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Epistemic vs. Aleatory Uncertainty

• EPISTEMIC
– Lack of knowledge about the appropriate value to use for a 

quantity
– Subjective uncertainty
– Reducible uncertainty:  uncertainty can be reduced through 

increased understanding (research), or increased and more 
relevant data. 

– Epistemic quantities have a fixed value in an analysis, but we 
do not know that fixed value.  

– E.g. the elastic modulus for the material in a specific 
component is presumably fixed but unknown or poorly known. 

• ALEATORY
– Uncertainty characterized by inherent randomness 
– Cannot be reduced by further data 
– Variability
– Irreducible
– E.g. the height of individuals in a population
– Usually modeled with probability distributions
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Engineering Applications Motivation

• Most computer models for engineering applications are 
developed to help assess a design or regulatory requirement.  

• The capability to quantify the impact of uncertainty in the 
decision context is critical.

– Example:  Probability (System Response > T) < 0.01

• Still want to be able to provide bounds and other information 
when epistemic uncertainty exists

• This presentation discusses 3 methods for quantifying 
epistemic uncertainty

– Interval Analysis

– Dempster-Shafer theory of evidence

– “Second-order” probability analysis

• These methods are all implemented in DAKOTA
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Structural Dynamics Example

• 3-disc model for aeroshell. 

• Outer 2 discs represent rigid masses

• Inner disc represents a layer of a filled rubber. 

• We are interested understanding the frequencies 
of the axial and shear modes for this 
experimental configuration.

• There is significant epistemic uncertainty 
associated with the material properties of the 
filled rubber.  

• We have a wide variety of tests and expert 
opinion on potential values for: 

– The modulus of elasticity. E falls within the 
interval of [2000, 25000] psi. 

– Poisson’s ratio.   falls within the interval of 
[0.45, 0.495]. 

• The simulation code used is Salinas.

• The UQ code used is DAKOTA.
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Structural Dynamics Example

• What is the range of frequencies for the axial mode and the 
shear mode given the epistemic uncertainties in E and ?
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Interval Analysis

• Specify intervals on uncertain inputs

• Determine the resulting interval on the output

• Example:  A lies within the interval [3,5] and B lies within 
the interval [4,6].  The sum C = A + B is then contained 
within the interval [7,11].

• In practice, most realistic problems are not amenable to 
analytic calculations

• Options: 

– Sample from input intervals and obtain sample of output 
interval

– Take initial samples over space, construct surrogate 
models, and query the surrogates extensively to 
understand upper and lower bounds on output

– Use optimization methods
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Interval Analysis:  Sampling

Caution:  Do not put a frequency 
interpretation on the output when 
using sampling to determine 
intervals.  Each output value is 
merely a possible or potential 
value, not a value from a 
distribution.

Simulation 
Model

Output  DistributionN samples of x

Input Distributions

N realizations of y

Simulation 
Model

Output  Interval
N samples of x

Input Intervals

N realizations of y

Probabilistic

Non-Probabilistic
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Interval Analysis:  Sampling

0

500

1000

1500

2000

2500

3000

3500

4000

0.000 10000.000 20000.000 30000.000

Elastic Modulus (psi)

F
re

q
u

e
n

c
y

 (
H

Z
)

Shear Mode Frequency

Axial Mode Frequency

0

500

1000

1500

2000

2500

3000

3500

4000

0.440 0.450 0.460 0.470 0.480 0.490

Poisson's ratio

F
re

q
u

e
n

c
y

 (
H

Z
)

Shear mode frequency interval is: 

[845.6, 2878.0] Hz, 

Axial mode frequency interval is 
[1088.1,3580.37] Hz.

Ten samples only used for initial study:  
need to use more

Strong linear correlation between E and 
shear/axial frequencies

Low correlation between  and shear/axial 
frequencies

Sample
E (Elastic 
Modulus)

Nu (Poisson's 
ratio)

Shear Mode 
Frequency

Axial Mode 
Frequency

1 6377.50 0.473 1452.47 1858.78

2 24938.67 0.455 2877.98 3580.37

3 9764.92 0.463 1799.41 2263.74

4 20550.80 0.462 2610.35 3277.82

5 14733.46 0.466 2209.13 2793.58

6 19525.95 0.488 2539.35 3333.59

7 12791.57 0.482 2055.63 2670.29

8 16942.52 0.481 2365.74 3065.20

9 7312.58 0.452 1559.74 1931.17

10 2162.54 0.476 845.62 1088.09
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Further Analysis:  Main Effects Analysis
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• Orthogonal array/main effects analysis verifies what we saw with 
sampling:  output interval is dominated by E, not . 

• Added 30 more samples, shear mode interval is [845.6, 2878.0] Hz 

and axial mode interval is [1088.1, 3696.0] Hz.

• In practice, want to use more samples (10*D, where D is number of 
uncertain variables) to determine output interval.
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Interval Analysis:  Surrogates

Generate ~ 10D samples

of computer simulation

Create Surrogate Models: 

Regression, Neural nets, 

Splines (MARS)

Sample Surrogate 

to obtain 

Interval bounds

Optimize Surrogate 

to obtain 

Interval bounds

SHEAR MODE FREQUENCY AXIAL MODE FREQUENCY

Surrogate Type Lower Bound Upper Bound Lower Bound Upper Bound
Quadratic 
Regression 871.13 2849.90 1099.85 3775.50

Mars 816.03 2880.31 1028.04 3812.84

Neural Net 814.49 2893.26 1007.02 3807.57

SHEAR MODE FREQUENCY AXIAL MODE FREQUENCY

Surrogate Type Lower Bound Upper Bound Lower Bound Upper Bound
Quadratic 
Regression 865.26 2852.54 1088.54 3791.74

Mars 816.03 2882.92 1011.43 3829.90

Neural Net 772.30 2906.90 993.58 3831.86

Bounds obtained by Sampling a Surrogate

Bounds obtained by Optimizing a Surrogate
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Surrogates in UQ

• Very useful when you have an expensive computational 
simulation

• UQ analyses often require running thousands of simulations, so it 
is cheaper to do that on a surrogate

• You do need to understand something about the “goodness” of 
your surrogate.  There are a variety of diagnostic metrics to help 
(R2, mean absolute error, sum-squared error, cross-validation 
metrics or “leave one out”, etc.)

• Although surrogates can be useful in interval analysis, often the 
surrogate is less accurate at bounds or endpoints:  use caution

• Optimization can determine where minimum and maximum occur 
in input space: 

Corresponding 
Bounding 
inputs  [E,]

Corresponding 
Bounding 
inputs  [E,]

Corresponding 
Bounding 
inputs  [E,]

Corresponding 
Bounding 
inputs  [E,]

Quadratic 
Regression at 2000,0.494 at 25000,0.45 at 2000,0.45 at 25000,0.495

Mars at 2000,0.468 at 25000,0.45 at 2000,0.45 at 25000,0.495

Neural Net at 2000, 0.465 at 25000,0.465 at 2000,0.465 at 25000,0.495
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Dempster-Shafer Theory

• Dempster-Shafer theory relaxes the assumptions of probability theory in 
situations where there is little information on which to evaluate a probability 
or when the information is nonspecific, ambiguous, or conflicting. 

• Allows for conflicting expert opinions

• Allows the computational model to remain “black-box”

• Epistemic uncertain input variables are modeled as sets of intervals called 
belief structures. 

• For each uncertain input variable, one specifies “basic probability 
assignment” for each potential interval where this variable may exist. 

• Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.5 BPA=0.2

BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2
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Dempster-Shafer Theory

• Two output measures:  belief and plausibility

• The intervals on the inputs are propagated to calculate belief (a lower 
bound on a probability value that is consistent with the evidence) and 
plausibility (an upper bound on a probability value that is consistent with 
the evidence).

• Together, belief and plausibility define an interval-valued probability 
distribution, not a single probability distribution. 
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Dempster-Shafer Results
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Dempster-Shafer Analysis of Axial Mode Frequency
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“Second-Order” Probability

• Nested sampling technique which combines epistemic and aleatory 
uncertainty

• Frequently used in UQ studies and regulatory analyses (e.g. WIPP)

• For each outer loop sample of epistemic (interval) variables, run an inner 
loop UQ study over aleatory (probability) variables
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“Envelope” of CDF traces represents response epistemic uncertainty 

epistemic
sampling

aleatory
sampling

simulation

50 outer loop samples
→ 50 CDF traces

each discrete 
(empirical) 
CDF: 100 
inner loop 
samples
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Second-Order Probability

Second-order Probability
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• Treated E as the epistemic outer loop variable with bounds [2000,25000]

• Treated  as the aleatory inner loop variable from a triangular distribution with 
mode 0.47, bounds [.45, .495]

• In practice, the epistemic variables often define parameters of aleatory 
distributions (e.g. aleatory variable is normal with an unknown mean, the 
unknown mean is defined by an epistemic interval).  This is sometimes thought 
of as “distributions on distributions” similar to Bayesian analysis.
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Second-Order Probability

• Generated 8 outer loop samples, 10 inner loop samples for a total of 80 samples

• In practice, you would need to run many more samples: this example is 
dominated by E and has a very linear response so the empirical distribution 
functions are nearly vertical 

Second-order Probability
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Summary

• When modeling uncertainty, if there are quantities 
about which you have very little information, or 
you have conflicting expert opinions, and/or you 
can improve your estimate with additional 
information, consider using an epistemic 
representation of uncertainty

• We have discussed 3 approaches for epistemic 
uncertainty:  intervals, Dempster-Shafer theory, 
and second-order probability.  There are many 
more (e.g. fuzzy set theory, imprecise probability, 
possibility theory, Bayesian methods).  
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Summary

• UQ methods (both aleatory and epistemic) are 
computationally expensive.  Using surrogates can greatly 
help, but results obtained with surrogates need to be used 
with caution because the surrogate can be inaccurate

• The epistemic methods we discussed all place some type of 
bounds on the output: 
– Interval analysis:  Intervals in  Intervals out.  Any value in the 

output interval is NOT equally likely (frequency interpretation), just 
possible. 

– Dempster-Shafer belief structure on the output.  A particular 
percentile is bounded by a belief and plausibility

– Second-order probability.  Generate “families” or ensembles of 
CDFs which provide bounds on percentiles.

• If output bounds are too large, perform sensitivity analysis 
to see where you can do additional testing/gather more 
information to reduce epistemic uncertainty.
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Questions?
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Extra Slides
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• based on uncertain inputs, determine 
variance of outputs and probabilities 
of failure (reliability metrics)

• identify parameter correlations/local 
sensitivities, robust optima

• identify inputs whose variances 
contribute most to output variance 
(global sensitivity analysis)

• quantify uncertainty when using 
calibrated model to predict

Uncertainty Quantification

Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

Potential Goals:

Input Variables u
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational
Model

Variable 
Performance
Measures f(u)

(possibly given distributions)

Output 
Distributions

N samples

measure 1

measure 2

Model

Typical method: Monte Carlo Sampling

u1

u2

u3
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DAKOTA Overview

Goal: answer fundamental engineering questions

• What is the best design?  How safe is it?

• How much confidence do I have in my answer?

Challenges

• Software: reuse tools and common interfaces

• Algorithm R&D: nonsmooth/discontinuous/multimodal, 
mixed variables, unreliable gradients, costly sim. failures

• Scalable parallelism: ASCI-scale apps & architectures

Impact: Tool for DOE labs and external partners, broad application 
deployment, free via GNU GPL (~3000 download registrations)

Nominal Optimized

iterative 
analysis…

Computational Model
• Black box: Sandia or commercial 

simulation codes
• Semi-intrusive: SIERRA multi-physics,

SALINAS, Xyce, Matlab, ModelCenter

response 
metrics

DAKOTA
optimization, uncertainty quant, 

parameter est., sensitivity analysis
parameters
(design, UC, 

state)
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Epistemic Uncertainty Quantification

• Look at various combinations of intervals.  In each joint interval “box”, one needs to 
find the maximum and minimum value in that box (by sampling or optimization)

• Belief is a lower bound on the probability that is consistent with the evidence

• Plausibility is the upper bound on the probability that is consistent with the evidence

• Order these beliefs and plausibility to get CDFs

• Draws on the strengths of DAKOTA

– Requires surrogates

– Requires sampling and/or optimization for calculation of plausibility and belief 
within each interval “cell” 

– Easily parallelized

Variable 1

Variable 2

.5 .3 .2

0.1

0.2

0.7

Original LHS samples used 
To generate a surrogate

Million sample points 
generated from the 
surrogate, used to 
determine the max and 
min in each “cell” to 
calculate plausibility and 
belief
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UQ Method Comparison

UQ Method
Characteristics

Sampling Analytic 
Reliability 

Polynomial 
Chaos

Dempster-
Shafer

Second- order 
Probability

Inputs specified 
by probability 
distribution

YES
Wide range of 
distributions

YES
Can handle 
many common 
distributions

YES, Only 
Gaussian
distributions for 
many cases

NO No for outer 
loop; yes for 
inner

Correlations 
amongst inputs

YES In some cases YES NO No for outer 
loop; yes for 
inner

Number of 
samples required 
for M uncertain 
inputs

(10-30) * M
Note: the 
number of 
samples 
depends on the 
statistics of the 
output 
distribution 
being resolved. 

No samples 
needed; number 
of function 
evaluations 
depends on the 
problem 
formulation and 
type of 
optimization 
used

(10-20)*M to be 
able to solve for 
coefficients

100K- 1Mill.
Often ~100-
1000 LHS 
samples are 
taken to 
construct a 
surrogate, and 
the surrogate is 
sampled millions 
of times

50-100 in outer 
loop *
(10-20)*M in 
inner loop

Outputs Output 
distribution 
(CDF) with 
moments

Probability of 
failure for a 
given response 
level

Functional form 
of output:  
Y=PCE(X). 
From this, one 
can calculate 
statistics of 
interest

Cumulative 
distribution 
function for 
plausibility and 
belief

Ensembles of 
CDFs; lower and 
upper bounds on 
possible CDF 
given epistemic 
uncertainty
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Uncertainty Quantification Algorithms @ SNL:
New methods bridge robustness/efficiency gap

Production New Under dev. Planned Collabs.

Sampling LHS/MC, 
QMC/CVT

IS/AIS/MMAIS, 
Incremental LHS

Bootstrap, 
Jackknife

Gunzburger

Reliability 1st/2nd-order local:
MV/MV2, x/u 
AMV/AMV2/AMV+/
AMV2+, x/u TANA, 
FORM/SORM

Global: EGRA Local:
Renaud, 
Global:
Mahadevan

Stochastic 
expansion

gPCE: sampling, 
pt colloc, quad, 
sparse grid. SC:
quad, sparse grid

gPCE:
tailored exp. 
gPCE/SC: 
anisotropic 
sparse grid

gPCE/SC:
arbitrary 
input PDFs, 
adaptivity

Ghanem, 
Burkardt, 
Iaccarino, 
Maute, Xiu

Other 
probabilistic

Random fields/ 
stochastic proc.

Dimension 
reduction

Grigoriu, 
Youn

Epistemic Second-order 
probability

Dempster-Shafer 
evidence theory

Opt-based 
interval est.

Bayesian, 
Imprecise 
probability 

Higdon, 
Williams, 
Ferson

Metrics Importance factors, 
Partial correlations

Main effects, 
Variance-based 
decomposition

Stepwise 
regression

Storlie


