SAND2009- 3205C

Catamount N-Way Performance on XT5

Ron Brightwell, Suzanne Kelly, Jeff Crow Trammell Hudson
Scable System Software Department Operating Systems Research
Sandia National Laboratories 1527 16th NW #5
Albuquerque, New Mexico 81785-1319 Washington, DC 20036
{rbbrigh,smkelly,jecroj@sandia.gov hudson@osresearch.net

This paper provides a performance evalution of the CataimideMvay (CNW) operating system on a dual-socket
guad-core XT5 platform. CNW provides several operatingesyslevel enhancements for multicore processors,
including the SMARTMAP technology for single-copy MPI magss and the ability to easily choose between 4
KB and 2 MB memory pages. Our evaluation will include an asiglyf the performance of important micro-
benchmarks and applications.

I. INTRODUCTION

Catamount is a third-generation lightweight compute nogerating system [1] developed by Sandia National
Laboratories along with Cray, Inc., as part of the Red Stdthpfoject. Red Storm was a collaborative development
between Sandia and Cray that has resulted in the commegrsiadicessful Cray XT series of massively parallel
computers.

The Catamount lightweight kernel differs in many ways fromnaaitional general-purpose operating system. One
important difference is memory management. Unlike gerguabose operating systems that support demand paging,
Catamount’s memory model is significantly less complex dimiva for several key optimizations for distributed
memory parallel computing applications. One such featBMARTMAP [3], allows MPI processes running on a
multi-core processor to directly read and write each othmesmory. This capability has been shown to provide
several significant performance improvements for intrdendata movement on dual- and quad-core processors.

Recently, we have completed an initial port of Catamounthi® €ray XT5 system, where a compute node
has dual sockets and each node contains a quad-core AMDddppeocessor. We present results from several
communication micro-benchmarks that measure both thepeance of point-to-point and collective operations.

The rest of this paper is organized as follows. The nextsegrovides a brief overview of Catamount. Section IlI
provides performance results for several micro-benchesdddlowed by a summary of relevant results and futre
work in Section IV.

II. CATAMOUNT

Catamount [1] is a third-generation compute node operatyrsgem developed by Sandia National Laboratories
with Cray, Inc., as part of the Red Storm project [2]. Red ®tds the prototype for what has become the
commercially successful Cray XT line of massively parafjebcessing systems. Catamount has several unique
features that are designed to optimize performance andlstigl specifically for a distributed memory message
passing-based parallel computing platform.

One such important feature is memory management. Unlikitivaal full-featured operating systems, Catamount
does not support demand-paged virtual memory and usesa limgpping from virtual addresses to physical pages
of memory. This approach can potentially have several adgas. For instance, there is no need to register memory
or “lock” memory pages involved in network transfers to pmetthe operating system from unmapping or remapping
pages. The mapping in Catamount is done at process creaierahd is never changed during the life of a process.

SMARTMAP takes advantage of Catamount’s simple memory mament model, specifically the fact that
Catamount only uses a single entry in the top-level page tatapping structure (PML4) on each X86-64 (AMD
Opteron or Intel EM64T) core. Each PML4 slot covers 39 bitadfiress space, or 512 GB of memory. Normally,

Sandia is a multiprogram laboratory operated by Sandia @atjn, a Lockheed Martin Company, for the United Statepdbenent of
Energy’s National Nuclear Security Administration undentract DE-AC04-94AL85000.

1600

9

SMARTMAP —7— ' ' ' ' SMARTMAP —7—
Portals Portals

8 | Portals CLE ---%:--- Portals CLE ---%---

1400

1200

1000

800

600

Latency (Microseconds)
MB/s

400 /
oL i ®

RS /
PR A A A S A A N .

AN S e
|

0 I I I I 0 i L I I I
0 200 400 600 800 1000 0 200 400 600 800 1000 1200

Message Size (bytes) Message Size (bytes)

(a) Latency (b) Bandwidth
Fig. 1: SHMEM Put Performance

Catamount only uses the first entry covering physical adéedn the rang®x0 to 0x007FFFFFFFFF. The
X86-64 architecture supports a 48-bit address space, se #ne 512 entries in the PMLA4.

Each core writes the pointer to its PML4 table into an arragaae 0 when a new parallel job is started. Each
time the kernel enters the routine to run the user-level ggscit copies all of the PML4 entries from each core
into the local core. This allows every core on a node to seeyester core’s view of the virtual memory across
the node, at a fixed offset into its own virtual address space.

Another feature of Catamount is that the mapping of virtuldrasses for the same executable image is identical
across all of the processes on all of the nodes. The startidgess of the data, stack, and heap is the same.
This means that the virtual address of a variable with glsieape is the same in every process. A “local” virtual
addresses can be converted to a “remote” virtual addressnigylysflipping a few bits at the upper part of the
address. This makes it extremely easy for one process toarghdrite the corresponding data in another process’s
address space running on a different core of the same paycess

Catamount’s memory management design is much simpler tlgmeral-purpose OS like Linux. Linux memory
management is based on the principle that processes exacdifferent address spaces and threads execute in
the same address space. Most architecture ports, X86-64ded; maintain a unique set of address translation
structures (e.g., a page table tree on X86-64) for each psoard a single set for each group of threads. Our
mapping strategy operates differently in that a processtéress space and associated translation structures are
neither fully-unique or fully-shared. For example, our nmapthe X86-64 architecture maintains a unique top-level
page table (the PML4) for each process; however, all preseshare a common set of leaves linked from this
top-level table. Linux memory management does not suppa&tform of page-table sharing, so each process must
be given a replicated copy of each shareable leaf. Thisteegulmore memory being wasted on page tables (2
MB per GB of address space on X86-64) and a larger cache fobthan necessary. Maodifications to Linux to
support sharing a single page table entry for shared memapped regions have been proposed, but the changes
have not been accepted in the mainline kernel.

Ill. RESULTS

In addition to the dual-socket quad-core node running Catarf) we also include performance results from a
2.1 GHz single-socket AMD Opteron running Cray’s Computed®d.inux Environment (CLE) and production
MPICH2 implementation that uses shared memory for intrdentbansfers.

A. SHMEM Performance

Figure 1 compares the ping-pong latency and bandwidth pagoce for a Cray SHMEM put operation. Single-
byte latency for the SMARTMAP implementation is 210 ns, whihe Portals latency is 2.bs. Curiously, the

10000 10000

BTL - Shared Memory —+— BTL - Shared Memory —+—
MTL - SMARTMAP MTL - SMARTMAP
MPICH2 CLE ---%-- MPICH2 CLE ---%-- Kok

¥

/ IR S
I
1000 =

7 -

100 / ; 100 -
10 A 10 &
U S S . /

0.1 0.1
4 16 64 256 1K 4K 16K 64K 256K ™M 4m 4 16 64 256 1K 4K 16K 64K 256K im aMm

Message size (bytes) Message size (bytes)

(a) MPI PingPong Latency (b) MPI PingPong Bandwidth

1000

MB/s

Time (microseconds)

700

100000 800 100000
BTL - Shared Memory —+—
MTL - SMARTMAP

BTL - Shared Memory —+—
MTL - SMARTMAP
%

Improvement

% Improvement -- -%- - *

- 600

10000 ity
;b
I / - s00

10000

1000

1000 < 100

ji | - 300

;! / : - 200
10 % :
/ : - 100

¢

7
v k

Time (microseconds)

.
1Y
S}

=
o
S

P
10 /42 *

Pt S - 100
ek .

LXK X K f e e .
Ky oy 0 . =k T *,,40
4 16 64 256 1K 4K 16K 64K 256K ™M 4M 4 16 64 256 1K 4K 16K 64K 256K im aMm

Message size (bytes) Message size (bytes)

(c) MPI Exchange (d) MPI Sendrecv
Fig. 2: IMB MPI Point-to-Point Results

Time (microseconds)
|
IS
S
3
% Improvement (SMARTMAP Collective vs. Shared Memory)

% Improvement (SMARTMAP Collective vs. Shared Memory)

performance of CLE/MPICH2 is significantly worse at {:6. As for bandwidth, SMARTMAP is able to achieve
a peak bandwidth of nearly 1500 MB/s, while the two Portalsda transports only achieve a little more than 300
MB/s.

B. MPI Point-to-Point

Figure 2 shows the performance of MPI peer communicatiofopeance using the MPI implementation describe
in [4]. MPI ping-pong latency for a 0-byte message is a littlere than 600 ns. The CLE/MPICHZ2 implementation
for the Cray CLE environment is slightly better at just ov@0S;s, but these results were run on a slightly slower
processor. The Open MPI implementation has not gone thrthglextensive performance optimizations that the
production MPI from Cray has. Using POSIX-style shared mgnamulated by SMARTMAP is slightly slower,
but still achieves a ping-pong latency less than a micraseco

As with latency, ping-pong bandwidth performance for theyYCCLE implementation is slightly better than
SMARTMAP out to 64 bytes, at which point the SMARTMAP implemation begins to win. The single-copy
advantage of SMARTMAP allows it to maintain a performanceaadage for messages less than about 2 MB, at
which point all implementations most likely achieve full mery bandwidth.

The other two benchmarks in Figure 2, Sendrecv and Exchahge; the performance of 8 processes exchanging
point-to-point messages using slightly different MPI pe@mmunication functions. Each graph shows the percentage

5e+06

3e+06
BTL - Shared Memory —+—— BTL - Shared Memory —+——
MTL - SMARTMAP MTL - SMARTMAP
MPICH2 - Jaguar ---%-- 4.5e+06 MPICH2 - Jaguar ---3%---
2.56+06 |- 4
4e+06 |- g
3.5e+06 [t 4
2e+06 [R /\\
/ A\
g e B 3er06 | / \ 1
3 \ /X 8 %
3 \\ / \] \
? 15e+06 - ¥ X q 2 2.5e+06 |- \ g
=3 \ =1 Ry
s X < 2e+06 F K KKK \ 1
ESEEE \ ¥ \
Lesop KR IHH \ | Y
*eke o\ 150406 - i\ i
Y . \‘
\?tg 1e+06 - B
500000 \ix 4 *
x\{ 500000 |- \s; 1
e e
0 I I I I T Ly 0 I I I I SV STl "
1 10 100 1000 10000 100000 1e+06 1e+07 1 10 100 1000 10000 100000 1e+06 1e+07
Message Size (Bytes) Message Size (Bytes)
(a) One pair (b) Two pairs

8e+06

BTL - Shared Memory —+—
MTL - SMARTMAP

7e+06 B

6e+06 [+ —H— 4

50406 |- - ., B

4e+06 |- \ q

3e+06 - i

Messages/Second

26406 [\ |

1e+06 - \ g

0 . . . e S
1 10 100 1000 10000 100000 1le+06 1le+07
Message Size (Bytes)

(c) Four pairs

Fig. 3: MPI Message Rate

improvement of SMARTMAP relative to shared memory. For Send, SMARTMAP is able to achieve more than
a factor of six improvement for 32 KB messages, and SMARTMARieves more than a seven times improvement
at 128 KB messages for the Exchange benchmark.

Figure 3 shows message rate performance for one, two, amdpfirs of processes. The first two graphs also
show the performance of the Cray CLE MPICH implementationiclv has the worst performance of the three. The
SMARTMAP implementation is able to achieve more than twite ihessage rate of the Cray implementation. More
investigation is needed to understand why this implemamtgierforms so poorly. The message rate essentially
stays constant between one and two pairs of communicatowgpses. In contrast, the SMARTMAP implementation
continues to increase in performance, achieving nearlyrilllon messages per second for 4 pairs of processes.

C. MPI Collectives

Figure 4 shows the performance of several MPI collective momication operations for eight processes on a
single node. For the Broadcast benchmark, SMARTMAP is abkchieve nearly 18 times better performance over
the shared memory implementation. The advantage is noyresapronounced for the Reduce, where SMARTMAP
only achieves nearly nine times the performance. For theedlice benchmark, SMARTMAP is able to achieve a
respectable factor of three improvement, but for Allto8IMARTMAP outperforms shared memory by nearly 12
times. Finally, SMARTMAP also significantly outperformsetiothers for the Barrier benchmark.

Time (Microseconds)

Time (Microseconds)

100000

10000

1000

100

10

0.1

100000

10000

T T T T
BTL - Shared Memory —+—

SMARTMAP Collective
% Improvement -- -Et- -

4 16 64 256

1K

4K

16K 64K 256K

Message Size (Bytes)

(a) MPI Broadcast

T T T
BTL - Shared Memory —+—

SMARTMAP Collective
% Improvemen

256

1K

aK

Time (microseconds)

16K
Message Size (Bytes)

(c) MPI Allreduce

6

3.5

25

15

0.5

64K 256K ™M

1800 100000
B
§
1500 §
= 10000
5
13
5
g
2]
g -
R
s B 1000
s ©
1000 § ¢
a @
g
% 8
= 2
e o
x g 100
s F
Qo
500 &
£
g
8
5
£
8
-0
0
am
400 1e+06
B
=}
5
E 2 100000
' 3
4300 §
2
2]
g 10000
s @
]
Zz B
. S 2
a o <}
Fao0 9 8 1000
=4
E s
z £
£
z 100
5
4100 8
]
2
3
5
E
<
0 1
am

1000

T T T T
BTL - Shared Memory —+—
IARTMAP -

SMARTMAP Collective
% Imp g

256 1K
Message Size (Bytes)

(b) MPI Reduce

16K

64K

256K

M

4am

1200

T T T T

BTL - Shared Memory —+—

IARTMAP -

SMARTMAP Collective
%

— 1100

1000
ki

256

1K

4K

16K

Message Size (Bytes)

(d) MPI Alltoall

mtl-smap =
btl-sm ===
smap-coll m—
mpich2-cle

4
Processes

(e) MPI Barrier

Fig. 4: IMB MPI Collective Performance

64K

256K

M

% Improvement (SMARTMAP Parallel vs. Shared Memory)

% Improvement (SMARTMAP Collective vs. Shared Memory)

IV. SUMMARY

This paper provides an initial set of performance resultsséweral communication micro-benchmarks using the
Catamount N-Way lightweight kernel on a dual-socket quaigt@iode of a Cray XT5 system. Catamount provides
a feature called SMARTMAP that allows for single-copy datansfers between the processes on a multi-core
processor. SMARTMAP preserves the independent addresg saa process, but also allows parallel processes
to behave as threads in a node-wide global address spaceadivhatage of SMARTMAP for Cray SHMEM and
MPI communication continues to improve as the number ofsorea node increase.

These performance results were from an initial port of théa@aunt N-Way kernel. There is much left work
to be done for a production environment. Currently Catamalaes not take into account the fact that each socket
has its own local memory. Catamount assumes the cost of @iegememory is uniform. In the future, we plan
to make the initial allocation and assignment of local mgmswcket-aware. We would also like to perform an
in-depth analysis of application performance on dual-sbdodes.

REFERENCES

[1] S. M. Kelly and R. Brightwell, “Software architecture tfe light weight kernel, Catamount,” iRroceedings of the 2005 Cray User Group
Annual Technical Conference, May 2005.

[2] W. J. Camp and J. L. Tomkins, “Thor's hammer: The first i@rsof the Red Storm MPP architecture,” in Proceedings of the SC 2002
Conference on High Performance Networking and Computing, Baltimore, MD, November 2002.

[3] R. Brightwell, T. Hudson, and K. Pedretti, “SMARTMAP: @mting system support for efficient data sharing amongegsses on a
multi-core processor,” ifProceedings of the International Conference for High Performance Computing, Networking, Sorage, and Analysis
(SC'08), November 2008.

[4] R. Brightwell, “A prototype implementation of MPI for SMRTMAP,” in Proceedings of the 15th European PVM/MPI Users Group
Conference, September 2008.

