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Epistemic vs. Aleatory Uncertainty

« EPISTEMIC

— Lack of knowledge about the appropriate value to use for a
quantity

— Subjective uncertainty

— Reducible uncertainty: uncertainty can be reduced through
increased understanding (research), or increased and more
relevant data.

— Epistemic quantities have a fixed value in an analysis, but we
do not know that fixed value.

— E.g. the elastic modulus for the material in a specific
component is presumably fixed but unknown or poorly known.

- ALEATORY
— Uncertainty characterized by inherent randomness
— Cannot be reduced by further data
— Variability
— Irreducible
— E.g. the height of individuals in a population
— Usually modeled with probability distributions
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* ngineering Applications Motivation

* Most computer models for engineering applications are
developed to help assess a design or regulatory requirement.

* The capability to quantify the impact of uncertainty in the
decision context is critical.

— Example: Probability (System Response > T) < 0.01

« Still want to be able to provide bounds and other information
when epistemic uncertainty exists

* This presentation discusses 3 methods for quantifying
epistemic uncertainty

— Interval Analysis
— Dempster-Shafer theory of evidence

— “Second-order” probability analysis
 These methods are all implemented in DAKOTA
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Structural Dynamics Example

» 3-disc model for aeroshell.
» Outer 2 discs represent rigid masses
 Inner disc represents a layer of a filled rubber.

* We are interested understanding the frequencies
of the axial and shear modes for this
experimental configuration.

» There is significant epistemic uncertainty
associated with the material properties of the
filled rubber.

 We have a wide variety of tests and expert
opinion on potential values for:

— The modulus of elasticity. E falls within the
interval of [2000, 25000] psi.

— Poisson’s ratio. v falls within the interval of
[0.45, 0.495].

 The simulation code used is Salinas.
« The UQ code used is DAKOTA.
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Structural Dynamics Example

 What is the range of frequencies for the axial mode and the
shear mode given the epistemic uncertainties in E and v?
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Interval Analysis

» Specify intervals on uncertain inputs
* Determine the resulting interval on the output

« Example: A lies within the interval [3,5] and B lies within
the interval [4,6]. The sum C = A + B is then contained
within the interval [7,11].

 In practice, most realistic problems are not amenable to
analytic calculations

» Options:
— Sample from input intervals and obtain sample of output
interval

— Take initial samples over space, construct surrogate
models, and query the surrogates extensively to
understand upper and lower bounds on output

— Use optimization methods
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Interval Analysis: Sampling

Input Distributions

N samples of x Output Distribution

& N realizations of y

/N

Probabilistic

Non-Probabilistic

Caution: Do not put a frequency
interpretation on the output when
using sampling to determine
intervals. Each output value is
merely a possible or potential
value, not a value from a
distribution.

Input Intervals

N samples of x

Output Interval

1 N realizations of y
L
I —
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Interval Analysis: Sampling

E (Elastic Nu (Poisson's Shear Mode Axial Mode
Sample Modulus) ratio) Frequency Frequency
1 6377.50 0.473 1452.47 1858.78
2 24938.67 0.455 2877.98 3580.37
3 9764.92 0.463 1799.41 2263.74
4 20550.80 0.462 2610.35 3277.82
5 14733.46 0.466 2209.13 2793.58
6 19525.95 0.488 2539.35 3333.59
7 12791.57 0.482 2055.63 2670.29
8 16942.52 0.481 2365.74 3065.20
9 7312.58 0.452 1559.74 1931.17
10 2162.54 0.476 845.62 1088.09
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Shear mode frequency interval is:

[845.6, 2878.0] Hz,

Axial mode frequency interval is

[1088.1,3580.37] Hz.

Ten samples only used for initial study:

need to use more

Strong linear correlation between E and

shear/axial frequencies

Low correlation between v and shear/axial

frequencies

4000
3500 .
3000 .
2500 *
2000 .
1500 *
1000 -
500 -

Frequency (HZ)

0 f T T

0.440 0.450 0.460 0.470 0.480 0.490

Poisson's ratio

m Laboratories



~urther Analysis: Main Effects Analysis

Main Effects Plot for Axial Mode Main Effects Plot for Shear Mode
Data Means Data Means
EMod Nu EMod Nu
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* Orthogonal array/main effects analysis verifies what we saw with
sampling: output interval is dominated by E, not v.

 Added 30 more samples, shear mode interval is [845.6, 2878.0] Hz
and axial mode interval is [1088.1, 3696.0] Hz.

* In practice, want to use more samples (10*D, where D is number of
uncertain variables) to determine output interval.
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Interval Analysis: Surrogates

Bounds obtained by Sampling a Surrogate

SHEAR MODE FREQUENCY AXIAL MODE FREQUENCY
Surrogate Type Lower Bound Upper Bound Lower Bound Upper Bound
Quadratic
Regression 871.13 2849.90 1099.85 3775.50
Mars 816.03 2880.31 1028.04 3812.84
Neural Net 814.49 2893.26 1007.02 3807.57

Bounds obtained by Optimizing a Surrogate

SHEAR MODE FREQUENCY AXIAL MODE FREQUENCY
Surrogate Type Lower Bound Upper Bound Lower Bound Upper Bound
Quadratic
Regression 865.26 2852.54 1088.54 3791.74
Mars 816.03 2882.92 1011.43 3829.90 Sounia
Neural Net 772.30 2906.90 993.58 3831.86 |I'| National _

10 Laboratories




Surrogates in UQ

* Very useful when you have an expensive computational
simulation

« UQ analyses often require running thousands of simulations, so it
is cheaper to do that on a surrogate

* You do need to understand something about the “goodness” of
your surrogate. There are a variety of diagnostic metrics to help
(R2, mean absolute error, sum-squared error, cross-validation
metrics or “leave one out”, etc.)

« Although surrogates can be useful in interval analysis, often the
surrogate is less accurate at bounds or endpoints: use caution

» Optimization can determine where minimum and maximum occur
in input space:

11

Corresponding | Corresponding | Corresponding | Corresponding
Bounding Bounding Bounding Bounding
inputs [E,v] inputs [E,v] inputs [E,v] inputs [E,v]
Quadratic
Regression at 2000,0.494 at 25000,0.45 at 2000,0.45 at 25000,0.495
Mars at 2000,0.468 at 25000,0.45 at 2000,0.45 at 25000,0.495
Neural Net at 2000, 0.465 at 25000,0.465 | at 2000,0.465 at 25000,0.495
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Dempster-Shafer Theory

Dempster-Shafer theory relaxes the assumptions of probability theory in
situations where there is little information on which to evaluate a probability
or when the information is nonspecific, ambiguous, or conflicting.

Allows for conflicting expert opinions
Allows the computational model to remain “black-box”

Epistemic uncertain input variables are modeled as sets of intervals called
belief structures.

For each uncertain input variable, one specifies “basic probability
assignment” for each potential interval where this variable may exist.

Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.2 !
Variable 1

BPA=0.5 | BPA=0.3 | BPA=0.2
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Dempster-Shafer Theory

« Two output measures: belief and plausibility

« The intervals on the inputs are propagated to calculate belief (a lower
bound on a probability value that is consistent with the evidence) and
plausibility (an upper bound on a probability value that is consistent with
the evidence).

» Together, belief and plausibility define an interval-valued probability
distribution, not a single probability distribution.
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Dempster-Shafer Results
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Poisson’s Ratio

Dempster-Shafer Analysis of Axial Mode Frequency
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'ﬂSecond-Order” Probability

* Nested sampling technique which combines epistemic and aleatory
uncertainty

* Frequently used in UQ studies and regulatory analyses (e.g. WIPP)

* For each outer loop sample of epistemic (interval) variables, run an inner
loop UQ study over aleatory (probability) variables

50 outer loop samples 1.00
— 50 CDF traces
epistemic 0.75
sampling .
o
£ 0.50-
aleatoly each discrete 3
: sampling (empirical) 0.25-
CDF: 100
: inner loop
. samples 0.00 —FFE

_________________________ ! response metric

. . . Sandia
‘“Envelope” of CDF traces represents response epistemic uncertainty ) fatonat




Second-Order Probability

« Treated E as the epistemic outer loop variable with bounds [2000,25000]

« Treated v as the aleatory inner loop variable from a triangular distribution with
mode 0.47, bounds [.45, .495]

* In practice, the epistemic variables often define parameters of aleatory
distributions (e.g. aleatory variable is normal with an unknown mean, the
unknown mean is defined by an epistemic interval). This is sometimes thought
of as “distributions on distributions” similar to Bayesian analysis.

Second-order Probability
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Second-Order Probability

* Generated 8 outer loop samples, 10 inner loop samples for a total of 80 samples

* In practice, you would need to run many more samples: this example is
dominated by E and has a very linear response so the empirical distribution
functions are nearly vertical

Second-order Probability
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Summary

 When modeling uncertainty, if there are quantities
about which you have very little information, or
you have conflicting expert opinions, and/or you
can improve your estimate with additional
information, consider using an epistemic
representation of uncertainty

* We have discussed 3 approaches for epistemic
uncertainty: intervals, Dempster-Shafer theory,
and second-order probability. There are many
more (e.g. fuzzy set theory, imprecise probability,
possibility theory, Bayesian methods).
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Summary

 UQ methods (both aleatory and epistemic) are
computationally expensive. Using surrogates can greatly
help, but results obtained with surrogates need to be used
with caution because the surrogate can be inaccurate

* The epistemic methods we discussed all place some type of
bounds on the output:
— Interval analysis: Intervals in = Intervals out. Any value in the

output interval is NOT equally likely (frequency interpretation), just
possible.

— Dempster-Shafer belief structure on the output. A particular
percentile is bounded by a belief and plausibility

— Second-order probability. Generate “families” or ensembles of
CDFs which provide bounds on percentiles.
* If output bounds are too large, perform sensitivity analysis
to see where you can do additional testing/gather more
information to reduce epistemic uncertainty.
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Questions?
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Extra Slides
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Uncertainty Quantification

Forward propagation: quantify the effect that uncertain
(nondeterministic) input variables have on model output

p

Input Variables u

(physics parameters,
geometry, initial and

boundary conditions)

(possibly given distributions)
Potential Goals:

* based on uncertain inputs, determine N samples\ 4 Output
variance of outputs and probabilities — Distributions
of failure (reliability metrics) — —

U1 —

- identify parameter correlations/local — cure 1
sensitivities, robust optima N\ = >-< meas_"re

- identify inputs whose variances : _ —
contribute most to output variance AN— measure 2
(global sensitivity analysis) uz W, \_

 quantify uncertainty when using Typical method: Monte Carlo Sampling
calibrated model to predict
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= ‘ DAKOTA Overview 86

- L e N

iterative DAKOTA

analyszs optlmlzatlon uncertainty quant ]
‘ arameter est., sensitivity analys1

Goal: answer fundamental engineering questions
 What is the best design? How safe is it?

« How much confidence do | have in my answer?
Challenges

« Software: reuse tools and common interfaces

* Algorithm R&D: nonsmooth/discontinuous/multimodal,

Safety Margin

mixed variables, unreliable gradients, costly sim. failures ——————
« Scalable parallelism: ASCI-scale apps & architectures Nominal Optimized
Impact: Tool for DOE labs and external partners, broad application
’s deployment, free via GNU GPL (~3000 download registrations) mh E*‘E'E'T:?éms




istemic Uncertainty Quantification

* Look at various combinations of intervals. In each joint interval “box”, one needs to
find the maximum and minimum value in that box (by sampling or optimization)

» Belief is a lower bound on the probability that is consistent with the evidence
* Plausibility is the upper bound on the probability that is consistent with the evidence

* Order these beliefs and plausibility to get CDFs
* Draws on the strengths of DAKOTA
— Requires surrogates

— Requires sampling and/or optimization for calculation of plausibility and belief

within each interval “cell”
— Easily parallelized

0.1 o © © ©
Variable 2 02 ® ® @
o | Aa
071 © A‘ AA
° Aol
5 3 2

24 Variable 1

@ Original LHS samples used
To generate a surrogate

Million sample points

generated from the

A surrogate, used to

determine the max and

min in each “cell” to

calculate plausibility and

belief

h
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UQ Method Comparison

UQ Method Sampling Analytic Polynomial Dempster- Second- order
Characteristics Reliability Chaos Shafer Probability
Inputs specified | YES YES YES, Only NO No for outer
by probability Wide range of | Can handle Gaussian loop; yes for
distribution distributions many common | distributions for inner

distributions many cases
Correlations YES In some cases YES NO No for outer
amongst inputs loop; yes for
inner
Number of (10-30) * M No samples (10-20)*M to be | 100K- 1Mill. 50-100 in outer

samples required | Note: the needed; number | able to solve for | Often ~100- loop *
for M uncertain | number of of function coefficients 1000 LHS (10-20)*M in
inputs samples evaluations samples are inner loop

depends on the | depends on the taken to
statistics of the | problem construct a
output formulation and surrogate, and
distribution type of the surrogate is
being resolved. | optimization sampled millions
used of times
Outputs Output Probability of Functional form | Cumulative Ensembles of
distribution failure for a of output: distribution CDFs; lower and
(CDF) with given response | Y=PCE(X). function for upper bounds on
moments level From this, one plausibility and | possible CDF
can calculate belief given epistemic
statistics of uncertainty

interest
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LHS/MC,

IS/AIS/MMALS,

Bootstrap,

ncertainty Quantification Algorithms @ SNL.:
New methods bridge robustness/efficiency gap

Gunzburger

QMC/CVT Incremental LHS Jackknife
1sY/279-order local: Global: EGRA Local:
MV/MV?Z, x/u Renaud,
AMV/AMVZ/AMV+/ Global:
AMV2+, x/u TANA, Mahadevan
FORM/SORM
gPCE: sampling, gPCE: gPCE/SC: Ghanem,
pt colloc, quad, tailored exp. arbitrary Burkardt,
sparse grid. SC: gPCE/SC: input PDFs, | laccarino,
quad, sparse grid | anisotropic adaptivity Maute, Xiu
sparse grid
Random fields/ Dimension Grigoriu,
stochastic proc. reduction Youn
Second-order Dempster-Shafer | Opt-based Bayesian, Higdon,
probability evidence theory interval est. Imprecise Williams,
probability Ferson
Importance factors, | Main effects, Stepwise Storlie
Partial correlations | Variance-based regression

decomposition




