
Catamount N-Way Performance on XT5
Ron Brightwell, Suzanne Kelly, Jeff Crow

Scable System Software Department
Sandia National Laboratories

Albuquerque, New Mexico 81785–1319
{rbbrigh,smkelly,jecrow}@sandia.gov

Trammell Hudson
Operating Systems Research

1527 16th NW #5
Washington, DC 20036
hudson@osresearch.net

This paper provides a performance evalution of the Catamount N-Way (CNW) operating system on a dual-socket
quad-core XT5 platform. CNW provides several operating system-level enhancements for multicore processors,
including the SMARTMAP technology for single-copy MPI messages and the ability to easily choose between 4
KB and 2 MB memory pages. Our evaluation will include an analysis of the performance of important micro-
benchmarks and applications.

I. I NTRODUCTION

Catamount is a third-generation lightweight compute node operating system [1] developed by Sandia National
Laboratories along with Cray, Inc., as part of the Red Storm [2] project. Red Storm was a collaborative development
between Sandia and Cray that has resulted in the commercially successful Cray XT series of massively parallel
computers.

The Catamount lightweight kernel differs in many ways from atraditional general-purpose operating system. One
important difference is memory management. Unlike general-purpose operating systems that support demand paging,
Catamount’s memory model is significantly less complex and allows for several key optimizations for distributed
memory parallel computing applications. One such feature,SMARTMAP [3], allows MPI processes running on a
multi-core processor to directly read and write each others’ memory. This capability has been shown to provide
several significant performance improvements for intra-node data movement on dual- and quad-core processors.

Recently, we have completed an initial port of Catamount to the Cray XT5 system, where a compute node
has dual sockets and each node contains a quad-core AMD Opteron processor. We present results from several
communication micro-benchmarks that measure both the performance of point-to-point and collective operations.

The rest of this paper is organized as follows. The next section provides a brief overview of Catamount. Section III
provides performance results for several micro-benchmarks, followed by a summary of relevant results and futre
work in Section IV.

II. CATAMOUNT

Catamount [1] is a third-generation compute node operatingsystem developed by Sandia National Laboratories
with Cray, Inc., as part of the Red Storm project [2]. Red Storm is the prototype for what has become the
commercially successful Cray XT line of massively parallelprocessing systems. Catamount has several unique
features that are designed to optimize performance and scalability specifically for a distributed memory message
passing-based parallel computing platform.

One such important feature is memory management. Unlike traditional full-featured operating systems, Catamount
does not support demand-paged virtual memory and uses a linear mapping from virtual addresses to physical pages
of memory. This approach can potentially have several advantages. For instance, there is no need to register memory
or “lock” memory pages involved in network transfers to prevent the operating system from unmapping or remapping
pages. The mapping in Catamount is done at process creation time and is never changed during the life of a process.

SMARTMAP takes advantage of Catamount’s simple memory management model, specifically the fact that
Catamount only uses a single entry in the top-level page table mapping structure (PML4) on each X86-64 (AMD
Opteron or Intel EM64T) core. Each PML4 slot covers 39 bits ofaddress space, or 512 GB of memory. Normally,

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2009-3205C

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (bytes)

SMARTMAP
Portals

Portals CLE

(a) Latency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200

M
B

/s

Message Size (bytes)

SMARTMAP
Portals

Portals CLE

(b) Bandwidth

Fig. 1: SHMEM Put Performance

Catamount only uses the first entry covering physical addresses in the range0x0 to 0x007FFFFFFFFF. The
X86-64 architecture supports a 48-bit address space, so there are 512 entries in the PML4.

Each core writes the pointer to its PML4 table into an array atcore 0 when a new parallel job is started. Each
time the kernel enters the routine to run the user-level process, it copies all of the PML4 entries from each core
into the local core. This allows every core on a node to see every other core’s view of the virtual memory across
the node, at a fixed offset into its own virtual address space.

Another feature of Catamount is that the mapping of virtual addresses for the same executable image is identical
across all of the processes on all of the nodes. The starting address of the data, stack, and heap is the same.
This means that the virtual address of a variable with globalscope is the same in every process. A “local” virtual
addresses can be converted to a “remote” virtual address by simply flipping a few bits at the upper part of the
address. This makes it extremely easy for one process to readand write the corresponding data in another process’s
address space running on a different core of the same processor.

Catamount’s memory management design is much simpler than ageneral-purpose OS like Linux. Linux memory
management is based on the principle that processes executein different address spaces and threads execute in
the same address space. Most architecture ports, X86-64 included, maintain a unique set of address translation
structures (e.g., a page table tree on X86-64) for each process and a single set for each group of threads. Our
mapping strategy operates differently in that a process’s address space and associated translation structures are
neither fully-unique or fully-shared. For example, our mapon the X86-64 architecture maintains a unique top-level
page table (the PML4) for each process; however, all processes share a common set of leaves linked from this
top-level table. Linux memory management does not support this form of page-table sharing, so each process must
be given a replicated copy of each shareable leaf. This results in more memory being wasted on page tables (2
MB per GB of address space on X86-64) and a larger cache footprint than necessary. Modifications to Linux to
support sharing a single page table entry for shared memory mapped regions have been proposed, but the changes
have not been accepted in the mainline kernel.

III. R ESULTS

In addition to the dual-socket quad-core node running Catamount, we also include performance results from a
2.1 GHz single-socket AMD Opteron running Cray’s Compute Node Linux Environment (CLE) and production
MPICH2 implementation that uses shared memory for intra-node transfers.

A. SHMEM Performance

Figure 1 compares the ping-pong latency and bandwidth performance for a Cray SHMEM put operation. Single-
byte latency for the SMARTMAP implementation is 210 ns, while the Portals latency is 2.5µs. Curiously, the

2

 0.1

 1

 10

 100

 1000

 10000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

T
im

e
(m

ic
ro

se
co

nd
s)

Message size (bytes)

BTL - Shared Memory
MTL - SMARTMAP

MPICH2 CLE

(a) MPI PingPong Latency

 0.1

 1

 10

 100

 1000

 10000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

M
B

/s

Message size (bytes)

BTL - Shared Memory
MTL - SMARTMAP

MPICH2 CLE

(b) MPI PingPong Bandwidth

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
0

100

200

300

400

500

600

700

800

T
im

e
(m

ic
ro

se
co

nd
s)

%
 Im

pr
ov

em
en

t (
S

M
A

R
T

M
A

P
 C

ol
le

ct
iv

e
vs

. S
ha

re
d

M
em

or
y)

Message size (bytes)

BTL - Shared Memory
MTL - SMARTMAP

% Improvement

(c) MPI Exchange

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
0

100

200

300

400

500

600

700

T
im

e
(m

ic
ro

se
co

nd
s)

%
 Im

pr
ov

em
en

t (
S

M
A

R
T

M
A

P
 C

ol
le

ct
iv

e
vs

. S
ha

re
d

M
em

or
y)

Message size (bytes)

BTL - Shared Memory
MTL - SMARTMAP

% Improvement

(d) MPI Sendrecv

Fig. 2: IMB MPI Point-to-Point Results

performance of CLE/MPICH2 is significantly worse at 7.6µs. As for bandwidth, SMARTMAP is able to achieve
a peak bandwidth of nearly 1500 MB/s, while the two Portals-based transports only achieve a little more than 300
MB/s.

B. MPI Point-to-Point

Figure 2 shows the performance of MPI peer communication performance using the MPI implementation describe
in [4]. MPI ping-pong latency for a 0-byte message is a littlemore than 600 ns. The CLE/MPICH2 implementation
for the Cray CLE environment is slightly better at just over 500 ns, but these results were run on a slightly slower
processor. The Open MPI implementation has not gone throughthe extensive performance optimizations that the
production MPI from Cray has. Using POSIX-style shared memory emulated by SMARTMAP is slightly slower,
but still achieves a ping-pong latency less than a microsecond.

As with latency, ping-pong bandwidth performance for the Cray CLE implementation is slightly better than
SMARTMAP out to 64 bytes, at which point the SMARTMAP implementation begins to win. The single-copy
advantage of SMARTMAP allows it to maintain a performance advantage for messages less than about 2 MB, at
which point all implementations most likely achieve full memory bandwidth.

The other two benchmarks in Figure 2, Sendrecv and Exchange,show the performance of 8 processes exchanging
point-to-point messages using slightly different MPI peercommunication functions. Each graph shows the percentage

3

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 1 10 100 1000 10000 100000 1e+06 1e+07

M
es

sa
ge

s/
S

ec
on

d

Message Size (Bytes)

BTL - Shared Memory
MTL - SMARTMAP

MPICH2 - Jaguar

(a) One pair

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 1 10 100 1000 10000 100000 1e+06 1e+07

M
es

sa
ge

s/
S

ec
on

d

Message Size (Bytes)

BTL - Shared Memory
MTL - SMARTMAP

MPICH2 - Jaguar

(b) Two pairs

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 1 10 100 1000 10000 100000 1e+06 1e+07

M
es

sa
ge

s/
S

ec
on

d

Message Size (Bytes)

BTL - Shared Memory
MTL - SMARTMAP

(c) Four pairs

Fig. 3: MPI Message Rate

improvement of SMARTMAP relative to shared memory. For Sendrecv, SMARTMAP is able to achieve more than
a factor of six improvement for 32 KB messages, and SMARTMAP achieves more than a seven times improvement
at 128 KB messages for the Exchange benchmark.

Figure 3 shows message rate performance for one, two, and four pairs of processes. The first two graphs also
show the performance of the Cray CLE MPICH implementation, which has the worst performance of the three. The
SMARTMAP implementation is able to achieve more than twice the message rate of the Cray implementation. More
investigation is needed to understand why this implementation performs so poorly. The message rate essentially
stays constant between one and two pairs of communicating processes. In contrast, the SMARTMAP implementation
continues to increase in performance, achieving nearly 7.5million messages per second for 4 pairs of processes.

C. MPI Collectives

Figure 4 shows the performance of several MPI collective communication operations for eight processes on a
single node. For the Broadcast benchmark, SMARTMAP is able to achieve nearly 18 times better performance over
the shared memory implementation. The advantage is not nearly as pronounced for the Reduce, where SMARTMAP
only achieves nearly nine times the performance. For the Allreduce benchmark, SMARTMAP is able to achieve a
respectable factor of three improvement, but for Alltoall,SMARTMAP outperforms shared memory by nearly 12
times. Finally, SMARTMAP also significantly outperforms the others for the Barrier benchmark.

4

 0.1

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
0

500

1000

1500

1800

T
im

e
(M

ic
ro

se
co

nd
s)

%
 Im

pr
ov

em
en

t (
S

M
A

R
T

M
A

P
 P

ar
al

le
l v

s.
 S

ha
re

d
M

em
or

y)

Message Size (Bytes)

BTL - Shared Memory
SMARTMAP

SMARTMAP Collective
% Improvement

(a) MPI Broadcast

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
0

500

1000

T
im

e
(M

ic
ro

se
co

nd
s)

%
 Im

pr
ov

em
en

t (
S

M
A

R
T

M
A

P
 P

ar
al

le
l v

s.
 S

ha
re

d
M

em
or

y)

Message Size (Bytes)

BTL - Shared Memory
SMARTMAP

SMARTMAP Collective
% Improvement

(b) MPI Reduce

 1

 10

 100

 1000

 10000

 100000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M
0

100

200

300

400

T
im

e
(M

ic
ro

se
co

nd
s)

%
 Im

pr
ov

em
en

t (
S

M
A

R
T

M
A

P
 C

ol
le

ct
iv

e
vs

. S
ha

re
d

M
em

or
y)

Message Size (Bytes)

BTL - Shared Memory
SMARTMAP

SMARTMAP Collective
% Improvement

(c) MPI Allreduce

 1

 10

 100

 1000

 10000

 100000

 1e+06

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

T
im

e
(M

ic
ro

se
co

nd
s)

%
 Im

pr
ov

em
en

t (
S

M
A

R
T

M
A

P
 C

ol
le

ct
iv

e
vs

. S
ha

re
d

M
em

or
y)

Message Size (Bytes)

BTL - Shared Memory
SMARTMAP

SMARTMAP Collective
% Improvement

(d) MPI Alltoall

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

2 4 8

T
im

e
(m

ic
ro

se
co

nd
s)

Processes

mtl-smap
btl-sm

smap-coll
mpich2-cle

(e) MPI Barrier

Fig. 4: IMB MPI Collective Performance

5

IV. SUMMARY

This paper provides an initial set of performance results for several communication micro-benchmarks using the
Catamount N-Way lightweight kernel on a dual-socket quad-core node of a Cray XT5 system. Catamount provides
a feature called SMARTMAP that allows for single-copy data transfers between the processes on a multi-core
processor. SMARTMAP preserves the independent address space of a process, but also allows parallel processes
to behave as threads in a node-wide global address space. Theadvantage of SMARTMAP for Cray SHMEM and
MPI communication continues to improve as the number of cores on a node increase.

These performance results were from an initial port of the Catamount N-Way kernel. There is much left work
to be done for a production environment. Currently Catamount does not take into account the fact that each socket
has its own local memory. Catamount assumes the cost of accessing memory is uniform. In the future, we plan
to make the initial allocation and assignment of local memory socket-aware. We would also like to perform an
in-depth analysis of application performance on dual-socket nodes.

REFERENCES

[1] S. M. Kelly and R. Brightwell, “Software architecture ofthe light weight kernel, Catamount,” inProceedings of the 2005 Cray User Group
Annual Technical Conference, May 2005.

[2] W. J. Camp and J. L. Tomkins, “Thor’s hammer: The first version of the Red Storm MPP architecture,” inIn Proceedings of the SC 2002
Conference on High Performance Networking and Computing, Baltimore, MD, November 2002.

[3] R. Brightwell, T. Hudson, and K. Pedretti, “SMARTMAP: Operating system support for efficient data sharing among processes on a
multi-core processor,” inProceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis
(SC’08), November 2008.

[4] R. Brightwell, “A prototype implementation of MPI for SMARTMAP,” in Proceedings of the 15th European PVM/MPI Users’ Group
Conference, September 2008.

6

