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This paper provides a performance evalution of the CataimideMvay (CNW) operating system on a dual-socket
guad-core XT5 platform. CNW provides several operatingesyslevel enhancements for multicore processors,
including the SMARTMAP technology for single-copy MPI magss and the ability to easily choose between 4
KB and 2 MB memory pages. Our evaluation will include an asiglyf the performance of important micro-
benchmarks and applications.

I. INTRODUCTION

Catamount is a third-generation lightweight compute nogerating system [1] developed by Sandia National
Laboratories along with Cray, Inc., as part of the Red Stdthpfoject. Red Storm was a collaborative development
between Sandia and Cray that has resulted in the commegrsiadicessful Cray XT series of massively parallel
computers.

The Catamount lightweight kernel differs in many ways fromnaaitional general-purpose operating system. One
important difference is memory management. Unlike gerguabose operating systems that support demand paging,
Catamount’s memory model is significantly less complex dimiva for several key optimizations for distributed
memory parallel computing applications. One such featBMARTMAP [3], allows MPI processes running on a
multi-core processor to directly read and write each othmesmory. This capability has been shown to provide
several significant performance improvements for intrdendata movement on dual- and quad-core processors.

Recently, we have completed an initial port of Catamounthi® €ray XT5 system, where a compute node
has dual sockets and each node contains a quad-core AMDddppeocessor. We present results from several
communication micro-benchmarks that measure both thepeance of point-to-point and collective operations.

The rest of this paper is organized as follows. The nextsegrovides a brief overview of Catamount. Section IlI
provides performance results for several micro-benchesdddlowed by a summary of relevant results and futre
work in Section IV.

II. CATAMOUNT

Catamount [1] is a third-generation compute node operatyrsgem developed by Sandia National Laboratories
with Cray, Inc., as part of the Red Storm project [2]. Red ®tds the prototype for what has become the
commercially successful Cray XT line of massively parafjebcessing systems. Catamount has several unique
features that are designed to optimize performance andlstigl specifically for a distributed memory message
passing-based parallel computing platform.

One such important feature is memory management. Unlikitivaal full-featured operating systems, Catamount
does not support demand-paged virtual memory and usesa limgpping from virtual addresses to physical pages
of memory. This approach can potentially have several adgas. For instance, there is no need to register memory
or “lock” memory pages involved in network transfers to pmetthe operating system from unmapping or remapping
pages. The mapping in Catamount is done at process creaierahd is never changed during the life of a process.

SMARTMAP takes advantage of Catamount’s simple memory mament model, specifically the fact that
Catamount only uses a single entry in the top-level page tatapping structure (PML4) on each X86-64 (AMD
Opteron or Intel EM64T) core. Each PML4 slot covers 39 bitadfiress space, or 512 GB of memory. Normally,
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Fig. 1: SHMEM Put Performance

Catamount only uses the first entry covering physical adéedn the rang®x0 to 0x007FFFFFFFFF. The
X86-64 architecture supports a 48-bit address space, se #ne 512 entries in the PMLA4.

Each core writes the pointer to its PML4 table into an arragaae 0 when a new parallel job is started. Each
time the kernel enters the routine to run the user-level ggscit copies all of the PML4 entries from each core
into the local core. This allows every core on a node to seeyester core’s view of the virtual memory across
the node, at a fixed offset into its own virtual address space.

Another feature of Catamount is that the mapping of virtuldrasses for the same executable image is identical
across all of the processes on all of the nodes. The startidgess of the data, stack, and heap is the same.
This means that the virtual address of a variable with glsieape is the same in every process. A “local” virtual
addresses can be converted to a “remote” virtual addressnigylysflipping a few bits at the upper part of the
address. This makes it extremely easy for one process toarghdrite the corresponding data in another process’s
address space running on a different core of the same paycess

Catamount’s memory management design is much simpler tlgmeral-purpose OS like Linux. Linux memory
management is based on the principle that processes exacdifferent address spaces and threads execute in
the same address space. Most architecture ports, X86-64ded; maintain a unique set of address translation
structures (e.g., a page table tree on X86-64) for each psoard a single set for each group of threads. Our
mapping strategy operates differently in that a processtéress space and associated translation structures are
neither fully-unique or fully-shared. For example, our nmapthe X86-64 architecture maintains a unique top-level
page table (the PML4) for each process; however, all preseshare a common set of leaves linked from this
top-level table. Linux memory management does not suppa&tform of page-table sharing, so each process must
be given a replicated copy of each shareable leaf. Thisteegulmore memory being wasted on page tables (2
MB per GB of address space on X86-64) and a larger cache fobthan necessary. Maodifications to Linux to
support sharing a single page table entry for shared memapped regions have been proposed, but the changes
have not been accepted in the mainline kernel.

Ill. RESULTS

In addition to the dual-socket quad-core node running Catarf) we also include performance results from a
2.1 GHz single-socket AMD Opteron running Cray’s Computed®d.inux Environment (CLE) and production
MPICH2 implementation that uses shared memory for intrdentbansfers.

A. SHMEM Performance

Figure 1 compares the ping-pong latency and bandwidth pagoce for a Cray SHMEM put operation. Single-
byte latency for the SMARTMAP implementation is 210 ns, whihe Portals latency is 2.bs. Curiously, the
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performance of CLE/MPICH2 is significantly worse at {:6. As for bandwidth, SMARTMAP is able to achieve
a peak bandwidth of nearly 1500 MB/s, while the two Portalsda transports only achieve a little more than 300
MB/s.

B. MPI Point-to-Point

Figure 2 shows the performance of MPI peer communicatiofopeance using the MPI implementation describe
in [4]. MPI ping-pong latency for a 0-byte message is a littlere than 600 ns. The CLE/MPICHZ2 implementation
for the Cray CLE environment is slightly better at just ov@0S;s, but these results were run on a slightly slower
processor. The Open MPI implementation has not gone thrthglextensive performance optimizations that the
production MPI from Cray has. Using POSIX-style shared mgnamulated by SMARTMAP is slightly slower,
but still achieves a ping-pong latency less than a micraseco

As with latency, ping-pong bandwidth performance for theyYCCLE implementation is slightly better than
SMARTMAP out to 64 bytes, at which point the SMARTMAP implemation begins to win. The single-copy
advantage of SMARTMAP allows it to maintain a performanceaadage for messages less than about 2 MB, at
which point all implementations most likely achieve full mery bandwidth.

The other two benchmarks in Figure 2, Sendrecv and Exchahge; the performance of 8 processes exchanging
point-to-point messages using slightly different MPI pe@mmunication functions. Each graph shows the percentage
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Fig. 3: MPI Message Rate

improvement of SMARTMAP relative to shared memory. For Send, SMARTMAP is able to achieve more than
a factor of six improvement for 32 KB messages, and SMARTMARieves more than a seven times improvement
at 128 KB messages for the Exchange benchmark.

Figure 3 shows message rate performance for one, two, amdpfirs of processes. The first two graphs also
show the performance of the Cray CLE MPICH implementationiclv has the worst performance of the three. The
SMARTMAP implementation is able to achieve more than twite ihessage rate of the Cray implementation. More
investigation is needed to understand why this implemamtgierforms so poorly. The message rate essentially
stays constant between one and two pairs of communicatowgpses. In contrast, the SMARTMAP implementation
continues to increase in performance, achieving nearlyrilllon messages per second for 4 pairs of processes.

C. MPI Collectives

Figure 4 shows the performance of several MPI collective momication operations for eight processes on a
single node. For the Broadcast benchmark, SMARTMAP is abkchieve nearly 18 times better performance over
the shared memory implementation. The advantage is noyresapronounced for the Reduce, where SMARTMAP
only achieves nearly nine times the performance. For theedlice benchmark, SMARTMAP is able to achieve a
respectable factor of three improvement, but for Allto8IMARTMAP outperforms shared memory by nearly 12
times. Finally, SMARTMAP also significantly outperformsetiothers for the Barrier benchmark.
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IV. SUMMARY

This paper provides an initial set of performance resultsséweral communication micro-benchmarks using the
Catamount N-Way lightweight kernel on a dual-socket quaigt@iode of a Cray XT5 system. Catamount provides
a feature called SMARTMAP that allows for single-copy datansfers between the processes on a multi-core
processor. SMARTMAP preserves the independent addresg saa process, but also allows parallel processes
to behave as threads in a node-wide global address spaceadivhatage of SMARTMAP for Cray SHMEM and
MPI communication continues to improve as the number ofsorea node increase.

These performance results were from an initial port of théa@aunt N-Way kernel. There is much left work
to be done for a production environment. Currently Catamalaes not take into account the fact that each socket
has its own local memory. Catamount assumes the cost of @iegememory is uniform. In the future, we plan
to make the initial allocation and assignment of local mgmswcket-aware. We would also like to perform an
in-depth analysis of application performance on dual-sbdodes.
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