
Dislocations in LaBr3 crystals

X. W. Zhou1,*, F. P. Doty2, and Pin Yang3

1 Mechanics of Materials Department, Sandia National 
Laboratories, Livermore, California 94550, USA

2 Engineered Materials Department, Sandia National Laboratories, 
Livermore, California 94550, USA

3 Ceramic and Glass Department, Sandia National Laboratories, 
Albuquerque, NM 87185, USA

ABSTRACT

Using a many-body embedded ion method potential for La-Br system, molecular dynamics simulations 
have been performed to study dislocations in the UCl3 type of LaBr3 crystal including identification of 
dislocation line energy, core structure, migration mechanism, and mobility. We found that dislocations with
the < 0001> Burgers vector can move under shear stresses, but they retain perfect dislocations during the 
motion rather than dissociated partials as commonly seen in metal systems. Unlike the < 0001> edge 
dislocations whose mobility increases with temperature, the < 0001> screw dislocations may become 
sessile at high temperatures due to thermally activated dissociation of the core.  Dislocations with the 

< 0211 > Burgers vector were found to be sessile due to non-planar dissociation at the core. Because the  

< 0001>  dislocations can only slip on the { 0011 } prism plane and often only the edge dislocations are 
operative, the stresses created during any thermal mechanical processes cannot be effectively relieved by 

the plastic deformation mechanism. Considering that LaBr3 tend to cleave along the { 0011 } prism plane, 
the simulations shed some lights on why this material is so brittle and how large LaBr3 crystals tend to 
fracture during growth.
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1. INTRODUCTION

LaBr3 crystal has superior scintillating properties, and is being widely explored for gamma ray 
spectroscopy applications1,2. A large volume, high quality LaBr3 single crystal is the key for this 
application as it enables a maximum interaction between the material and the radiation. The yield of large 
volume crystals that can be grown today, however, is extremely low. The limiting problem is that the 

crystal would fracture along the { 0011 } cleavage plane when the volume is grown above a threshold3. An 
improved synthesis of LaBr3 crystals, therefore, relies on the understanding of the mechanical properties of 
this complicated, ionically-bonded crystal, and the development of methods that can mitigate the fracture 
during its growth. The study of mechanical properties of LaBr3 crystals has been a prolonged process. This 
is because experimental methods that are effective in revealing deformation, fracture, and microstructure of 
materials cannot be easily applied to reveal atomic mechanisms specific to the LaBr3 crystals. As a result, 
these mechanisms have not been well studied. Recently, a La-Br interatomic potential suitable for the 
crystal of theLaBr3 compound has been developed4. This enables large scale molecular dynamics (MD)
simulations to be used to study precisely the atomic mechanisms of the mechanical processes of the 
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material. Here we report our MD study on the dislocations in single crystalline LaBr3 solid compound.
Dislocation line energy, core structure, migration mechanism, and mobility are all quantified.

2. INTERATOMIC POTENTIAL

Compared with metal and semiconductor materials, the ionic La-Br system has been far less 
explored and therefore there are only few interatomic potential currently available for this system4,5. On the 
other hand, the solid compound LaBr3 exhibits an equilibrium P63/m (UCl3) crystal structure6,7,8. This phase 
is relatively complicated to model as it has a hexagonal lattice with a small lattice constant ratio of c/a 
0.57, a local rotation of Br polyhedron surrounding each La atom, a slightly longer bond length between La 
and the cap Br atoms than that between La and the prism Br atoms, the presence of big lattice hollows, and 

the cleavage fracture along the { 0011 } plane6,7. The many-body embedded ion method (EIM) potential we 
developed earlier has been demonstrated to be able to capture all these features in addition to a correct 
description of lattice constants and cohesive energies of various phases4,8,9,10. As a result, the EIM potential 
was used in the present work.

3. DISLOCATION ENERGY CALCULATIONS

Dislocation line energies were first calculated. Various Burgers vectors were considered and they 

were narrowed down to < 0001> and < 0211 > as the magnitudes (and therefore the dislocation energies) of 

other vectors significantly larger. The < 0001> Burgers vector can slip on the { 0011 } prism plane. The 

< 0211 > Burgers vector can slip on both the prism and the { 0001} basal plane. Here we calculated

energies of both edge and screw dislocations with both < 0001> and < 0211 > Burgers vectors, considering 

both the basal and the prism slip planes for the < 0211 > Burgers vector. 

Of the hexagonal LaBr3 crystal, an orthogonal cell can be chosen with a in the < 0211 > direction, 

 6/cos2 a in the < 0011 > direction, and c in the < 0001> direction, where a and c are lattice 

constants of the hexagonal cell. We therefore used rectangular computational crystals with the dislocation 
lying in the z direction. Periodic boundary conditions were used in the x and z directions and free boundary 
conditions were used in the y direction. This geometry corresponds to an array of infinitely long 
dislocations stacked in the x direction. The crystal dimensions and orientations used to model different 
types of dislocations are listed in Table I. The x-y dimension was chosen to be around ~ 480250 Å2, 
which was found to be sufficiently large so that the effect of interaction between dislocation and system 
boundary can be neglected.

Table I. Orientation and dimension of crystals for dislocation energy calculations.
Dislocation Crystal orientation Dimension (cells/Å)

x y z x y z

0001 edge 0001 1001 0211 104/470.7 18/247.9 8/63.6

0001 screw 0211 1001 0001 60/477.1 18/247.9 4/18.1

0211 edge, basal slip 0211 0001 1001 60/477.1 54/244.4 4/55.1

0211 screw, basal slip 1001 0001 0211 34/468.3 54/244.4 2/15.9

0211 edge, prism slip 0211 1001 0001 60/477.1 18/247.9 14/63.4

0211 screw, prism slip 0001 1001 0211 104/470.7 18/247.9 2/15.9

In an atomistic simulation, the dislocation line energy  can be accurately calculated as:

L

EE perfdis  , (1)



where Edis and Eperf are the total energies of the atomistic system with and without the dislocation, and L is 
the total length of the dislocation. Perfect crystals can be created by assigning coordinates to atoms based 
upon the lattice sites. The following specific atomistic models were used in the present work to introduce 
edge and screw dislocations.

2.1 Edge dislocation model

The underlying assumption behind Eq. (1) is that the perfect and the dislocated crystals have the 
same number of atoms and the same geometry. However, edge dislocations are associated with missing or 
extra half planes. Unlike the past atomistic dislocation models that create missing or extra half planes11,12,13, 
our approach to create the edge dislocation does not change the number of atoms. The model is illustrated 
in Fig. 1, where a perfect crystal prior to the dislocation creation is shown. This crystal is divided into
several regions. The blue regions at the left and the right sides are the boundary regions that remain fixed 
during dislocation creation. The upper blue and lower red regions in the middle of the system are initially 
misaligned by a Burgers vector of the dislocation. The middle blue region is then displaced to the left by 
half of the Burgers vector whereas the middle red region is displaced to the right by another half of the 
Burgers vector so that the two regions become aligned after the displacement. All other atoms between the 
middle and the side boundary regions are ramped according to a linear elastic deformation. This operation 
is equivalent to inserting upper half planes in the left half of the system and lower half planes in the right 
half of the system, thereby creating two edge dislocations of opposite sign along the z direction. Note that 
the middle blue and red regions are shifted with respect to each other by a perfect lattice vector, and 
therefore no defects are created within the boundary regions.

Fig. 1. Edge dislocation model for energy calculation.

2.2 Screw dislocation model

The screw dislocation model is illustrated in Fig. 2. As in the edge dislocation case, the blue atoms at 
the left and the right sides are the boundary atoms that remain fixed during dislocation creation. Unlike the 
edge dislocation model, the upper blue and lower red regions in the middle of the system are initially 
aligned. During creation of dislocations, the middle blue region is displaced in the negative z direction by 
half of the Burgers vector whereas the middle red region is displaced in the positive z direction by another 



half of the Burgers vector so that the two regions remain perfect lattice after the displacement. The 
displacements of all other atoms between the middle and the side boundary regions are ramped based on 
the spiral angle, the atom distance from the dislocation core, and any boundary constrains that may exist14. 
This operation creates two screw dislocations of opposite sign along the z direction, Fig. 3(b), where the x-
y coordinates of the two dislocation cores were taken respectively as the geometry centers of the left and 
the right halves of the system.

Fig. 2. Screw dislocation model for energy calculation.

2.3 Energy calculations

Molecular statics energy minimization simulations were performed to calculate the total relaxed
energies of both perfect and dislocated crystals under the constraint of fixed positions for all atoms in the 
blue and red regions. As the width of the middle and side boundary regions was chosen to be larger than the 
cutoff distance of the interatomic potential, atoms at the left half of the system did not see those at the right 
half. As a result, there was no interaction between the two dislocations. The total system energies were 
used in Eq. (1) to calculate dislocation line energies . The results are shown in Table II.

Table II. Dislocation line energies .
  Burgers vector 0001 Basal 0211 Prism 0211

Dislocation type edge screw edge screw edge screw

 (eV/Å) 4.7 5.8 10.8 8.2 12.1 12.0

Table II indicates that the energy of < 0211 > dislocations is significantly higher than that of < 0001>

dislocations. We can see that the magnitudes of the Burgers vectors of the < 0001> and the < 0211 >
dislocations are respectively b1 = 4.526 Å and b2 = 7.951 Å. As a result, (b2/b1)

2 = 3.1. The significantly 

higher energy for the < 0211 > dislocation is therefore consistent with its significantly higher value of (b2)
2. 

Interestingly, Table II also shows that the < 0001> screw dislocation has a higher energy than the < 0001>
edge dislocation. We found that if the energy of the system is not relaxed, then < 0001> edge dislocation 
would have significantly higher energy than the < 0001> screw dislocation. As a result, the higher screw 
dislocation energy is a result of the relaxed dislocation core structures. Table II clearly indicates that the 
lowest energy < 0001> dislocations dominate the mechanical properties of the LaBr3 crystals.

4. DISLOCATION MOBILITY CALCULATIONS

Molecular dynamics simulations were performed to study dislocation mobility and its dynamics 
under a shear stress. The focus of this study is to understand the possible slip on prism and basal planes. 

The < 0001> and the < 0211 > dislocations can both slip on the { 0011 } prism plane. However, the 
< 0001> dislocation has significantly lower energy and hence is expected to dominate the prism slip. As a 



result, only the < 0001> dislocation was studied for the prism slip. The basal < 0211 > dislocation was 
studied for the basal slip as it is the only dislocation available for that slip.

The crystal orientation and dimension used for the study are shown in Table III. Periodic boundary 
conditions were used in the x and z directions and free boundary conditions were used in the y direction. It 
should be noted that dislocation models shown in Figs. 1 and 2 cannot be used for dislocation dynamics 
simulations because the two opposite dislocations would cancel once they are allowed to move. The 
following alternative dislocation models were therefore used.

Table III. Orientation and dimension of crystals for dislocation dynamics simulations.
Dislocation Crystal orientation Dimension (cells/Å)

x y z x y z

0001 edge 0001 0011 0211 50/226.3 6/82.6 2/15.9

0001 screw 0211 0011 0001 60/477.1 18/247.9 4/18.1

Basal 0211 edge 0211 0001 0011 30/238.5 20/90.5 2/27.5

Basal 0211 screw 0011 0001 0211 34/468.3 54/244.4 3/23.9

4.1 Edge dislocation model

The edge dislocation model for dynamics simulation is demonstrated in Fig. 3. Several steps are 
involved to create the dislocation. First, several atomic planes of atoms are removed from the upper half of 
the crystal. The width of the removed planes corresponds to the magnitude of the Burgers vector b. To 
close the gap, atoms at the left edge of the gap are displaced to the right by b/2, and atoms at the right edge 
of the gap are displaced to the left by another b/2, with the positions of all other atoms in the upper half of 
the system ramped linearly. Finally, the system is strained in the x direction by an appropriate strain so that 
the system dimension in the x direction is approximately the average of the lattice sizes of the upper and 
lower crystals. By using periodic boundary condition in the x direction, such a dislocation model essentially 
creates an array of edge dislocations that are equally spaced by the periodic length in the x direction.

Fig. 3. Edge dislocation model for mobility simulation.

4.2 Screw dislocation model



The screw dislocation model for dynamics simulation is shown in Fig. 4. First, the upper right half of 
the crystal is displaced by b/2 in the negative z direction and the lower right half of the crystal is displaced 
by b/2 in the positive z direction. Corresponding ramping displacements are made to atoms in the left half 
of the crystal based on the spiral angle, their distance from the dislocation core (the geometry center of the 
left half of the system), and the boundary constraints. This creates a screw dislocation in the left half of the 
system, and the right half of the system remains perfect because the relative displacement between the 

upper and lower halves is a perfect lattice vector b


. This process, however, destroys the periodic boundary 
condition in the x direction because the right boundary is shifted with respect to the left boundary by a 

partial lattice vector b


/2. To overcome this problem, a similar process is used to create a second screw 
dislocation in the right half of the system by displacing the upper right end of the system by b/2 in the 
negative z direction and the lower right end of the system by b/2 in the positive z direction while making 
corresponding ramping displacements to other atoms. This operation causes a total displacement of the 
right boundary with respect to the left boundary to be a lattice vector b, which enables the use of periodic 
boundary conditions. Under the periodic boundary conditions, this dislocation model allows us to simulate 
an array of screw dislocations. A minor difference from the edge dislocation model is that the 
computational cell now includes two independent dislocations. This means that the spacing between 
adjacent dislocations may dynamically change. The spacing between each pair of dislocations, however, is 
still fixed at the periodic length in the x direction just as the spacing between the adjacent dislocations in 
the edge dislocation model. Because we have chosen the x dimension of the screw dislocation model to be 
roughly double of that of the edge dislocation model, Table III, the average dislocation spacing is about the 
same for both models.

Fig. 4. Screw dislocation model for mobility calculation.

4.3 Loading and dislocation identification

Evolution of an edge dislocation under a shear stress yx and a screw dislocation under a shear stress 
yz was simulated using the MD method. The stress was maintained during an MD simulation by applying 
corresponding forces to a thin (5 to 10 Å thick) layer of surface atoms. Assume that the numbers of atoms 
per unit surface area are t and b respectively for the top and bottom surface layers, a shear stress y ( = 
x or z) was created by applying constant forces ft = y/t in the negative  direction to atoms in the top 
surface layer, and fb = y/b in the positive  direction to atoms in the bottom surface layer. Note that for 
screw dislocation, t =b, and hence, ft = fb. For edge dislocation, t b due to missing half planes. As a 
result, ft  fb.

Initial crystals were created using the lattice constants equilibrated at a temperature of 0 K. MD
simulations were performed using LAMMPS15 at a time step size of 0.5 fs. An “nve” integrator15 was 
applied to all atoms. A constant temperature simulation was achieved by rescaling velocities of all atoms 
that are not in the surface layers at each time step. For the target temperature of 0 K, the rescaling was 
performed only when the temperature rose above a 0.00001 K window to allow motion of atoms.

Dislocations can be identified using the slip vector developed previously16. The slip vector is defined 

as   

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atom i to a neighbor j in an initial perfect lattice configuration, jiR ,


is the vector from atom i to the same 

neighbor j in the current configuration, and Ns is the number of neighbors that are on an adjacent slip plane 
to atom i (e.g., Ns = 3 if slip occurs on an {111} fcc lattice). By finding the relative displacement of a
neighbor atom j with respect to a given atom i, it can be determined if a plane neighboring atom i has 
slipped and in what direction. Dividing by Ns scales the vector’s magnitude so that it is equal to the 
magnitude of the Burgers vector of the slipping dislocation. This definition gives large magnitudes of slip 
vectors for all slipped atoms including those at the dislocation core and those trailing the dislocation. To 

isolate the dislocation core, we slightly modified the slip vector. First, the neighbor vector list ,0
, jiR


from 

atom i to its neighbor j (j = 1, 2, …, Nj) was determined from an initial perfect crystal for all atom i (i = 1, 

2, …, N). Note that we use the notation ,0
, jiR


( = 1, 2, …) here rather than 0

, jiR


. This is because (i) in the 

UCl3 LaBr3 structure, there are two non-equivalent Br sites (i.e.,  = 2), each with a different set of 
neighbor vector list; and (ii) we discovered that the migration of a screw dislocation causes the Br atoms to 
switch between these two different sites. Hence, it is necessary to track all possible local perfect lattices in 

order to determine if a Br atom has switched sites. Next, the neighbor vector list kiR ,


(k = 1, 2, …, Nk) for 

the current configuration was redetermined, where k does not necessarily correspond to j and Nj does not 

necessarily equal Nk. A j to k match was then performed by minimizing the difference between ,0
, jiR


and 

kiR ,


. This results in a unique value of  = 0 and a matched j as a function of k, j(k). The slip vector was 

finally calculated as   
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perfect lattice, the magnitude of the slip vector diminishes when dislocation completely sweeps through to 
recover a perfect crystal. As a result, the modified slip vector only shows the dislocation core. If no other 
defects form, then the maximum magnitude of the slip vector is close to half of the magnitude of the 
Burgers vector due to the round off of the current configuration with respect to the next closest perfect 
configuration.

4.4 Atomic configurations of dislocations

The time evolution of the < 0001> edge dislocation at a temperature T of 0 K and a shear stress yx

of 2.0 GPa is shown in Fig. 5 by superimposing configurations obtained at different times. In Fig. 5, the 
shaded region represents the size of the simulated system projected onto the x-y plane, and atoms are 
shown using the color scheme based on the magnitude of the modified slip vector. For clarity, only atoms 
with magnitude of slip vector larger than 0.2 are displayed whereas all other atoms are invisible. Fig. 6 
indicates that the modified slip vector provides a sharp contrast of the dislocation core. It can be seen that 
the < 0001> edge dislocation moved rapidly under the applied shear stress of 2.0 GPa and the 0 K 
temperature. No dislocation dissociation into partials was observed and dislocation was seen to move in a 
perfect unit. The time evolution of the < 0001> screw dislocation at 0 K and a shear stress yz of 2.0 GPa is 
shown similarly in Fig. 6. Again a rapid dislocation motion is observed. Analysis also indicated that the 
screw dislocation migrated as a perfect unit dislocation.

Dislocation dynamics simulations were also performed for the < 0001> dislocations at a higher 
temperature of 300 K. We discovered that the mobility of the edge dislocation was increased as the 
temperature was increased. Surprisingly, the screw dislocation became sessile at 300 K. On the other hand, 

simulations carried out for the basal < 0211 > edge and screw dislocations indicated that these basal 
dislocations are also sessile. Furthermore, we discovered that when dislocations are in their sessile 
configurations, they dissociate into three-dimensional (3D) defects at the core. Clearly, this non-planar 
dissociation creates significant resistance to dislocation motion, resulting in sessile properties. For the 
< 0001> screw dislocation, this 3D dissociated core structure has a slightly higher energy. However, it can 
be realized at a finite temperature through the thermally activated processes. As a result, the screw 
dislocation was seen to be mobile at 0 K but became sessile at 300 K. It is pointed out that the < 0001>



screw dislocation intersects with three slip planes. This is similar to the screw dislocation in body-centered-
cubic crystals, which also intersects with three slip planes, and is also non-planar and sessile17. 

Fig. 5. Motion of < 0001 > edge dislocation at yx = 2.0 GPa and T = 0 K.

Fig. 6. Motion of < 0001 > screw dislocation at yx = 2.0 GPa and T = 0K.

4.5 Critical flow stress for dislocation motion

The modified slip vector can be used to precisely identify the position of dislocation. Dislocation 
position was calculated as a function of time at different shear stresses and temperatures. The results 



obtained at 0 K are shown in Figs. 7(a) and 7(b) respectively for the < 0001> edge and screw dislocations. 
It can be seen that once the steady-state is reached, the dislocation location is a linear function of time. 
Clearly, dislocation dynamics exhibits a constant steady-state velocity. This velocity is seen to increase 
with the applied shear stress.

Fig. 7. 0001 dislocation position as a function of time at a stress of 2.0 GPa and a temperature of 0 K.

The steady-state velocities obtained at various shear stresses can be used to estimate a critical flow 
stress for the onset of dislocation motion. For better illustration purposes, we scaled the steady-state 
velocities by the velocity obtained at the maximum simulated stress. This relative steady-state velocity is 
plotted in Fig. 8 as a function of shear stress for the < 0001> edge dislocation at both 0 and 300 K and the 
< 0001> screw dislocation at 0 K. Fig. 8 indicates that the critical shear stress for both edge and screw 
dislocations at 0 K are near 1.5 GPa. Increasing the temperature to 300 K resulted in a reduced critical flow 
stress of 1.0 GPa for the < 0001> edge dislocation. This reduction is expected because dislocations can 
move through thermally-activated processes. However, it should be noted that the MD simulations do not 
include all the possible thermally-activated mechanisms that may require time scales beyond the MD 
simulations. Consequently, the critical stress is likely to be overestimated. An additional finding from Fig. 
8 is that at the highest simulated stress of 5.0 GPa, the steady-state velocity approached saturation at 300 K 
for the < 0001> edge dislocations, but was far from saturation for both edge and screw dislocations at 0 K. 

Fig. 8. Steady-state dislocation velocity as a function of stress.



5. CONCLUSIONS

Molecular dynamics simulations have been carried out to study dislocations of the UCl3 type of 
LaBr3 crystal. The following conclusions have been achieved:

1. Dislocation with the < 0001> Burgers vector has significantly lower energy than that with the 

< 0211 > Burgers vector. For the < 0001> Burgers vector, the edge dislocation has slightly lower 
energy than the screw dislocation.

2. The < 0001> dislocation is mobile while the < 0211 > dislocation is sessile. Because the < 0001>
dislocation can only slip on the prism planes, no slip systems are available on the basal plane for 
LaBr3.

3. The < 0001> dislocations in LaBr3 do not dissociate into partials and they move in a perfect unit.
4. The mobility of the < 0001> edge dislocation increases with temperature. Contrarily, the < 0001>

screw dislocation is mobile at 0 K but becomes sessile at 300 K. When in sessile configurations, all 
dislocations exhibit non-planar core structures.

5. The critical flow stress for the onset of motion of the < 0001> dislocations is 1.0 GPa for the edge 
dislocation at 300 K and 1.5 GPa for both edge and screw dislocations at 0 K.
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