

Order-of-Convergence Study of a Condensed-History Algorithm Implementation

Rodney L. Keith and Ronald P. Kensek

Sandia National Laboratories
Radiation Transport Department
Albuquerque, NM
87185-1179

rlkeith@sandia.gov
505-844-3675

**International Conference on Mathematics,
Computational Methods & Reactor Physics**

Saratoga Springs, NY, May 3-7, 2009

Outline

- **Preliminaries**

- Condensed History and Pathlength Convergence
 - Test Problem (albedo)
 - Issues

- **Assessing Order of Convergence**

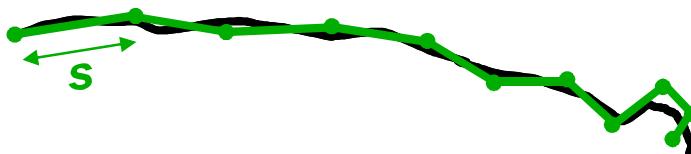
- Procedure (using Monte Carlo uncertainties)
 - Results for End-Hinge for Modified ITS

- **Simplified-Physics problem (albedo)**

- Semi-analytic solution
 - Results for End-Hinge and Random-Hinge

- **Conclusions**

Condensed-History Algorithm and PathLength Convergence



Focus on Angular Scattering and Transport

- Sample accumulated effects over (*pre-determined*) pathlengths
- “Transport-mechanics”:
 - Hinge at end error $O(s)$
 - Random Hinge error $O(s^2)$

- Accumulated deflections given by Goudsmit-Saunderson:

$$\frac{dP_{GS}}{d\Omega}(\mu, s) = \sum_{L=0}^{\infty} \frac{2L+1}{2} e^{-sG_L} P_L(\mu)$$

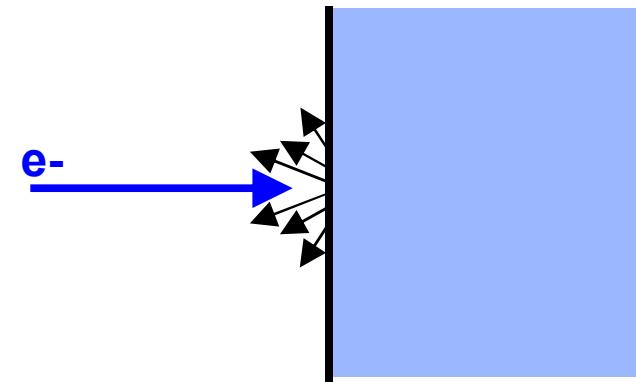
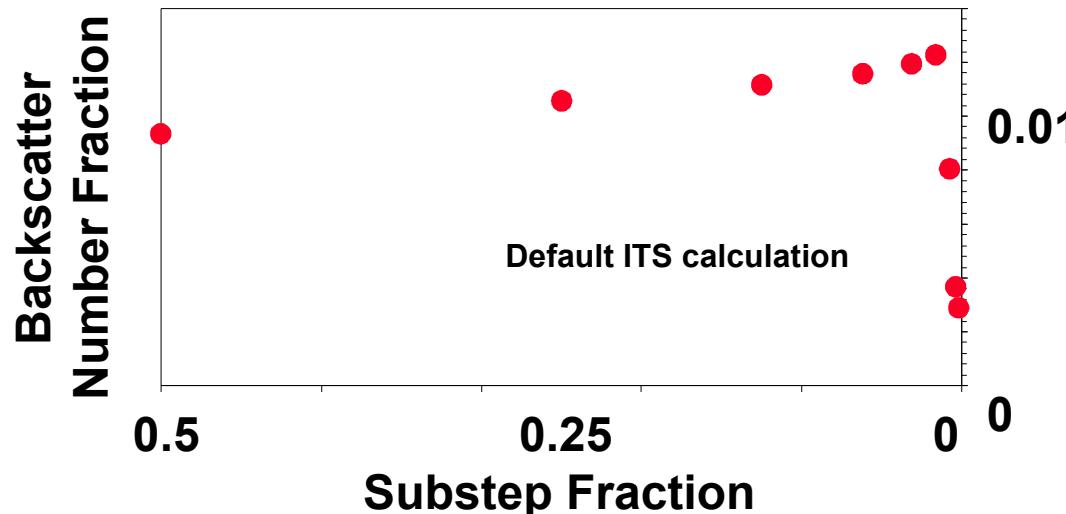
with Transport Moments:

$$G_L = \int_{-1}^1 \frac{d\sigma}{d\mu} [1 - P_L(\mu)] d\mu$$

- Other aspects of ITS remain unchanged
 - Steps (for energy loss)
 - Secondaries

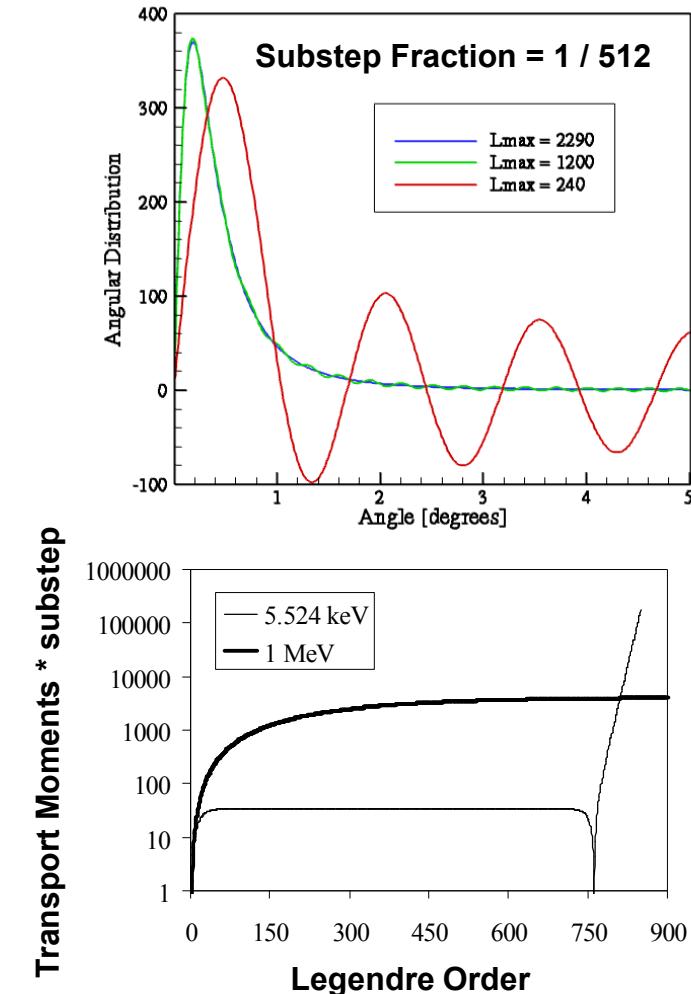
Test Problem: Albedo Number Fraction

- Normally incident electrons on thick slab (1D)
- Calculate total number of reflected electrons (albedo) (*minimal use of boundary-crossing logic*)
- Particulars for this talk:
1-MeV electrons on Be



Failure of substep convergence Culprit: Angular Representation

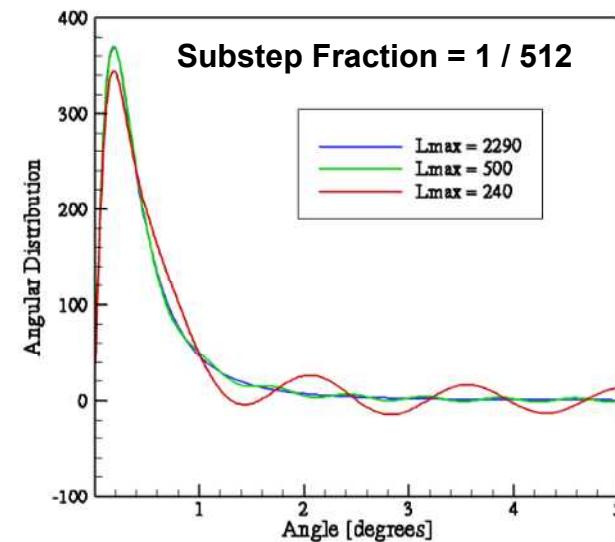
- **Too few terms in Legendre expansion**
 - Historical prescription is used to determine number of terms (also use of forward or reverse forms)
 - » Never exceeds 240
 - Unstable transport-moment recurrence relations used
- **Histogram representation**
 - Need greater resolution at small angles for small substeps (*addressed through input*)
- **Modified code:**
 - Increased Lmax
 - Screened-Mott xs only
 - Forward recurrence only
 - Used energy at start of substep



Sandia
National
Laboratories

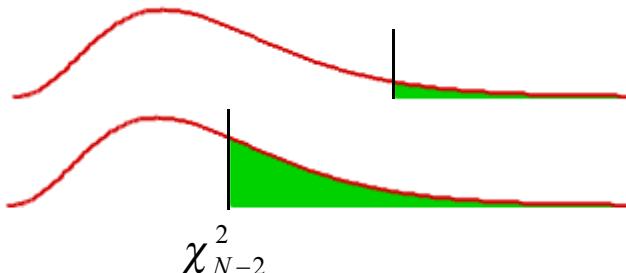
Potential Convergence Acceleration

- Berger&Wang (1988) indicated improved convergence for small substep sizes may be obtained by first separately evaluating:
 - Uncollided
 - First collided
- For this study, the “convergence” criteria is actually on the transport moments themselves
 - Will be moved to attribute of angular representation - i.e., integration of histogram bin



Procedure: Minimizing Chi-squared

- Need parameterized expression for fit in asymptotic region
(based on theory)
- Determine parameters from minimizing a χ^2_{N-2} statistic using the Monte Carlo results $\{(y_i, \sigma_i)\}$
- Evaluate q-value of χ^2_{N-2} to determine goodness of the fit.

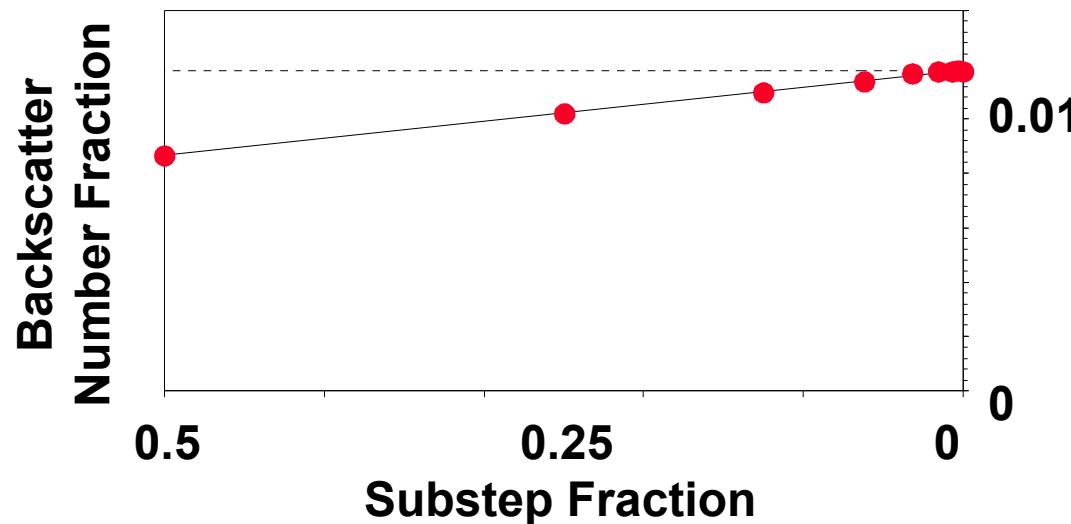


$$y = b + a s^M$$

$$\chi^2_{N-2} = \sum_{i=1}^N \left(\frac{y - y_i}{\sigma_i} \right)^2$$

$q.value(\chi^2_{N-2}) < 0.05 \Rightarrow \text{👎}$
 $q.value(\chi^2_{N-2}) > 0.05 \Rightarrow \text{👍}$

Results modified ITS

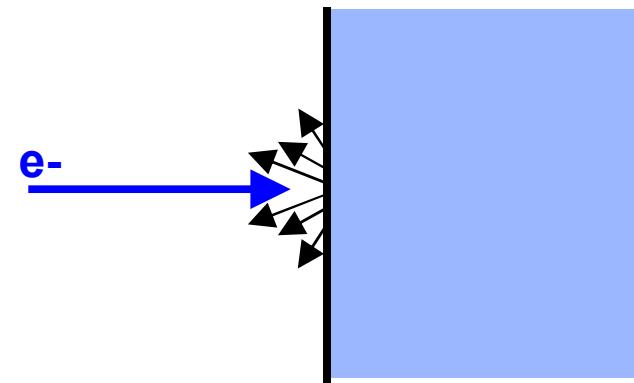


	Results	Uncertainty
Intercept	$1.179 \ 10^{-2}$	$1.216 \ 10^{-5}$
Slope	$-6.274 \ 10^{-3}$	$6.442 \ 10^{-5}$

$$\chi^2_{N-2} = 8.816$$
$$q.value(\chi^2_{N-2}) = 0.358$$

Modified Test Problem: Classical Albedo Number Fraction

- To simplify implementation of random hinge within ITS, a simpler problem was used
- Reduced physics:
 - Isotropic elastic scattering
 - Absorption added
 - Nothing else (no energy loss, no secondaries)
- Calculate total number of reflected electrons (albedo) (*minimal use of boundary-crossing logic*)
- *Semi-analytic* solution is available



- Particulars for this talk:
 - Default substep length has about 15 collisions on average
 - Ratio of absorption to total cross section $\sim 10^{-5}$

Evaluation of Semi-analytic Solution

- The semi-analytic solution for the albedo (current) is

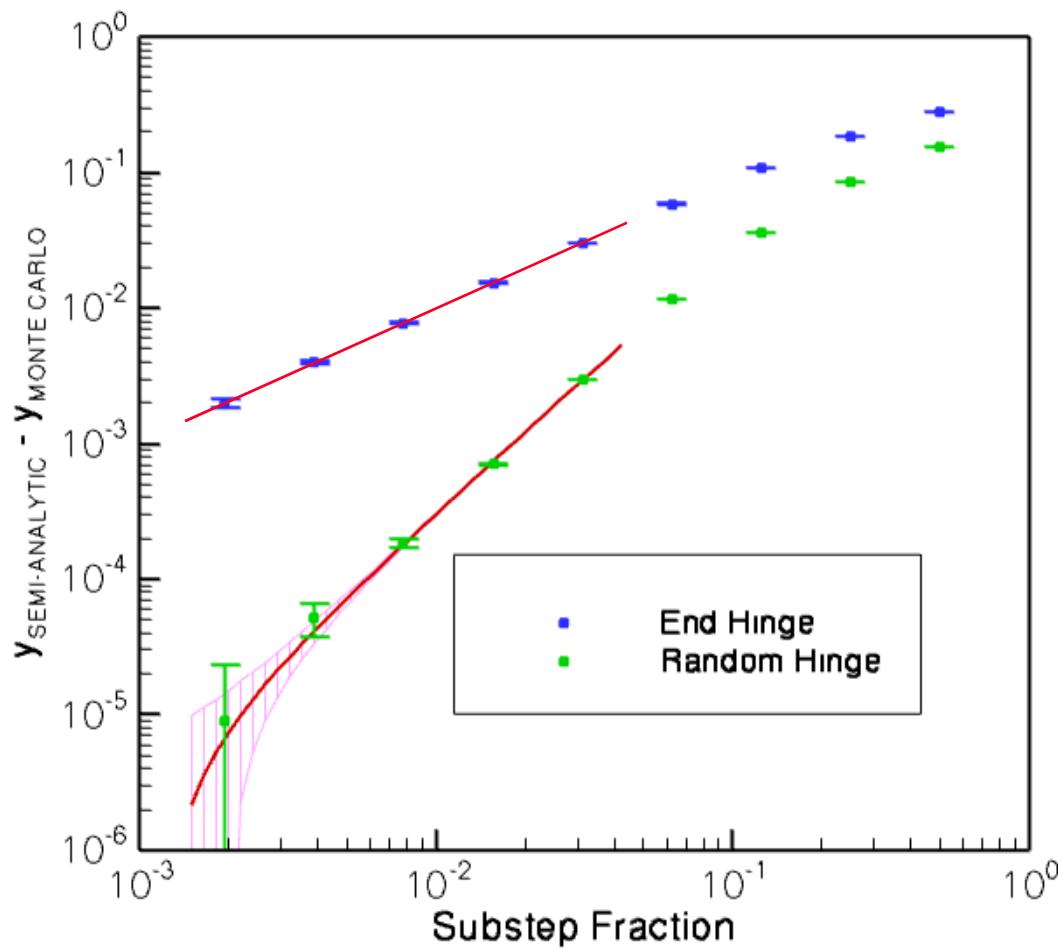
$$y = \frac{c}{2} \mu_0 H(\mu_0) \int_0^1 \frac{\mu H(\mu)}{\mu + \mu_0} d\mu \quad \text{where } \mu_0 = 1$$
$$c = \sigma_{SCATT} / \sigma_{TOTAL}$$

- $H(\mu)$ is the “Chandrasekhar H function”
(defined through an integral equation)

Used Ganapol’s procedure with

- Quad precision
- Quadrature order 40, 64 or 100
- Iteration convergence 1.E-08
- To evaluate the albedo integral, we used quadrature of the same order, or a 15000-point trapezoid rule, also in quad precision

Results



Sandia
National
Laboratories

Conclusions

- Demonstrated procedure for verifying order-of-convergence testing for condensed-history Monte Carlo
- Revealed that the number of terms in multiple-scattering angular distribution is inadequate in ITS for very small substep sizes
- Gained a better appreciation for “semi-analytic” solutions
- Can only conclude whether results are statistically consistent with model