large-scale operations or high-fidelity
solves. Most importantly, the methodology allows the ROM to satisfy any prescribed error
tolerance online, as a fully refined ROM is equal to the original full-order model.

As a final note, some adaptive methods exist to tailor the ROM to specific regions of the
input space [8, 9, 10, 11, 12, 13, 14], time domain [13, 15], or state space [16, 17, 14]. However,
these methods are a priori adaptive: they construct separate ROMs for each region with the
goal of reducing the ROM dimenson. Critically, they have no mechanism to improve the ROM
a posteriori if it delivers a solution with insufficiently accuracy.

In the remainder of this paper, matrices are denoted by capitalized bold letters, vectors
by lowercase bold letters, scalars by lowercase letters, and sets by capitalized letters. The
columns of a matrix A € R™** are denoted by a; € R™, i € N(k) with N(a) := {1,...,a}
such that A :=[a; --- ai]. The scalar-valued matrix elements are denoted by a;; € R such
that a; = [alj ami]T, j € N(k’)
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2. Problem formulation

2.1. Full-order model

Consider solving a parameterized sequence of systems of equations
("t p) =0 (1)

for k € N (t), where ¥ € R"™ denotes the state at iteration k, u € D C R™ denotes the sytem
inputs (e.g., boundary conditions), and #* : R® x R™+ — R"™ denotes the residual operator at
iteration k. This formulation is quite general, as it is appropriate for parameterized systems of
linear equations (¢t = 1, 7 : (a; ) — b(p)— A(p)x) such as those arising from the finite-element
discretiation of elliptic PDEs, and parameterized ODEs & = f(x; ) after time discretization
by an implicit linear multistep method (e.g., 7" : (z*;p) — x* — x*~1 — Atf (¥, p) for
the backward Euler scheme) such as those arising from the space- and time-discretization of
parabolic and hyperbolic PDEs. Assume that we are primarily interested in computing outputs

2 = g(a¥; p) (2)
for z¥ € R and g : R" x R™ — R.

When n is ‘large’, computing the outputs of interest z* by first solving Eq. (1) and
subsequently computing outputs via Eq. (2) can be prohibitively expensive. This is particularly
true for many-query (e.g., Bayesian inference) and real-time problems (e.g., model-predictive
control) that demand a fast evaluation of the input—output map p +— z*.

2.2. Reduced-order model

Model-reduction techniques aim to reduce the burden of solving Eq. (1) by employing a
projection process. First, they execute a computationally expensive offline stage (e.g., solving
Eq. (1) for a training set Diaim C D) to construct 1) a low-dimensional trial basis (in
matrix form) V € R"*? with p < n that (hopefully) captures the behavior of the state x
throughout the parameter domain D, and 2) an associated test basis W € R™*P. Then, during
the computationally inexpensive online stage, these methods approximately solve Eq. (2) for
arbitrary p € D by searching for solutions in the trial subspace range (V') C R™ and enforcing
the residual #* to be orthogonal to the test subspace range (W) C R™:

WTik (& + vak p) =o0. (3)

When the residual operator is nonlinear in the state or non-affine in the inputs, additional
complexity-reduction approximations such as empirical interpolation [18, 19], collocation
[20, 21, 6], discrete empirical interpolation [22, 23, 24], and gappy proper orthogonal
decomposition [25, 26], are required to ensure that computing the low-dimensional residual
WT# incurs an n-independent operation count. For simplicity, we do not consider such
approximations in the present work; future work will entail extending the proposed methods
to such ‘hyper-reduced’ order models.

In many cases, the test basis can be expressed as W = A" (x;u) V. For example,
A™ (xz; pu) = I for Galerkin projection; balanced truncation uses A™ (x;u) = Q, where Q
is the observability Gramian of the linear time-invariant system; the least-squares Petrov—
Galerkin projection [20, 25, 26] underlying the GNAT method employs A™ (z;pu) =



4 K. CARLBERG

OF* /0x (z, u). When this holds, the Petrov—Galerkin projection (3) is equivalent to a Galerkin
projection performed on the modified residual r* := A™ (x; u)T 7k

VIirk(z + ViF p) =o0. (4)
In the remainder of this paper, Eq. (4) will be considered the governing equations for the
reduced-order model.

2.3. Objective: adaptive refinement

The goal of this work is as follows: given a reduced basis V' and solution &* to Eq. (4), 1)
detect if the solution is sufficiently accurate, 2) if not, efficiently generate a higher-dimensional
reduced basis V'’ in a goal-oriented manner that aims to reduce errors in the output z* such
that range (V') C range (V'), 3) compute an associated solution #*, 4) repeat until desired
accuracy is reached.

To generate this hierarchy of subspaces efficiently, we propose an analogue to adaptive h-
refinement, wherein the support (i.e., element set with nonzero entries) of selected basis vectors
v; is ‘split’ into disjoint subsets of elements. Like all h-refinement techniques, the proposed
method consists of the following components:

1. Refinement mechanism. In typical h-refinement, this is defined by the mesh-refinement
method applied to finite elements or volumes. The proposed method refines the solution
space by splitting the support of the basis vectors using a tree structure constructed via
k-means clustering of the state variables. Section 3 describes this component.

2. Error indicators. Goal-oriented methods for h-refinement often 1) solve a coarse dual
problem, 2) prolongate the adjoint solution to a representation on the fine grid, and
3) compute error estimates of the output using first-order analysis. The proposed
method employs an analogous goal-oriented dual-weighted residual approach. Section
4 introduces this.

3. An adaptive algorithm. The proposed algorithm identifies when refinement is required
and employs error indicators decide on the particular refinement, i.e., which basis vectors
should be refined, and how they should be refined. Section 5 provides this algorithm.

Remark. If the reduced-order model (4) is a priori convergent in a certain metric, then the
proposed strategy guarantees monotonic convergence in that metric. For example, consider the
case where the residual is linear in the state and its Jacobian dr*/dx (p) is symmetric and
positive definite.” Then, it can be shown that
Vit =ar min ¥ — & — w|ppr , 5
gwerangc(v) [ om0 (1) (5)
The, when the enriched basis V' satisfying range (V') C range (V') is employed as the search
space for (5), it is guaranteed that the resulting solution V'&’* will yield a decrease in the
objective function

2" — & = V'&™ | ork jow(u) < 12" — & = VE®|lort jow(u) (6)

as the previous solution remains in the search space V¥ € range (V). B

*This can be achieved, for example, by Galerkin projection applied to symmetric coercive elliptic PDEs [2] or
by least-squares Petrov—Galerkin applied to a parametrized linear system of equations.
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3. Refinement mechanism

3.1. Tree data structure

To begin, we define a tree data structure that characterizes the refinement hierarchy. The
tree is characterized by a child function C : N(m) — P (N(m)) and an element function
E :N(m) — P (N(n)), where m denotes the number of nodes, P denotes the powerset. For
all i € N(m), we have

E({)NE(k)=0, VYj#keC/(i) (7)
Y EG) =EG). ®

Finally, we enforce the root node to include all elements E (1) = N (n), and the leaf nodes to
include a single element each

VieN(n), JieN(m) | E(G) =1, C()=0. (9)

Each basis vector is characterized by a particular node on the tree d; € N(m), i € N(p).
The set E (d;) corresponds to the support of the basis vector, i.e., set of nonzero entries. The
set C (d;) corresponds to the set of children defining splits of the basis vector. Due to the
requirement in Eq. (9), a completely split basis (C (d;) = 0, i € N(p)) is equivalent to the
full-order model, as range (V) = R™ in this case. This enables the reduced-order model to
generate arbitrarily accurate solutions when equipped with the proposed refinement method.

Ezample. Consider an example with n = 6 and an initial reduced basis V(©) = vfo) of

dimension 1. Figure 1 depicts an example of a tree structure for this case. Imagine the basis

d =1
c@) =123}
E(1)={1,...,6}
d = 2 d =3
C(2) = {4,5,6} C(3) ={7,8}
E(2) = {17334} E(3) = {27576}
= 7 ~ 7 X
d =4 d=25 d=26 d=1717 d =28
C4)=10 cB)y=10 c6)=10 C(7 :(Z)} C (8) ={9,10}
EM)={1}) (EG)={3}) (E(6)={4} E(7) ={2} E(§)={\,6}
d=9 d =10
cC9) =10 C(10) =0
E(9) = {5} ) (E(10) = {6}

Figure 1. Tree example with n =6

has been split into p = 4 according to the tree in Figure 1 with dy = 2, ds = 7, d3 = 9, and
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d4 = 10; then, the reduced basis is

(WP 0 0 o0 ]
0o o9 o0 o
0
v v%%); 0O 0 0 (10)
o 0 0 0
o o0 9 o
0o 0 0 oY

In the sequel, we define the number of total children at node j for tree ¢ to be ¢; =
card (C (d;)). We also overload the child function for the two-argument case such that C (i, j)
is the jth child node of parent node 7, where ordering of the children is implied by the binary
relation < on the natural numbers. Similarly, the overloaded element function F (i,j) is the
jth element for node i; again, ordering of the elements is implied by the relation < on the
natural numbers.

3.2. Refinement via basis splitting

We now put the basis-splitting methodology in the framework of typical h-refinement
techniques. First, define a ‘coarse’ basis V' (initially equal to the nominal basis V(O)). Define
also a ‘fine’ basis corresponding to the coarse basis with all vectors split according to the
children of the current node. We can express the relationship between the coarse and fine
bases as

VHE =vhry (11)
where V' € R"*4 denotes the fine basis, I € {0,1}9%P denotes the prolongation operator,
and ¢ denotes the dimension of the fine reduced subspace. Clearly, range (VH ) C range (Vh).
Then, for any generalized coordinates w € RP associated with the coarse basis V¥, we can
compute the corresponding fine representation w" € RY associated with the fine basis V" as

wh = Ihw?, (12)

which ensures that VHwH = thv;;. Note this prolongation operator is exact, unlike typical
mesh-refinement strategies, where this operator is often defined as a linear or quadratic
interpolant of the coarse solution on the fine grid. The restriction operator is not uniquely
defined, but can be set, e.g., to

1 = ()" (13)

Here, the superscript + denotes the Moore—Penrose pseudoinverse.

Using the tree structure defined in Section 3.1, we can precisely define these quantities.
We first introduce the mapping f : (¢,7) — k, which provides the fine basis-vector index k
corresponding to the jth child of the ith coarse basis vector. We define it as

FG5) =Y a+34, j€N(@), i€N(p). (14)
k<i
In particular, note that if node 4 in tree i is a leaf (i.e., ¢; = 0), then f(i,j) does not exist

for any j. Similarly, the inverse mapping f~' : k +— (i,5) yields the coarse basis-vector index
1 and child index j corresponding to fine basis vector k.
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Now, the dimension of the fine reduced subspace is ¢ = Y 7_, ¢;, and the fine reduced basis
is
b {vi’ k| G=F (LK), i€ E(C ) (15)

0, otherwise.

The prolongation operator induced by the proposed splitting scheme is

L, 3k[i=f(5k)
I = 16
i) {O, otherwise. (16)

3.8. k-means clustering of the state variables

This section presents an approach to construct a tree that satisfies the requirements outlined
in Section 3.1. This approach uses the following heuristic:

State variables z; that tend to be strongly positively or negatively correlated can
be accurately represented by the same generalized coordinate, and should therefore
reside in the same tree node.

Ezample. To justify this heuristic, consider an example with n = 6 degrees of freedom and
n, = 8 observations of the state, e.g., from a computed time history. Assume that snapshots

can be decomposed as
3

X =) yiz] +0.1E (17)
i=1
where E € [—1,1]"*" is a matrix of random uniformly distributed noise and the data matrices

are

—2.2083 —5.1072 2.6816 9.3277 —6.4506 —3.2548 4.2237 —3.2557 |

Z = | —29810 0.6557  3.0474 5.5252 2.7674  2.3311 9.6190 —6.6484
—2.4547  5.2676 —3.6434 5.5661 —7.5449 9.3079 —2.0459 -0.0728

—3.9885 0 0 0 0 0 r
Y = 0 0 8.6843 0 0  —1.6393
0 17288 0 6.0559 2.2407 0

The sparsity structure of Y implies that following sets of state variables that are strongly
correlated or anti-correlated across observations: {1}, {3,6}, and {2,4,5}. This is apparent
from computing the matrix of sample correlation coefficients:

1.0000  0.1526  —0.5698 —0.1534 —0.1554 0.5705
0.1526 1.0000 —0.0180 —1.0000 —1.0000 0.0198

R —0.5698 —0.0180 1.0000  0.0209 0.0212  —1.0000 (18)
—0.1534 —1.0000 0.0209 1.0000 1.0000 —0.0227 |-~
—0.1554 —1.0000 0.0212 1.0000 1.0000  —0.0229

0.5705  0.0198 —1.0000 -0.0227 -—0.0229 1.0000

Imagine we start with one-dimensional reduced basis corresponding to the first left singular
vector of X

VI =l = 02609 —0.0348 0.9390 0.1240 0.0463 —0.1773 |" .
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Because the data nearly lie in a three-dimensional subspace of R®, the optimal performance
of a refinement scheme would yield small error after splitting this one-dimensional basis into
a basis of dimension three. Thus, consider splitting V(®) into three children, i.e., the tree is
characterized by C (1) = {2,3,4}, E(2) = {1}, E(3) = {3,6}, and E(4) = {2,4,5}. The
resulting basis becomes

~0.2609 0 0 0 0 0 T
vh = 0 0 09390 0 0 —0.1773
0 00348 0  0.1240 0.0463 0

The resulting projection error of the data is merely || X — V* (Vh)+ X|r/IIX||lF = 0.0033
By contrast, generating an alternative three-dimensional fine basis V" by splitting the basis
using a (similar) tree characterized by E (2) = {1}, E (3) = {3,5}, E(3) = {2,4,6}, yields a
much larger error of | X — VA (VA" X||p/[| X || r = 0.4948.

One way to identify these correlated variables is to employ k-means clustering after pre-
processing the data by 1) normalizing observations of each variable (to enable clustering to
detect correlation), and 2) negating the observation vector over the origin if the first observation
is negative (to enable clustering to detect anti-correlation). This is visualized in Figure 2 for this
example. Note that correlated and anti-correlated variables have a small Euclidean distance
between them after this processing; this allows k-means clustering to identify them as a group.

|
35 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.4
30 e ’
[ 0.3t
r,
2 0.2
201 1o ™~ )
215) |2
IS 5 o = 0L
1 i -
2 20.1t
£ 513 | 2
—0.2L
0t 6 1
_50 1 —0.3¢
-10 ‘ ; ; ; : L2 o, -0.4 i : : : ; :
—30 =25 =20 — —10. =5 0 5 10 0.15 0.16 0.17 0.18 0.19. 0.2 0.21 0.22
observation 1 observation 1
(a) before processing (variables labeled) (b) after processing

Figure 2. State-variable data projected onto the space of the first two observations for the example
in Section 3.3. After processing the observations by normalization and origin flipping, correlated and
anti-correlated variables can be easily grouped via clustering.

To this end, we define the tree by recursively applying k-means clustering to observations of the
state variables (after reference subtraction, normalization, and origin flipping); Algorithm 1
describes the method. The n, observations of these variables are obtained from snapshot data;
such data are often available, e.g., when V' is constructed via proper orthogonal decomposition.
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Algorithm 1 Tree construction via recursive k-means clustering

Input: n, snapshots of the reference-centered’ state in matrix form X € R™*"e number of

means k

Output: child function C, element function F, and number of nodes m

1:

10:
11:
12:

13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:

30:

2
3
4
5
6:
7
8
9

fori=1,...,ndo
Normalize rows of X to capture correlation by clustering ! «+ x7 /||=! ||
if ;1 < 0 then {Flip over origin to capture negative correlation by clustering}
xl « —xT
i i
end if
end for

: Set root node to contain all elements F (1) = N (n).
. Initialize recent-node set D «+ {1} and node count m « 1.
: while card (D) > 0 do

D+ D, D+
fori=1,... card (D) do
Set splitting node to the ith element of the recent-node set d «— D (), where ordering
is implied by > on the natural numbers.
if E(d) =0 then {No elements to split}
Continue
end if
Select snapshots of current elements Z;, < Zg(q )k, J € N(card (E (d))), k € N(n,)
(Ei1,...,E,,) = kmeans (X, k), where E; C N(card(E(d))) denots the set of
elements in cluster j, and n. denotes the number of non-empty clusters.
if n.= 1 then {Cannot have only one child}
for j =1,...,card (F (d)) do {Make all children into leaf nodes}
Ei=j
end for
end if
for j=1,...,n.do
mé—m+1
D+~ DUm
E(m) ={E(d,j) | j € By}
C(d,j) =m
end for
end for
end while

4. Dual-weighted residual error indicators

To simplify notation in this section, we consider a single solve, i.e., Eq. (4) for a single time and
parameter instance, and set £ = 0. Then, the ROM governing equations can be represented

TThis implies that the reference state & should be subtracted from the state snapshots.



10 K. CARLBERG

simply as
VIir(Vz)=0. (19)
To compute error indicators for refinement, we propose a goal-oriented dual-weighted
residual methodology based on adjoint solves. It can be considered an model-reduction
adaptation of duality-based error-control methods developed for differential equations [27, 28],
finite-element discretizatons [29, 30, 31, 32, 33, 34], finite-volume discretizations [35, 36, 37, 38],
and discontinuous Galerkin discretizations [39, 40]. First, we approximate the output due to
the (unknown) fine solution " to first-order about the coarse solution &:

g(V'a") =g (V72") + g—i (Vvrah) v (2" - Iha"), (20)

where we have used Eq. (11) to relate the coarse and fine bases.
Similarly, we can approximate the fine residual to first order about the coarse solution as

. . 0 . . .
0= (VM) Ty (Vheh) ~ (VI Tr (VEGH) + (Vh)Té (VAZH)Vh (&h — 1ha') . (21)
Solving for the error yields

~1
ror

(8" = &™) ~ — (V)T o— (V&) Vi (V) Tr (VEa™) (22)
Substituting (22) in (20) yields
g (V") — g (V&) ~ — (3" (V") Tr (VHY). (23)
where the fine adjoint solution §" € R? is the solution to
(Vh)TaL;(VH:i:H)TVhyAh _ (Vh)T% (VHQA:H)T (24)

Because we would like to avoid solving with the higher-dimensional fine basis V", we
approximate " as the prolongation of the coarse adjoint solution

9 = Ig", (25)
where g is the solution to
T Ork T Og T

vE\T O yHaENTy HeH _ (yvENT 99 (v H G H %
(viry" I ymgayryign - (vt 09 (g (26
Substituting the approximation g% for g" in (23) yields a cheaply computable error estimate
g (Vh&h) — g (V) ~ — (g%)" (VM) Tr (VH&H) . (27)

The absolute value of the right-hand side can be bounded as
(k)" (VT (viat) < Y e (28)

i€N(q)

where the error indicators 67 € R, i € N(q) are
N T .
51-h = | [y?{]l (vf) T (VH:cH) | (29)
Meyer and Matties [41] also proposed a dual-weighted residual method for reduced-order
models. However, their approach was not applied to adaptive refinement and did not consider a

hierarchy of reduced bases; further, their proposed dual solve was carried out on the full-order
model, which is infeasibly expensive for most contexts.
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Algorithm 2 Error estimates

Input: coarse reduced basis V¥, coarse solution &

Output: fine reduced basis V", fine error-estimate vector 8"
1: Solve coarse adjoint problem (26) for .
2: Define prolongation operator I via Eq. (16).
3: Define fine reduced basis V" via Eq. (11) and fine representation of adjoint solution §%
via Eq. (25)
4: Compute fine error-estimate vector 6" via Eq. (29)

Remark. Some mesh-refinement techniques [35, 36] advocate computing refinement indicators
that minimize the error in the computable correction

(8" — i) (v e (V).

To approximate this quantity, they employ prolongation operators of varying fidelity, e.g.,
linear and quadratic interpolants. Such a strategy is not straightforwardly applicable to the
current context, as the prolongation operator I I}; is exact. l

5. Adaptive h-refinement algorithm

We now return to the original objective of this paper: adaptively refine the reduced-order
model. Algorithm 3 describes our proposed methodology for achieving this within a time
integration scheme. Step 1 first computes the reduced-order-model solution satisfying a
tolerance egon- Then in Step 2, refinement occurs if the norm of the full-order residual is
above a desired threshold e. Note that other error indicators could be used to flag refinement,
e.g., error surrogates [42]. Refinement continues until this full-order tolerance is satisfied; note
that any such tolerance can be reached, as a completely split basis yields a reduced-order
model equivalent to the full-order model (see Section 3.1). Finally, Step 7 resets the basis to
the original basis every nyeset time steps. This ensures 1) the basis does not grow monotonically,
and 2) work performed to refine the basis can be amortized over subsequent time steps, where
the solution is unlikely to significantly change. Note that if Step 1 entails an iterative solve
(e.g., Newton), then the pre-refinement solution can be employed as an initial guess.

Algorithm 4 describes the proposed method for refining the basis using the refinement
mechanism and error indicators presented in Sections 3 and 4, respectively. Appendix II
describes a more sophisticated approach wherein the basis vectors are not split into all possible
children; the children are separated into groups, each of which contributes roughly the same
fraction of that vector’s error.

First, Step 1 computes error estimates for the fine basis (i.e., current basis with all vectors
split into all possible children) using the dual-weighted residual approach. Step 3 identifies the
parent basis vectors to refine: those with above-average error contribution from its children.
Steps 5—8 split the parent vector 7 into vectors corresponding to its ¢; children according to
the defined tree. Steps 9-12 update the reduced basis and tree nodes. Because this split does
not guarantee a full-ranks basis, Step 14 performs an efficient QR factorization with column
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Algorithm 3 Adaptive h-refinement

Input: timestep k, basis V', ROM solver tolerance eron, FOM solver tolerance e
Output: updated basis V', generalized state &*

1: Compute ROM solution &* satisfying ||VTr*(z + V&*; u)|| < erom-
2: if FOM not converged ||r*(Z + V2*; u)|| > € then

3:  Refine basis via Algorithm 4: V' < Refine (V7 ik).

4:  Return to Step 1.

5. end if
6
7
8

: if  mod (k, Nyeset) = 0 then
Reset basis V « V(0.
: end if

Algorithm 4 Refine
Input: initial basis V', reduced solution &
Output: refined basis V'
1: Compute fine error-estimate vector and fine reduced basis via Algorithm 2:
(6", V") < Error estimates (V, &).

2: Put local error estimates in parent—child format 7;; = 5?(¢,j)v i € N(p), j € N(q).
3: Identify basis vectors to refine I = {i | > ;mi; > 1/p 4 mkj}

4: for i € I do {Split v; into ¢; vectors}

5. for k € N(g;) do

6 @ =Gy

7 dp,=C (di, k?)

8: end for

9: vieml,di%cﬂ

10. fork=2,...q; do

11: Upt+k—1 < Tk, dp+k,1 — dj,

12:  end for

13: end for

14: Compute thin QR factorization with column pivoting V = QR, RII = QR.

15: Ensure full-rank matrix V <~ V [y --- 7], where r denotes the numerical rank of R.
16: Update tree [dy --- dy] <= [dy -+ dp] [ -+ 70

pivoting to identify ‘redundant’ basis vectors. Step 15 subsequently removes these vectors from
the basis and Step 16 performs the necessary bookkeeping for the tree nodes.

6. Numerical experiments: parameterized inviscid Burgers’ equation

We assess the method’s performance on the parameterized inviscid Burgers’ equation. While
simple, this problem is particularly challenging for reduced-order models. This arises from
the fact that ROMs approximate the solution as a linear combination of fixed reduced-basis
function; as such, they work well when the dynamics are primarily Eulerian, i.e., are fixed
with respect to the underlying grid. However, when the dynamics are Lagrangian in nature



ADAPTIVE h-REFINEMENT FOR REDUCED-ORDER MODELS 13

and exhibit motion with respect to the underlying grid (e.g., moving shocks), reduced-order

models generally fail to capture the phenomenon at every time step and parameter instance.
We employ the problem setup described in Ref. [43], which was also employed to test the

GNAT method in Ref. [26]. Consider the parameterized initial boundary value problem

ou(z,T) n 19 (u? (2, 7))

= 0.02¢12"
or 2 oz 0-02¢ (30)
w(0,7) = p1, V7 >0 (31)
u(z,0) =1, Va € [0, 100], (32)

where 17 and p9 are two real-valued input variables. Godunov’s scheme discretizes the problem,
which leads to a finite-volume formulation consistent with the original formulation in Eq. (1).
The one-dimensional domain is discretized using a grid with 251 nodes corresponding to
coordinates coordinates z; =i x (100/250), ¢ = 0, ..., 250. Hence, the resulting CFD model is
of dimension n = 250. The solution u(z,7) is computed in the time interval 7 € [0, 50] using
a uniform computational time-step size At = 0.05, leading to ¢ = 1000 total time steps.

For simplicity, we employ a POD—-Galerkin ROM for this study. During the offline stage,
snapshots of the state are collected for the first ¢i,i, time steps at training inputs. Then, the
initial condition is subtracted from these snapshots, and they are concatenated column-wise to
generate the snapshot matrix. Finally, the thin singular value decomposition of the snapshot
matrix is computed, and the reduced basis V' is set to the first p left singular vectors. During the
online stage, a Galerkin projection is employed using this reduced basis. For all experiments,
the initial condition is set to the reference condition, i.e., & = x°. For h-adaptivity, we set
the number of means to & = 10 in Algorithm 1. For Algorithm 2, the output of interst is set
to the residual norm g(z*; u) = ||#*(x*; u)||3. For Algorithm 3, the ROM tolerance is set to
eroMm = b x 1073 and the FOM tolerance to € = 0.05.F The basis-reset frequency nyeset Will be
varied during the experiments. Step 1, incurs a Newton solve; when refinement has occurred,
the initial guess is set to the converged solution from the previous refinement level. Finally,
the experiments employ the (more complex) Refine method defined by Algorithm 5 with a
child-partition factor a = 2.

Note that because the residual operator is nonlinear in the state, a projection alone is
insufficient to generate computational savings over the full-order model. Future work will
address extending the proposed h-refinement method to ROMs equipped with a complexity
reduction mechanism such as empirical interpolation or gappy POD.

6.1. Fized inputs

For this example, the input parameters are set to u; = 3 and ps = 0.02. However, the
problem can be considered to be predictive, as we only collect snapshots in the time interval
Tirain € [0, 7.5], i.e., for the first tiain = 150 time steps.

Table I reports results typical POD—Galerkin ROMs of differing dimensions, as well as
results for the proposed h-refinement method with different parameters. Here, the relative

fFor the ROMs without adaptivity, the ROM convergence tolerance is set to egom = 1 X 1072,
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error is defined as
t
relative error = — > lurom (5 ™) = urom (-, 7). /lluron (- 7) | L,
k=1
Figure 3 compares the solutions predicted by POD-Galerkin with no basis truncation (i.e.,
p = 150) and that of the proposed method with an initial basis size of p® = 10 with
V(© ¢ R*P'” and a basis-reset frequency of nyeset = 50.

no adaptivity h-adaptivity
initial basis dimension p®©@ | 10 | 45 | 150 5 10 | 20 10 10
basis-reset frequency nreset 50 50 50 100 25

average basis dimension
per Newton iteration p
average number of Refine
calls per time step 0.20 | 0.19 | 0.14 | 0.13 | 0.28
relative error (%) 45.8 | 439 | 85 0.3 0.5 0.2 0.2 0.3
online time (seconds) 1.4 | 214 | 577 || 5.53 | 4.63 | 7.27 | 6.90 | 7.46

10 45 150 || 41.4 | 44.3 | 58 73 37

Table I. Comparison between POD-Galerkin ROMs without refinement and with h-adaptive
refinement for the fixed-inputs case.

0 50 100 150 200 250 0 50 100 N 150 200 250

(a) no adaptivity, no truncation (p = 150) (b) h-adaptivity, p(® =10, nreses = 50

Figure 3. Comparison of solutions computed by POD—Galerkin with and without adaptivity for the
fixed-inputs case.

First, note that the reduced-order model is highly inaccurate (even when the basis is not
truncated) unless equipped with h-adaptivity. The reason for this is simple: the training
has not captured the flow regime with shock locations past approximately x = 60. This
illustrates a powerful capability of the proposed h-adaptation methodology: it enables ROMs
to be incrementally refined to capture previously unobserved phenomena. In fact, the average
basis dimension (per Newton iteration) for the best-performing h-adaptive ROM (p(o) = 10,
Nreset = D0) is only p = 44.3, which is smaller than the basis dimensions for ROMs without
adaptivity (p = 45 and p = 150) that yield much higher errors (43.9% and 8.5%, respectively).
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Second, adaptation parameters p(o) and Nyeset both lead to a performance tradeoff. When
p(© is small, it leads to smaller average basis sizes p. However, it increases the number of
Refine calls per time step, as the smaller basis must be refined more times to achieve desired
accuracy. Similarly, resetting the basis more frequently (smaller n,eset) leads to a smaller p,
but more average refinement steps. As such, an intermediate value of both parameters leads
to the shortest online evaluation time.

Finally, notice that the online evaluation time for the adaptive ROM with an average basis
size of p = 44.3 is roughly twice that of a non-adaptive ROM with rougly the same basis size
p = 45. This discrepancy in evaluation time can be attributed to the overhead in performing
the adaptation. For larger problem sizes, one would expect this overhead to be smaller relative
to the total online evaluation time.

Next, we assess the performance of the h-refinement method as the full-order tolerance e
varies. Table IT and Figure 4 report the results. As expected, the proposed method allows the
ROM to achieve any of the prescribed tolerances. As the tolerance becomes more rigorous,
the ROM solution improves; however, it does so at increased computational cost, as both the
average basis dimension p and number of Refine calls per time step increase to satisfy the
requirement.

€e=10.35 | e=0.05 | e=0.01
average basis dimension
per Newton iteration p 33.6 44.2507 53.9
average number of Refine
calls per time step 0.115 0.189 0.212
relative error (%) 12.2 0.51 0.078
online time (seconds) 4.61 4.63 7.64

Table II. Effect of full-order-model tolerance € on h-adaptive refinement for p(® = 10 and nreset = 50
for the fixed-inputs case.

6.2. Input variation

For this experiment, we assess the proposed methodology in a parameter-varying scenario.
In particular, the offline stage collects snapshots in the time interval 7iin € [0,2.5] for the
training set {u!, ..., u®} described in Table II1.

Figure 5 and Table IV report the results for this experiment. The same phenomena
are prevalent as were apparent in the previous experiment. The primary difference is that
the POD-Galerkin model without adaptivity performs better. However, h-adaptivity is still
required to drive errors below 1%.

Table III. Offline and online inputs for the inviscid Burgers equation

Tnput variables Tlraumn%r point Tralmn% point Tramm% point Onhne*pomt
M M H [
H1 3 6 9 4.5
o 0.02 0.05 0.075 0.038
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50

100 150 200
xr

(b) e =0.05

150 200
T

100

50

(c) e=0.01

250

250

Figure 4. Comparison of solutions computed by h-adaptive POD—Galerkin for different full-order-
model tolerances ¢ for the fixed-inputs case.

no adaptivity h-adaptivity
initial basis dimension p@ [[ 10 [ 78 [ 150 || 5 20 [ 30 [ 20 20
basis-reset frequency nireset 100 100 100 200 50
average basis dimension 10 | 78 | 150 || 69.8 | 77.2 | 87.6 | 130.6 | 65.6
per Newton iteration p

average number of Refine 020 | 0072 | 007 | 0.044 | 0.11

calls per time step ’ ’ ’ ’ ’
relative error (%) 41.8 | 1.7 1.4 0.22 | 0.14 | 0.45 | 0.53 | 0.70
online time (seconds) 1.75 | 3.54 | 855 || 6.41 | 6.06 | 811 | 9.11 | 8.78

Table IV. Comparison between POD-Galerkin ROMs without refinement and with h-adaptive

refinement for the input-variation case.

7. Conclusions

This work has presented an adaptive h-refinement method for reduced-order models. Key
components include 1) an h-refinement mechanism based on basis splitting and tree structure
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9 9
8t ]l
Tt 7L
6t 6
35t s 51
4t 4t
3t 3l
2t 21
o 50 100 150 200 25 15 50 100 150 200 250
(a) no adaptivity, p = 150 (b) h-adaptivity, no truncation (p(®) = 20), nreget =

100

Figure 5. Comparison of solutions computed by POD—Galerkin with and without adaptivity for the
varying-inputs case.

constructed via k-means clustering, 2) dual-weighted residual error indicators, and 3) an
adaptive algorithm to moderate when and how to perform the refinement. In contrast to
existing a priori adaptive methods, the proposed technique provides a mechanism to improve
the ROM solution a posteriori. As opposed to existing a posteriori methods, the proposal
does so without incurring full-order-model solves. Numerical examples on the inviscid Burgers
equation highlighted the method’s ability to accurately predict phenomena not present in the
training data used to construct the reduced basis.

Future research directions include incorporating complexity reduction (e.g., empirical
interpolation, gappy POD) into the refinement process. In particular, as the reduced basis
is refined, sample points (and dual reduced-basis vectors) must be added in a systematic way
to ensure the reduced-order model remains solvable. In addition, it would be interesting to
incorporate a more sophisticated adaptive coarsening technique (compared to the simple basis-
resetting mechanism in Step 7 of Algorithm 3); for example, one could combine basis vectors
whose generalized coordinates are strongly correlated (or anti-correlated) over recent time
steps. Further, it would be interesting to pursue adaptive p-refinement methods, wherein other
basis vectors (e.g., truncated POD vectors, discrete wavelets) with possibly global support
are added from a library to enrich the trial subspace. Finally, it would be advantageous to
incorporate Richardson extrapolation in the refinement method to better approximate the
outputs of interest; however, this requires knowledge of the convergence rate of the reduced-
order model with respect to adding basis vectors.
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APPENDIX
II. Refinement algorithm with multiple trees

This section presents a more sophisticated refinement mechanism than that that presented in
Section 5. In particular, when a vector is flagged for refinement, it is not necessarily split into all
its children. Rather, its children are separated into groups, each of which contributes roughly
the same fraction « of the total error for that parent vector. This avoids over-refinement
when the number of children is relatively large. However, this leads to an increase in required
bookkeepeing, as the tree structure changes when children merge: the tree must be altered
and separately maintained for each vector. Thus, each basis vector v;, i = 1,...,p will be
characterized by its own tree C;, F; with m,; nodes, as well as a node on that tree d; € N (m;).

Algorithm 5 describes the modifications needed to Algorithm 4 to enable this feature. Key
modifications include the following. Steps 722 separate the children of the parent vector’s
tree node d; into groups; the resulting maintenance of the tree structures is performed in Steps
18-19.5 In steps 2326, not only is the basis updated, but the trees are as well. Finally, Step
30 performs the necessary bookkeeping for the tree structures due to the removal of redundant
basis vectors.
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