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Condensed-History Algorithm
and PathLength Convergence

• Sample accumulated 
effects over (pre-
determined) pathlengths

• “Transport-mechanics”:
– Hinge at end

error O(s)

– Random Hinge

error O(s2)

• Other aspects of ITS 
remain unchanged
– Steps (for energy loss)

– Secondaries

• Accumulated deflections 
given by Goudsmit-
Saunderson:

with Transport Moments:
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Test Problem:
Albedo Number Fraction

• Normally incident 
electrons on thick slab (1D)

• Calculate total number of 
reflected electrons 
(albedo) (minimal use of 
boundary-crossing logic)

• Particulars for this talk: 
1-MeV electrons on Be
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Failure of substep convergence
Culprit: Angular Representation

• Too few terms in Legendre 
expansion

– Historical prescription is used 
to determine number of terms 
(also use of forward or reverse 
forms)

» Never exceeds 240

– Unstable transport-moment 
recurrence relations used

• Histogram representation
– Need greater resolution at 

small angles for small substeps 
(addressed through input)

• Modified code:
– Increased Lmax

– Screened-Mott xs only

– Forward recurrence only

– Used energy at start of substep 1
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Potential Convergence 
Acceleration

• Berger&Wang (1988) 
indicated improved 
convergence for small 
substep sizes may be 
obtained by first 
separately evaluating:

– Uncollided

– First collided

• For this study, the 
“convergence” criteria is 
actually on the transport 
moments themselves

– Will be moved to attribute of 
angular representation -
i.e., integration of 
histogram bin

Substep Fraction = 1 / 512
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Procedure:
Minimizing Chi-squared

• Need parameterized 
expression for fit in 
asymptotic region

(based on theory)

• Determine parameters 
from minimizing a      
statistic using the Monte 
Carlo results
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Results
modified ITS
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Modified Test Problem:
Classical Albedo Number Fraction

• To simplify implementation 
of random hinge within ITS, 
a simpler problem was 
used

• Reduced physics:
– Isotropic elastic scattering

– Absorption added

– Nothing else (no energy loss, 
no secondaries)

• Calculate total number of 
reflected electrons 
(albedo) (minimal use of 
boundary-crossing logic)

• Semi-analytic solution is 
available

e-

• Particulars for this talk: 
– Default substep length has 

about 15 collisions on 
average

– Ratio of  absorption to total 
cross section ~ 10-5



Evaluation of 
Semi-analytic Solution

• The semi-analytic solution for the albedo (current) is

• is the “Chandrasekhar H function” 
(defined through an integral equation)

Used Ganapol’s procedure with
– Quad precision

– Quadrature order 40, 64 or 100

– Iteration convergence 1.E-08

• To evaluate the albedo integral, we used quadrature of 
the same order, or a 15000-point trapezoid rule, also in 
quad precision
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Results

• End Hinge:

• Random 
Hinge:
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Conclusions

• Demonstrated procedure for verifying order-
of-convergence testing for condensed-
history Monte Carlo

• Revealed that the number of terms in 
multiple-scattering angular distribution is 
inadequate in ITS for very small substep sizes

• Gained a better appreciation for “semi-
analytic” solutions

• Can only conclude whether results are 
statistically consistent with model


